Search

found 47363 results

Articles, Lost Christchurch

The moving of the Post Office from Market Square to its new site in Cathedral Square, was a significant development in Cathedral Square’s importance in Christchurch business and city life. Th…

Articles, Lost Christchurch

On this summer’s day in 1906, the ten o’clock morning tram to Sumner is about to depart from outside the Royal Exchange in Cathedral Square. An excursion to Sumner was a popular outing …

Articles, Lost Christchurch

In response to the loss of our inner city of Christchurch, we were inspired to create this website, Lost Christchurch, as a freely accessible archive of photographs, social history and memories of …

Articles, Lost Christchurch

Wendy Riley A relative newcomer to Christchurch, Wendy has deep-rooted connections to the city. Her ancestors, like many colonial New Zealanders, traced their origins to Scotland and England. After…

Research papers, University of Canterbury Library

Geomorphic, structural and chronological data are used to establish the late Quaternary paleoseismicity of the active dextral-oblique Northern Esk Fault in North Canterbury, New Zealand. Detailed field mapping of the preserved c. 35 km of surface traces between the Hurunui River and Ashley Head reveals variations in strike ranging from 005° to 057°. Along with kinematic data collected from fault plane striae and offset geomorphic markers along the length of the fault these variations are used to distinguish six structural subsections of the main trace, four dextral-reverse and two dextral-normal. Displacements of geomorphic markers such as minor streams and ridges are measured using differential GPS and rangefinder equipment to reveal lateral offsets ranging from 3.4 to 23.7 m and vertical offsets ranging from < 1 to 13.5 m. Characteristic single event displacements of c. 5 m and c. 2 m have been calculated for strike-slip and reverse sections respectively. The use of fault scaling relationships reveals an anomalously high displacement to surface rupture length ratio when compared to global data sets. Fault scaling relationships based on width limited ruptures and magnitude probabilities from point measurements of displacement imply earthquake magnitudes of Mw 7.0 to 7.5. Optically Stimulated Luminescence (OSL) ages from displaced Holocene alluvial terraces at the northern extent of the active trace along with OSL and radiocarbon samples of the central sections constrain the timing of the last two surface rupturing events (11.15 ±1.65 and 3.5 ± 2.8 ka) and suggest a recurrence interval of c. 5612 ± 445 years and late Quaternary reverse and dextral slip rates of c. 0.31 mm/yr and 0.82 mm/yr respectively. The results of this study show that the Northern Esk Fault accommodates an important component of the c. 0.7 – 2 mm/yr of unresolved strain across the plate boundary within the North Canterbury region and affirm the Esk Fault as a source of potentially damaging ground shaking in the Canterbury region.