Shows you how much shifting there was.
None
Christchurch Earthquake 4th Sept 2010
Christchurch Sept 4th Earthquake
Christchurch Sept 4th Earthquake
Christchurch Earthquake 4th Sept 2010. Old Para Rubber building - Manchester St (between Tuam and St Asaph)
Can't believe how much of this rock fell off! Its looks totally different - no longer a castle. Sad but very glad that the huge rock did not hit anything on the way down!
None
sorry not a good photo but this is a quick trip to the supermarket 3 days after the earthquake in Christchurch
Christchurch Sept 4th Earthquake
Christchurch Earthquake 4th Sept 2010
Very sad - was a nice looking building. These cracks are right through the bricks on several of the main columns.
None
Shabby Chic no more
Up to $100,000 worth of antiques lost in this building which is to come down
There are council workers everywhere
At the end of the street where my daughter and family live.
None
Manchester Courts, a seven-storey building on the corner of Hereford and Manchester Streets, is a category one historic place built in 1905-1906 that up until the 7.1 earthquake, housed offices. News of the scheduled demolition provoked an emotional response from the people of Christchurch. UPDATE 14 October 2010: A group of residents is campaig...
None
None
None
These cracks would worry me but apparently the building is generally Ok.
Now demolished
This corner building ( Askos)has been demolished and the ones attached soon to ne
None
None
A view after the 7.1 magnitude earthquake in Christchurch.
The timing of large Holocene prehistoric earthquakes is determined by dated surface ruptures and landslides at the edge of the Australia-Pacific plate boundary zone in North Canterbury, New Zealand. Collectively, these data indicate two large (M > 7) earthquakes during the last circa 2500 years, within a newly formed zone of hybrid strike-slip and thrust faulting herein described as the Porter's Pass-to-Amberley Fault Zone (PPAFZ). Two earlier events during the Holocene are also recognized, but the data prior to 2500 years are presumed to be incomplete. A return period of 1300–2000 years between large earthquakes in the PPAFZ is consistent with a late Holocene slip rate of 3–4 mm/yr if each displacement is in the range 4–8 m. Historical seismicity in the PPAFZ is characterized by frequent small and moderate magnitude earthquakes and a seismicity rate that is identical to a region surrounding the structurally mature Hope fault of the Marlborough Fault System farther north. This is despite an order-of-magnitude difference in slip rate between the respective fault zones and considerable differences in the recurrence rate of large earthquakes. The magnitude-frequency distribution in the Hope fault region is in accord with the characteristic earthquake model, whereas the rate of large earthquakes in the PPAFZ is approximated (but over predicted) by the Gutenberg-Richter model. The comparison of these two fault zones demonstrates the importance of the structural maturity of the fault zone in relation to seismicity rates inferred from recent, historical, and paleoseismic data.
This article reports on a study of community attitudes to cruise tourism in Akaroa, New Zealand. An important dimension of this study is the significant rate of growth in cruise arrivals over a short period of time as the result of the 2010/11 Canterbury earthquakes. Data were collected via a postal survey of the Akaroa community, and yielded a response rate of 56.6% (n = 316). The results indicate that despite the recent growth in arrivals, the Akaroa community holds a largely favorable opinion of cruise tourism. Importantly, the impacts identified by respondents were more closely aligned to threats to their identity as a destination, rather than problems with tourism, per se.