Erosion scarp along North New Brighton Beach.
Damage to houses in Bexley.
A map of earthquake events in Canterbury.
Old damaged bridge in Ferrymead next to the new one.
A map of Christchurch soils.
Anyone keeping a global tally of recent disasters is likely to be asking: What role will the hazards and disasters of coastal plains play in the lives and economies of 21st century humanity? In this article, we reflect on this question using examples of how different types of coastal land performed during the Christchurch and other earthquake events to examine the complex of coastal-tectonic hazards that are being constructed in the Tokyo megacity
The Coastal Living design store on London Street in Lyttelton, still open and buzzing after the 4 September earthquake.
A map of the coastlines changes around Christchurch 6900 BC till present.
Interview with Surface Water Planner, Graham Harrington. This interview was conducted by Emma Kelland as part of Deirdre Hart's Coastal and River Earthquake Research project.
Interview with Engineering Geologist, Shamus Wallace. This interview was conducted by Emma Kelland as part of Deidre Hart's Coastal and River Earthquake Research project.
Photograph captioned by Fairfax, "Christchurch earthquake. Gareth Turnball inspects the condemned Coastal Spirit Soccer Club. The walls have separated from the floor which has humped substantially from the quake".
Photograph captioned by Fairfax, "Christchurch earthquake. Gareth Turnball inspects the condemned Coastal Spirit Soccer Club. The walls have separated from the floor which has humped substantially from the quake".
Photograph captioned by Fairfax, "Christchurch earthquake. Gareth Turnball inspects the condemned Coastal Spirit Soccer Club. The walls have separated from the floor which has humped substantially from the quake".
Photograph captioned by Fairfax, "Christchurch earthquake. Gareth Turnball inspects the condemned Coastal Spirit Soccer Club. The walls have separated from the floor which has humped substantially from the quake".
Interview with Canterbury Earthquakes Geospatial Reserach Fellow, Matthew Hughes. This interview was conducted by Emma Kelland as part of Deirdre Hart's Coastal and River Earthquake Research project.
A map of the tectonic plate boundary of the alpine fault in New Zealand.
A map of Canterbury Earthquake Recovery Authority residential zones in Christchurch.
An interview with Research Fellow in Civil and Natural Resources Engineering, Sonia Giovinazzi. This interview was conducted by Emma Kelland as part of Deirdre Hart's Coastal and River Earthquake Research project .
A view across London Street in Lyttelton to The Volcano Cafe, The Lava Bar, and Coastal Living Design Store. Masonry from the buildings has collapsed onto the footpath, and the site has been cordoned off with wire fencing. The buildings' yellow recycling bins are still waiting on the curb for collection.
Damage to Lyttelton following the 22 February 2011 earthquake. The fish and chip shop on London Street (centre) has a collapsed gable and awning. Bricks, plaster and wood are lying where they fell on the footpath, as well as the broken sign. To the left is the Lava Bar which suffered severe structural damage after the earthquake. To the right, the Coastal Living store can be seen which was open after the September earthquake but pulled down after February.
This report was the first report in the district series, and has a different format to later reports. It includes all natural hazards, not only earthquake hazards. It describes earthquake, flooding, meteorological, landslide and coastal hazards within Hurunui district and gives details of historic events. It includes district-scale (1:250,000) active fault and flood hazard maps. The report describes an earthquake scenario for a magnitude 6.9 earthquake near Cheviot, as well as flooding, meteorological, landslide, coastal erosion, storm surge, and tsunami scenarios.
This report was the first report in the district series, and has a different format to later reports. It includes all natural hazards, not only earthquake hazards. It describes earthquake, flooding, meteorological, landslide and coastal hazards within Hurunui district and gives details of historic events. It includes district-scale (1:250,000) active fault and flood hazard maps. The report describes an earthquake scenario for a magnitude 6.9 earthquake near Cheviot, as well as flooding, meteorological, landslide, coastal erosion, storm surge, and tsunami scenarios. See Object Overview for background and usage information.
In half an hour, the first passenger train since the devastating Kaikoura earthquake will depart Picton for Christchurch. The 7.8 earthquake that struck the region in 2016 ripped up much of the scenic Coastal Pacific railway - sweeping kilometres of tracks out to sea and buried beneath slips. The rebuild of the railway line has taken two years and the efforts of nearly 1700 workers. Todd Moyle is KiwiRail's acting chief executive. He talks to Susie Ferguson.
Damaged buildings along London Street. Wire fencing has been used to keep people away. From the left are the Volcano Cafe, the Lava Bar, a fish and chip shop, and the Coastal Living Design Store. Rubble from the side of the Volcano Cafe can be seen along the Canterbury Street footpath.
Damage to Lyttelton following the 22 February 2011 earthquake. The fish and chip shop on London Street (centre) has a collapsed gable and awning. Bricks, plaster and wood are lying where they fell on the footpath, as well as the broken sign. To the left is the Lava Bar which suffered severe structural damage after the earthquake.
Billy Kristian of The Invaders shares his memories of Ray Columbus who has died at the age of 74. Islay Marsden of the University of Canterbury discusses what clearing rocks and silt from quake-induced landslides will do to the coastal environment. Kevin Furlong of Penn State University discusses the connection between the earthquakes and various faultline systems.
A PDF copy of signs used along the 2014 Summer Starter course. Each sign includes information about one of the major charities involved, as well as the logos of major and supporting partners.
In the aftermath of the 2010-2011 Canterbury Earthquake Sequence (CES), the location of Christchurch-City on the coast of the Canterbury Region (New Zealand) has proven crucial in determining the types of- and chains of hazards that impact the city. Very rapidly, the land subsidence of up to 1 m (vertical), and the modifications of city’s waterways – bank sliding, longitudinal profile change, sedimentation and erosion, engineered stop-banks… - turned rainfall and high-tides into unprecedented floods, which spread across the eastern side of the city. Within this context, this contribution presents two modeling results of potential floods: (1) results of flood models and (2) the effects of further subsidence-linked flooding – indeed if another similar earthquake was to strike the city, what could be the scenarios of further subsidence and then flooding. The present research uses the pre- and post-CES LiDAR datasets, which have been used as the boundary layer for the modeling. On top of simple bathtub model of inundation, the river flood model was conducted using the 2-D hydrodynamic code NAYS-2D developed at the University of Hokkaido (Japan), using a depth-averaged resolution of the hydrodynamic equations. The results have shown that the area the most at risk of flooding are the recent Holocene sedimentary deposits, and especially the swamplands near the sea and in the proximity of waterways. As the CES drove horizontal and vertical displacement of the land-surface, the surface hydrology of the city has been deeply modified, increasing flood risks. However, it seems that scientists and managers haven’t fully learned from the CES, and no research has been looking at the potential future subsidence in further worsening subsidence-related floods. Consequently, the term “coastal quake”, coined by D. Hart is highly topical, and most especially because most of our modern cities and mega-cities are built on estuarine Holocene sediments.
Coastal margins are exposed to rising sea levels that present challenging circumstances for natural resource management. This study investigates a rare example of tectonic displacement caused by earthquakes that generated rapid sea-level change in a tidal lagoon system typical of many worldwide. This thesis begins by evaluating the coastal squeeze effects caused by interactions between relative sea-level (RSL) rise and the built environment of Christchurch, New Zealand, and also examples of release from similar effects in areas of uplift where land reclamations were already present. Quantification of area gains and losses demonstrated the importance of natural lagoon expansion into areas of suitable elevation under conditions of RSL rise and showed that they may be necessary to offset coastal squeeze losses experienced elsewhere. Implications of these spatial effects include the need to provide accommodation space for natural ecosystems under RSL rise, yet other land-uses are likely to be present in the areas required. Consequently, the resilience of these environments depends on facilitating transitions between human land-uses either proactively or in response to disaster events. Principles illustrated by co-seismic sea-level change are generally applicable to climate change adaptation due to the similarity of inundation effects. Furthermore, they highlight the potential role of non-climatic factors in determining the overall trajectory of change. Chapter 2 quantifies impacts on riparian wetland ecosystems over an eight year period post- quake. Coastal wetlands were overwhelmed by RSL rise and recovery trajectories were surprisingly slow. Four risk factors were identified from the observed changes: 1) the encroachment of anthropogenic land-uses, 2) connectivity losses between areas of suitable elevation, 3) the disproportionate effect of larger wetland vulnerabilities, and 4) the need to protect new areas to address the future movement of ecosystems. Chapter 3 evaluates the unique context of shoreline management on a barrier sandspit under sea-level rise. A linked scenario approach was used to evaluate changes on the open coast and estuarine shorelines simultaneously and consider combined effects. The results show dune loss from a third of the study area using a sea-level rise scenario of 1 m over 100 years and with continuation of current land-uses. Increased exposure to natural hazards and accompanying demand for seawalls is a likely consequence unless natural alternatives can be progressed. In contrast, an example of managed retreat following earthquake-induced subsidence of the backshore presents a new opportunity to restart saltmarsh accretion processes seaward of coastal defences with the potential to reverse decades of degradation and build sea-level rise resilience. Considering both shorelines simultaneously highlights the existence of pinch-points from opposing forces that result in small land volumes above the tidal range. Societal adaptation is delicately poised between the paradigms of resisting or accommodating nature and challenged by the long perimeter and confined nature of the sandspit feature. The remaining chapters address the potential for salinity effects caused by tidal prism changes with a focus on the conservation of īnanga (Galaxias maculatus), a culturally important fish that supports New Zealand‘s whitebait fishery. Methodologies were developed to test the hypothesis that RSL changes would drive a shift in the distribution of spawning sites with implications for their management. Chapter 4 describes a new practical methodology for quantifying the total productivity and spatiotemporal variability of spawning sites at catchment scale. Chapter 5 describes the novel use of artificial habitats as a detection tools to help overcome field survey limitations in degraded environments where egg mortality can be high. The results showed that RSL changes resulted in major shifts in spawning locations and these were associated with new patterns of vulnerability due to the continuation of pre-disturbance land-uses. Unexpected findings includes an improved understanding of the spatial relationship between salinity and spawning habitat, and identification of an invasive plant species as important spawning habitat, both with practical management implications. To conclude, the design of legal protection mechanisms was evaluated in relation to the observed habitat shifts and with a focus on two new planning initiatives that identified relatively large protected areas (PAs) in the lower river corridors. Although the larger PAs were better able to accommodate the observed habitat shifts inefficiencies were also apparent due to spatial disparities between PA boundaries and the values requiring protection. To reduce unnecessary trade-offs with other land-uses, PAs of sufficient size to cover the observable spatiotemporal variability and coupled with adaptive capacity to address future change may offer a high effectiveness from a network of smaller PAs. The latter may be informed by both monitoring and modelling of future shifts and these are expected to include upstream habitat migration driven by the identified salinity relationships and eustatic sea-level rise. The thesis concludes with a summary of the knowledge gained from this research that can assist the development of a new paradigm of environmental sustainability incorporating conservation and climate change adaptation. Several promising directions for future research identified within this project are also discussed.
Rocket Lab's Electron rocket launch today on the Mahia Peninsula has been scrubbed again, sadly. A power fault this time. Kaikoura residents and businesses are celebrating the re-opening of State Highway 1 north following a year of earthquake repairs. The coastal highway link between Picton and Christchurch was badly damaged during the November 2016 quake but will now re-open during the day from 7am. It will close at 8:30 each night so more repairs and assesments can be done. Kaikoura Top Ten Holiday Park co-owner Ed Nolan tells us what this means for his business and others in the town. The Prime Minister Jainda Ardern says the Government's new families package will reduce child poverty in the country by 48 per cent. We ask the panellists whether this is realistic or if there are other, more entrenched imprediments to lowering poverty in New Zealand. The panellists also discuss the state of the books, and discuss if they worry about national debt iincreasing, as the opposition has warned. The Prime Minister says wealthy New Zealanders can opt out of the Government's Winter Energy Payment, which will see those on a benefit, NZ Superannuation or a Veterans Pension get an extra boost due the winter season. Many are doubtful that will happen though. The panellists discuss why some wealthy people have missed out on tax cuts only to be able to reap the reward of this package. We also ask if they suspect this money will be used for heating purposes. The University of Otago has a new degree which brings science and art together, the BaSc. It aims to break down barriers between the two disciplines. Two students are graduating the degree this week. We talk to Eirenie Taua'i who has been studying Pacific Studies and Neuroscience. We aslk her what careers she is considering now and what it was like to study to very different courses. The families of those who died in the CTV building collapse in Christchurch's 2011 earthquake say they will continue to fight for justice. Police announced earlier this month they won't be prosecuting the engineers of the building after a three-year long investigation. The families met with police to ask and why say they aren't convinced all has been done. We ask panellist, barrister Jonathan Krebs, if other charges could and should be laid.