Abstract. Natural (e.g., earthquake, flood, wildfires) and human-made (e.g., terrorism, civil strife) disasters are inevitable, can cause extensive disruption, and produce chronic and disabling psychological injuries leading to formal diagnoses (e.g., post-traumatic stress disorder [PTSD]). Following natural disasters of earthquake (Christchurch, Aotearoa/New Zealand, 2010–11) and flood (Calgary, Canada, 2013), controlled research showed statistically and clinically significant reductions in psychological distress for survivors who consumed minerals and vitamins (micronutrients) in the following months. Following a mass shooting in Christchurch (March 15, 2019), where a gunman entered mosques during Friday prayers and killed and injured many people, micronutrients were offered to survivors as a clinical service based on translational science principles and adapted to be culturally appropriate. In this first translational science study in the area of nutrition and disasters, clinical results were reported for 24 clients who completed the Impact of Event Scale – Revised (IES-R), the Depression Anxiety Stress Scales (DASS), and the Modified-Clinical Global Impression (M-CGI-I). The findings clearly replicated prior controlled research. The IES-R Cohen’s d ESs were 1.1 (earthquake), 1.2 (flood), and 1.13 (massacre). Effect sizes (ESs) for the DASS subscales were also consistently positive across all three events. The M-CGI-I identified 58% of the survivors as “responders” (i.e., self-reported as “much” to “very much” improved), in line with those reported in the earthquake (42%) and flood (57%) randomized controlled trials, and PTSD risk reduced from 75% to 17%. Given ease of use and large ESs, this evidence supports the routine use of micronutrients by disaster survivors as part of governmental response.
This study analyses the Earthquake Commission’s (EQC) insurance claims database to investigate the influence of seismic intensity and property damage resulting from the Canterbury Earthquake Sequence (CES) on the repair costs and claim settlement duration for residential buildings. Firstly, the ratio of building repair cost to its replacement cost was expressed as a Building Loss Ratio (BLR), which was further extended to Regional Loss Ratio (RLR) for greater Christchurch by multiplying the average of all building loss ratios with the proportion of building stock that lodged an insurance claim. Secondly, the total time required to settle the claim and the time taken to complete each phase of the claim settlement process were obtained. Based on the database, the regional loss ratio for greater Christchurch for three events producing shakings of intensities 6, 7, and 8 on the modified Mercalli intensity scale were 0.013, 0.066, and 0.171, respectively. Furthermore, small (less than NZD15,000), medium (between NZD15,000 and NZD100,000), and large (more than NZD100,000) claims took 0.35-0.55, 1.95-2.45, and 3.35-3.85 years to settle regardless of the building’s construction period and earthquake intensities. The number of claims was also disaggregated by various building characteristics to evaluate their relative contribution to the damage and repair costs.
Low Damage Seismic Design (LDSD) guidance material being developed by Engineering NZ is considering a design drift limit for multi-storey buildings of 0.5% at a new damage control limit state (DCLS). The impact of this new design requirement on the expected annual loss due to repair costs is investigated for a four-storey office building with reinforced concrete walls located in Christchurch. The LDSD guidance material aims to reduce the expected annual loss of complying buildings to below 0.1% of building replacement cost. The research tested this expectation. Losses were estimated in accordance with FEMA P58, using building responses from non-linear time history analyses (performed with OpenSees using lumped plasticity models). The equivalent static method, in line with NZS 1170.5 and NZS 3101, was used to design the building to LDSD specifications, representing a future state-of-practice design. The building designed to low-damage specification returned an expected annual loss of 0.10%, and the building designed conventionally returned an expected annual loss of 0.13%. Limitations with the NZS 3101 method for determining wall stiffness were identified, and a different method acknowledging the relationship between strength and stiffness was used to redesign the building. Along with improving this design assumption, the study finds that LDSD design criteria could be an effective way of limiting damage and losses.
To reduce seismic vulnerability and the economic impact of seismic structural damage, it is important to protect structures using supplemental energy dissipation devices. Several types of supplemental damping systems can limit loads transferred to structures and absorb significant response energy without sacrificial structural damage. Lead extrusion dampers are one type of supplemental energy dissipation devices. A smaller volumetric size with high force capacities, called high force to volume (HF2V) devices, have been employed in a large series of scaled and full-scaled experiments, as well as in three new structures in Christchurch and San Francisco. HF2V devices have previously been designed using very simple models with limited precision. They are then manufactured, and tested to ensure force capacities match design goals, potentially necessitating reassembly or redesign if there is large error. In particular, devices with a force capacity well above or below a design range can require more testing and redesign, leading to increased economic and time cost. Thus, there is a major need for a modelling methodology to accurately estimate the range of possible device force capacity values in the design phase – upper and lower bounds. Upper and lower bound force capacity estimates are developed from equations in the metal extrusion literature. These equations consider both friction and extrusion forces between the lead and the bulged shaft in HF2V devices. The equations for the lower and upper bounds are strictly functions of device design parameters ensuring easy use in the design phase. Two different sets of estimates are created, leading to estimates for the lower and upper bounds denoted FLB,1, FUB,1, FUB,2, respectively. The models are validated by comparing the bounds with experimental force capacity data from 15 experimental HF2V device tests. All lower bound estimates are below or almost equal to the experimental device forces, and all upper bound estimates are above. Per the derivation, the (FLB,1, FUB,1) pair provide narrower bounds. The (FLB,1, FUB,1) pair also had a mean lower bound gap of -34%, meaning the lower bound was 74% of device force on average, while the mean upper bound gap for FUB,1 was +23%. These are relatively tight bounds, within ~±2 SE of device manufacture, and can be used as a guide to ensure device forces are in range for the actual design use when manufactured. Therefore, they provide a useful design tool.
Climate change and population growth will increase vulnerability to natural and human-made disasters or pandemics. Longitudinal research studies may be adversely impacted by a lack of access to study resources, inability to travel around the urban environment, reluctance of sample members to attend appointments, sample members moving residence and potentially also the destruction of research facilities. One of the key advantages of longitudinal research is the ability to assess associations between exposures and outcomes by limiting the influence of sample selection bias. However, ensuring the validity and reliability of findings in longitudinal research requires the recruitment and retention of respondents who are willing and able to be repeatedly assessed over an extended period of time. This study examined recruitment and retention strategies of 11 longitudinal cohort studies operating during the Christchurch, New Zealand earthquake sequence which began in September 2010, including staff perceptions of the major impediments to study operations during/after the earthquakes and respondents’ barriers to participation. Successful strategies to assist recruitment and retention after a natural disaster are discussed. With the current COVID-19 pandemic, longitudinal studies are potentially encountering some of the issues highlighted in this paper including: closure of facilities, restricted movement of research staff and sample members, and reluctance of sample members to attend appointments. It is possible that suggestions in this paper may be implemented so that longitudinal studies can protect the operation of their research programmes.<br /><br />Key messages<br /><ul><li>Recruitment and retention of longitudinal study participants is challenging following a natural disaster.</li><br /><li>The long-lasting, global effects of the Covid 19 pandemic will increase this problem.</li><br /><li>Longitudinal study researchers should develop protocols to support retention before a disaster occurs.</li><br /><li>Researchers need to be pragmatic and flexible in the design and implementation of their studies.</li></ul>
Supplemental energy dissipation devices are increasingly used to protect structures, limit loads transferred to structural elements and absorbing significant response energy without sacrificial structural damage. Lead extrusion dampers are supplemental energy dissipation devices, where recent development of smaller volumetric size with high force capacities, called high force to volume (HF2V) devices, has seen deployment in a large series of scaled and full-scaled experiments, as well as in three new structures in Christchurch, NZ and San Francisco, USA. HF2V devices have previously been designed using limited precision models, so there is variation in force prediction capability. Further, while the overall resistive force is predicted, the knowledge of the relative contributions of the different internal reaction mechanisms to these overall resistive forces is lacking, limiting insight and predictive accuracy in device design. There is thus a major need for detailed design models to better understand force generation, and to aid precision device design. These outcomes would speed the overall design and implementation process for uptake and use, reducing the need for iterative experimental testing. Design parameters from 17 experimental HF2V device tests are used to create finite element models using ABAQUS. The analysis is run using ABAQUS Explicit, in multiple step times of 1 second with automatic increments, to balance higher accuracy and computational time. The output is obtained from the time- history output of the contact pressure forces including the normal and friction forces on the lead along the shaft. These values are used to calculate the resistive force on the shaft as it moves through the lead, and thus the device force. Results of these highly nonlinear, high strain analyses are compared to experimental device force results. Model errors compared to experimental results for all 17 devices ranged from 0% to 20% with a mean absolute error of 6.4%, indicating most errors were small. In particular, the standard error in manufacturing is SE = ±14%. In this case, 15 of 17 devices (88%) are within ±1SE (±14%) and 2 of 17 devices (12%) are within ±2SE (±28). These results show low errors and a distribution of errors compared to experimental results that are within experimental device construction variability. The overall modelling methodology is objective and repeatable, and thus generalizable. The exact same modelling approach is applied to all devices with only the device geometry changing. The results validate the overall approach with relatively low error, providing a general modelling methodology for accurate design of HF2V devices.
This study explores the nature of smaller businesses’ resilience following two major earthquakes that severely disrupted their place of doing business. Data from the owners of ten smaller businesses are qualitative and longitudinal, spanning the period 2011 through 2018, providing first-hand narrative accounts of their responses in the earthquakes’ aftermath. All ten owners showed some individual resilience; six businesses survived through to 2018, of which three have recovered strongly. All three owned their premises; operated business-tobusiness models; and were able to adapt and continue to follow path-extension strategies. All the other businesses had direct business-to-customer models operating from leased premises, typically in major retail malls. Four eventually recognised path-exhaustion at different times and so did not survive through to 2018. We conclude however that post-disaster recovery is best explained in terms of business model resilience. Even the most resilient of individual owners will struggle to survive if their business model is either not resilient or cannot be made so. Individual resilience is necessary but not sufficient.
PurposeThe purpose of this research is to highlight the role of not-for-profit (NFP) organisations in enhancing disaster preparedness. The authors set out to understand their perspectives and practices in regard to disaster preparedness activities to support people who live precarious lives, especially those who live as single parents who are the least prepared for disasters.Design/methodology/approachThe research draws on in-depth, semi-structured interviews with 12 staff members, either in a group setting or individually, from seven NFP organisations, who were located in Ōtautahi (Christchurch) and Kaiapoi in Aotearoa New Zealand. These participants were interviewed eight years after the 2011 Christchurch earthquake.FindingsFour key narrative tropes or elements were drawn from across the interviews and were used to structure the research results. These included: “essential” support services for people living precarious lives; assisting people to be prepared; potential to support preparedness with the right materials and relationships; resourcing to supply emergency goods.Originality/valueThis research contributes to disaster risk reduction practices by advocating for ongoing resourcing of NFP groups due to their ability to build a sense of community and trust while working with precarious communities, such as single parents.
<b>Construction and Demolition (C&D) waste contributes to over 50% of New Zealand’s overall waste. Materials such as timber, plasterboard, and concrete make up 81% of the C&D waste that goes into landfills each year. Alongside this, more than 235 heritage-listed buildings have been demolished in Christchurch since the 2011 earthquakes. This research portfolio aims to find a solution to decrease C&D waste produced by demolishing heritage buildings.</b>
With the recent announcement of The Cathedral of the Blessed Sacrament’s demolition, this will be another building added to the list of lost heritage in Christchurch. This research portfolio aims to bridge the relationship between heritage and waste through the recycling and reuse of the demolished materials, exploring the idea that history and heritage are preserved through building material reuse.
This research portfolio mainly focuses on reducing construction and demolition waste in New Zealand, using the design of a new Catholic Cathedral as a vessel. This thesis will challenge how the construction and design industry deals with the demolition of heritage buildings and their contribution to New Zealand’s waste. It aims to explore the idea of building material reuse not only to reduce waste but also to retain the history and heritage of the demolished building within the materials.
<b>Ōtautahi-Christchurch faces the future in an enviable position. Compared to other New Zealand cities Christchurch has lower housing costs, less congestion, and a brand-new central city emerging from the rubble of the 2011 earthquakes. ‘Room to Breathe: designing a framework for medium density housing (MDH) in Ōtautahi-Christchurch’ seeks to answer the timely question how can medium density housing assist Ōtautahi-Christchurch to respond to growth in a way that supports a well-functioning urban environment? Using research by design, the argument is made that MDH can be used to support a safe, accessible, and connected urban environment that fosters community, while retaining a level of privacy. This is achieved through designing a neighbourhood concept addressing 3 morphological scales- macro- the city; meso- the neighbourhood; and micro- the home and street. The scales are used to inform a design framework for MDH specific to Ōtautahi-Christchurch, presenting a typological concept that takes full advantage of the benefits higher density living has to offer.</b>
Room to Breathe proposes repurposing underutilised areas surrounding existing mass transit infrastructure to provide a concentrated populous who do not solely rely on private vehicles for transport. By considering all morphological scales Room to Breathe provides one suggestion on how MDH could become accepted as part of a well-functioning urban environment.