There are many swaths of land that are deemed unsuitable to build on and occupy. These places, however, are rarely within an established city. The Canterbury earthquakes of 2010 and 2011 left areas in central Christchurch with such significant land damage that it is unlikely to be re-inhabited for a considerable period of time. These areas are commonly known as the ‘Red Zone’.This thesis explores redevelop in on volatile land through innovative solutions found and adapted from the traditional Indonesian construction techniques. Currently, Indonesia’s vernacular architecture sits on the verge of extinction after a cultural shift towards the masonry bungalow forced a rapid decline in their occupation and construction. The 2004 Indian Ocean earthquake and tsunami illustrated the bungalows’ poor performance in the face of catastrophic seismic activity, being outperformed by the traditional structures. This has been particularly evident in the Rumah Aceh construction of the Aceh province in Northern Sumatra. Within a New Zealand context an adaptation and modernisation of the Rumah Aceh construction will generate an architectural response not currently accepted under the scope of NZS 3604:2011; the standards most recent revision following the Canterbury earthquake of 2010 concerning timber-based seismic performance. This architectural exploration will further address light timber structures, their components, sustainability and seismic resilience. Improving new builds’ durability as New Zealand moves away from the previously promoted bungalow model that extends beyond residential and into all aspects of New Zealand built environment.
© 2018 The Authors. Published by Elsevier Ltd. Governance is understood to have considerable influence on the success of recoveries following a natural disaster. What constitutes good governance and successful recovery in these circumstances? This question is discussed in relation to two recent recovery processes. Sri Lanka has, for all intents and purposes, recovered from the tsunami that struck there and other parts of southern Asia in 2004. Christchurch, New Zealand was devastated by a sequence of earthquakes during 2010 and 2011 and recovery there is now well under way. The paper discusses the governance structures that have guided these two recoveries. While it is understood that the effects of disasters could potentially be life long and recovery from them complex, compatibility of the process and outcomes in relation to cultural norms and the critical issue of housing are the key issues discussed across the two cases.
Earthquakes are insured only with public sector involvement in high-income countries where the risk of earthquakes is perceived to be high. The proto-typical examples of this public sector involvement are the public earthquake insurance schemes in California, Japan, and New Zealand (NZ). Each of these insurance programs is structured differently, and the purpose of this paper is to examine these differences using a concrete case-study, the sequence of earthquakes that occurred in the Christchurch, New Zealand, in 2011. This event turned out to have been the most heavily insured earthquake event in history. We examine what would have been the outcome of the earthquakes had the system of insurance in NZ been different. In particular, we focus on the public earthquake insurance programs in California (the California Earthquake Authority - CEA), and in Japan (Japanese Earthquake Reinsurance - JER). Overall, the aggregate cost to the public insurer in NZ was $NZ 11.1 billion in its response to the earthquakes. If a similar-sized disaster event had occurred in Japan and California, homeowners would have received $NZ 2.5 billion and $NZ 1.4 billion from the JER and CEA, respectively. We further describe the spatial and distributive patterns of these different scenarios.
As cities evolve, change and grow, the need and desire for adaptable architecture becomes evident across the nation. Architecture needs to undertake techniques that are flexible in order to adapt and align with the development of future generations in New Zealand. The Education industry is a primary example of a sector which requires flexibility within both classroom architectural form and interior configuration. This is a resultant of the recently updated Ministry of Education requirements; which state that every new classroom built or renovated nationwide, must implement the MoE classroom design standards for Innovative Learning Environments. ILE teaching spaces are configured as an open plan interior, supporting flexibility in classroom arrangement and teaching techniques. ILE classrooms are capable of evolving and adapting as educational practices evolve and change, allowing schools to remain modern and future focused. As part of this movement to ILE, the Ministry of Education has also recently made an attempt to improve the quality of temporary classrooms. This has been done by looking into the initiation of a programme that utilizes relocatable classroom buildings. Relocatable classrooms have been selected for multiple reasons, primarily flexibility. Flexibility is key for a school environment as it allows the school to actively respond to fluctuating school rolls. It is anticipated that the programme will provide a faster delivery process with a standardised design that allows the classrooms to be relocated from one school to another with relative ease. Following the devastating February 2011 earthquake the Greater Christchurch Region, the Education sector is in the midst of the Canterbury Schools Rebuild Programme. As a repercussion of this natural disaster, the majority of Christchurch schools have redevelopment or rebuild projects in progress, with preliminary design phases already in action for a small group of select schools regarded as high priority. The primary funding for these projects are sourced from insurance money, implementing tight budget restrictions, affecting the architectural design, quality and speed of the construction and repair works. The available funding limits the affordable classroom options to basic teaching spaces that have been stripped back to simple architectural forms, dictating not only the re-design, but also how our future generations will learn. Thus causing the development of the new student-led learning ILE concept to become controlled by existing construction techniques and the Rebuild Programmes budget restrictions. This thesis focuses on the future proofing of New Zealand schools by providing an affordable and time efficient alternative option to the current static, traditional construction, an option that has the ability to cater to the unpredictable fluctuating school rolls across the nation. This has been done by developing a prefabricated system for standalone classroom blocks. These blocks have the ability to be relocated between different school sites, dynamically catering to the unpredictable school roll numbers experienced across New Zealand. This site flexibility is reflected with the interior flexibility in the classrooms, enhancing the internal teaching space composition and challenges the existing design standards set by the Ministry of Education for Innovative Learning Environments. This system is called “Flexi-Ed”. Flexibility has been a key driver for this thesis, as the prefabricated structure is have to be flexible in three ways; first in the sense of being easy to assemble and disassemble. Second by offering flexible interior learning environments and thirdly the joints of the structure are designed with the ability to be flexible in order to cope with seismic activity. These three principles will provide schools with long term flexibility, minimal on-site interruption and heighten the standard of ILE across the nation. I strive to provide schools with long term flexibility and minimal site interruption, whilst heightening the standard of Innovative Learning Environments across New Zealand.