Search

found 42 results

Research papers, University of Canterbury Library

Beach ridge stratigraphy can provide an important record of both sustained coastal progradation and responses to events such as extreme storms, as well as evidence of earthquake induced sediment pulses. This study is a stratigraphic investigation of the late Holocene mixed sand gravel (MSG) beach ridge plain on the Canterbury coast, New Zealand. The subsurface was imaged along a 370 m shore-normal transect using 100 and 200 MHz ground penetrating radar (GPR) antennae, and cored to sample sediment textures. Results show that, seaward of a back-barrier lagoon, the Pegasus Bay beach ridge plain prograded almost uniformly, under conditions of relatively stable sea level. Nearshore sediment supply appears to have created a sustained sediment surplus, perhaps as a result of post-seismic sediment pulses, resulting in a flat, morphologically featureless beach ridge plain. Evidence of a high magnitude storm provides an exception, with an estimated event return period in excess of 100 years. Evidence from the GPR sequence combined with modern process observations from MSG beaches indicates that a paleo storm initially created a washover fan into the back-barrier lagoon, with a large amount of sediment simultaneously moved off the beach face into the nearshore. This erosion event resulted in a topographic depression still evident today. In the subsequent recovery period, sediment was reworked by swash onto the beach as a sequence of berm deposit laminations, creating an elevated beach ridge that also has a modern-day topographic signature. As sediment supply returned to normal, and under conditions of falling sea level, a beach ridge progradation sequence accumulated seaward of the storm feature out to the modern-day beach as a large flat, uniform progradation plain. This study highlights the importance of extreme storm events and earthquake pulses on MSG coastlines in triggering high volume beach ridge formation during the subsequent recovery period.

Research papers, University of Canterbury Library

On 14 November 2016, the Mw 7.8 Kaikōura earthquake caused widespread damage along the east coast of the South Island, New Zealand. Kaikōura town itself was isolated from the rest of the country by landslides blocking off major roads. While impacts from the Kaikōura earthquake on large, urban population centres have been generally well documented, this thesis aims to fill gaps in academic knowledge regarding small rural towns. This thesis investigates what, where and when critical infrastructure and lifeline service disruption occurred following the 2016 Kaikōura earthquake in a selection of small towns, and how the communities in these areas adapted to disruption. Following a robust review of literature and news media, four small rural towns were selected from North Canterbury (Culverden & Waiau) and Marlborough (Seddon & Ward) in the South Island, New Zealand. Semi-structured interview sessions with a special focus on these towns were held with infrastructure managers, emergency response and recovery officials, and organisation leaders with experience or expertise in the 2016 Kaikōura earthquake. Findings were supplemented with emergency management situation reports to produce hazard maps and infrastructure exposure maps. A more detailed analysis was conducted for Waiau involving interdependence analyses and a level of service timeline for select lifeline services. The earthquake impacted roads by blocking them with landslides, debris and surface rupture. Bridges where shaken off their abutments, breaking infrastructure links such as fibre landlines as they went. Water supplies and other forms of infrastructure relied heavily on the level of service of roads, as rough rural terrain left few alternatives. Adapting to an artificial loss of road service, some Waiau locals created their own detour around a road cordon in order to get home to family and farms. Performance of dwellings was tied to socioeconomic factors as much as proximity to the epicentre. Farmers who lost water access pulled out fences to allow stock to drink from rivers. Socioeconomic differences between farmland and township residents also contributed to resilience variations between the towns assessed in this study. Understanding how small rural towns respond and adapt to disaster allows emergency management officials and policy to be well informed and flexible with planning for multiple size classes of towns.

Research papers, University of Canterbury Library

This research briefing reports on the key findings of a computer-assisted text analysis of records from The Press newspaper related to the Earthquake Commission (EQC) from 2010 to 2019. The briefing has been prepared as a submission to the Public Inquiry into the Earthquake Commission. The aim of producing this research briefing is to provide the Public Inquiry with preliminary findings of a large-scale overview of media coverage on EQC and to identify and quantify key features and trends in public discourse about EQC over time. This research, which aggregates many stories and voices over time, offers a unique lens to view how EQC has been collectively represented, understood and experienced by the people of Canterbury.

Research papers, University of Canterbury Library

The November 2016 MW 7.8 Kaikōura Earthquake initiated beneath the North Culverden basin on The Humps fault and propagated north-eastwards, rupturing at least 17 faults along a cumulative length of ~180 km. The geomorphic expression of The Humps Fault across the Emu Plains, along the NW margin of Culverden basin, comprises a series of near-parallel strands separated by up to 3 km across strike. The various strands strike east to east-northeast and have been projected to mainly dip steeply to the south in seismic data (~80°). In this area, the fault predominantly accommodates right-lateral slip, with uplift and subsidence confined to releasing and restraining bends and step-overs at a range of scales. The Kaikōura event ruptured pre-existing fault scarps along the Emu Plains, which had been partly identified prior to the earthquake. Geomorphology and faulting expression of The Humps Fault on The Emu Plains was mapped, along with faulting related structures which did not rupture in the 2016 earthquake. Fault ruptures strands are combined into sections and the kinematic deformation of sections analysed to provide a moment tensor fault plane solution. This fault plane solution is consistent with the regional principal horizontal shortening direction (PHS) of ~115°, similar to seismic focal mechanism solutions of some of the nearby aftershocks of the Kaikōura earthquake, and similar to the adjacent Hope Fault. To constrain the timing of paleoseismic events, a trench was excavated across the fault where it crossed a late Quaternary alluvial fan. Mapping of stratigraphy exposed in the trench walls, and dating of variably deformed strata, constrains the pre-historic earthquake event history at the trench site. The available data provides evidence for at least three paleo-earthquakes within the last 15.1 ka, with a possible fourth (penultimate) event. These events are estimated to have occurred at 7.7-10.3 ka, 10.3-14.8 ka, and one or more events that are older than ~15.1 ka. Some evidence suggests an additional penultimate event between 1850 C.E and 7.7 ka. Time-integrated slip-rates at three locations on the fault are measured using paleo-channels as piercing points. These sites give horizontal slip rates of 0.57 ± 0.1 mm/year, 0.49 ± 0.1 mm/year and one site constrains a minimum of between 0.1 - 0.4 mm/year. Two vertical slip-rates are calculated to be constrained to a maximum of 0.2 ± 0.02 mm/year at one site and between 0.02 and 0.1 mm/year at another site. Prior to this study, The Humps fault had only been partially documented in reconnaissance level mapping in the district, and no previous paleoseismic or slip rate data had been reported. This project has provided a detailed fault zone tectonic geomorphic map and established new slip-rate and paleoseismic data. The results highlight that The Humps fault plays an important role in regional seismicity and in accommodating plate boundary deformation across the North Canterbury region.

Research papers, University of Canterbury Library

The Stone Jug Fault (SJF) ruptured during the November 14th, 2016 (at 12:02 am), Mw 7.8 Kaikōura Earthquake which initiated ~40 km west-southwest of the study area, at a depth of approximately 15 km. Preliminary post-earthquake mapping indicated that the SJF connects the Conway-Charwell and Hundalee faults, which form continuous surface rupture, however, detailed study of the SJF had not been undertaken prior to this thesis due to its remote location and mountainous topography. The SJF is 19 km long, has an average strike of ~160° and generally carries approximately equal components of sinistral and reverse displacement. The primary fault trace is sigmoidal in shape with the northern and southern tips rotating in strike from NNW to NW, as the SJF approaches the Hope and Hundalee faults. It comprises several steps and bends and is associated with many (N=48) secondary faults, which are commonly near irregularities in the main fault geometry and in a distributed fault zone at the southern tip. The SJF is generally parallel to Torlesse basement bedding where it may utilise pre-existing zones of weakness. Horizontal, vertical and net displacements range up to 1.4 m, with displacement profiles along the primary trace showing two main maxima separated by a minima towards the middle and ends of the fault. Average net displacement along the primary trace is ~0.4m, with local changes in relative values of horizontal and vertical displacement at least partly controlled by fault strike. Two trenches excavated across the northern segment of the fault revealed displacement of mainly Holocene stratigraphy dated using radiocarbon (N=2) and OSL (N=4) samples. Five surface-rupturing paleoearthquakes displaying vertical displacements of <1 m occurred at: 11,000±1000, 7500±1000, 6500±1000, 3500±100 and 3 (2016 Kaikōura) years BP. These events produce an average slip rate since ~11 ka of 0.2-0.4 mm/yr and recurrence intervals of up to 5500 years with an average recurrence interval of 2750 yrs. Comparison of these results with unpublished trench data suggests that synchronous rupture of the Hundalee, Stone Jug, Conway-Charwell, and Humps faults at ~3500 yrs BP cannot be discounted and it is possible that multi-fault ruptures in north Canterbury are more common than previously thought.

Research papers, University of Canterbury Library

A multi-disciplinary geo-structural-environmental engineering project funded by the Ministry of Business Innovation and Employment (MBIE) is being carried out at the University of Canterbury. The project aims at developing an eco-friendly seismic isolation foundation system which will improve the seismic performance of medium-density low-rise buildings. Such system is characterized by two main elements: 1) granulated scrap rubber mixed with gravelly soils to be placed beneath the structure, with the goal damping part of the seismic energy before it reaches the superstructure; and 2) a basement raft made of steel-fibre reinforced rubberised concrete (SFRRuC) to enhance the flexibility and toughness of the foundation, looking at better accommodating the displacement demand. In this paper, the main objectives, scope and methodology of the project will be briefly described. A literature review of the engineering properties of steel-fibre reinforced rubberised concrete (RuC) will be presented. Then, preliminary results on concrete mixes with different rubber and steel fibres content will be exhibited.

Research papers, University of Canterbury Library

The ultimate goal of this study is to develop a model representing the in-plane behaviour of plasterboard ceiling diaphragms, as part of the efforts towards performance-based seismic engineering of low-rise light timber-framed (LTF) residential buildings in New Zealand (NZ). LTF residential buildings in NZ are constructed according to a prescriptive standard – NZS 3604 Timberframed buildings [1]. With regards to seismic resisting systems, LTF buildings constructed to NZS3604 often have irregular bracing arrangements within a floor plane. A damage survey of LTF buildings after the Canterbury earthquake revealed that structural irregularity (irregular bracing arrangement within a plane) significantly exacerbated the earthquake damage to LTF buildings. When a building has irregular bracing arrangements, the building will have not only translational deflections but also a torsional response in earthquakes. How effectively the induced torsion can be resolved depends on the stiffness of the floors/roof diaphragms. Ceiling and floor diaphragms in LTF buildings in NZ have different construction details from the rest of the world and there appears to be no information available on timber diaphragms typical of NZ practice. This paper presents experimental studies undertaken on plasterboard ceiling diaphragms as typical of NZ residential practice. Based on the test results, a mathematical model simulating the in-plane stiffness of plasterboard ceiling diaphragms was developed, and the developed model has a similar format to that of plasterboard bracing wall elements presented in an accompany paper by Liu [2]. With these two models, three-dimensional non-linear push-over studies of LTF buildings can be undertaken to calculate seismic performance of irregular LTF buildings.

Research papers, University of Canterbury Library

This dissertation addresses a diverse range of topics in the physics-based broadband ground motion simulation, with a focus on New Zealand applications. In particular the following topics are addressed: the methodology and computational implementation of a New Zealand Velocity Model for broadband ground motion simulation; generalised parametric functions and spatial correlations for seismic velocities in the Canterbury, New Zealand region from surface-wave-based site characterisation; and ground motion simulations of Hope Fault earthquakes. The paragraphs below outline each contribution in more detail. A necessary component in physics-based ground motion simulation is a 3D model which details the seismic velocities in the region of interest. Here a velocity model construction methodology, its computational implementation, and application in the construction of a New Zealand velocity model for use in physics-based broadband ground motion simulation are presented. The methodology utilises multiple datasets spanning different length scales, which is enabled via the use of modular sub-regions, geologic surfaces, and parametric representations of crustal velocity. A number of efficiency-related workflows to decrease the overall computational construction time are employed, while maintaining the flexibility and extensibility to incorporate additional datasets and re- fined velocity parameterizations as they become available. The model comprises explicit representations of the Canterbury, Wellington, Nelson-Tasman, Kaikoura, Marlborough, Waiau, Hanmer and Cheviot sedimentary basins embedded within a regional travel-time tomography-based velocity model for the shallow crust and provides the means to conduct ground motion simulations throughout New Zealand for the first time. Recently developed deep shear-wave velocity profiles in Canterbury enabled models that better characterise the velocity structure within geologic layers of the Canterbury sedimentary basin to be developed. Here the development of depth- and Vs30-dependent para-metric velocity and spatial correlation models to characterise shear-wave velocities within the geologic layers of the Canterbury sedimentary basin are presented. The models utilise data from 22 shear-wave velocity profiles of up to 2.5km depth (derived from surface wave analysis) juxtaposed with models which detail the three-dimensional structure of the geologic formations in the Canterbury sedimentary basin. Parametric velocity equations are presented for Fine Grained Sediments, Gravels, and Tertiary layer groupings. Spatial correlations were developed and applied to generate three-dimensional stochastic velocity perturbations. Collectively, these models enable seismic velocities to be realistically represented for applications such as 3D ground motion and site response simulations. Lastly the New Zealand velocity model is applied to simulate ground motions for a Mw7.51 rupture of the Hope Fault using a physics-based simulation methodology and a 3D crustal velocity model of New Zealand. The simulation methodology was validated for use in the region through comparison with observations for a suite of historic small magnitude earthquakes located proximal to the Hope Fault. Simulations are compared with conventionally utilised empirical ground motion models, with simulated peak ground velocities being notably higher in regions with modelled sedimentary basins. A sensitivity analysis was undertaken where the source characteristics of magnitude, stress parameter, hypocentre location and kinematic slip distribution were varied and an analysis of their effect on ground motion intensities is presented. It was found that the magnitude and stress parameter strongly influenced long and short period ground motion amplitudes, respectively. Ground motion intensities for the Hope Fault scenario are compared with the 2016 Kaikoura Mw7.8 earthquake, it was found that the Kaikoura earthquake produced stronger motions along the eastern South Island, while the Hope Fault scenario resulted in stronger motions immediately West of the near-fault region. The simulated ground motions for this scenario complement prior empirically-based estimates and are informative for mitigation and emergency planning purposes.

Research papers, University of Canterbury Library

Disaster recovery involves the restoration, repair and rejuvenation of both hard and soft infrastructure. In this report we present observationsfrom seven case studies of collaborative planning from post-earthquake Canterbury, each of which was selected as a means of better understanding ‘soft infrastructure for hard times’. Though our investigation is located within a disaster recovery context, we argue that the lessons learned are widely applicable. Our seven case studies highlighted that the nature of the planning process or journey is as important as the planning objective or destination. A focus on the journey can promote positive outcomes in and of itself through building enduring relationships, fostering diverse leaders, developing new skills and capabilities, and supporting translation and navigation. Collaborative planning depends as much upon emotional intelligence as it does technical competence, and we argue that having a collaborative attitude is more important than following prescriptive collaborative planning formulae. Being present and allowing plenty of time are also key. Although deliberation is often seen as an improvement on technocratic and expertdominated decision-making models, we suggest that the focus in the academic literature on communicative rationality and discursive democracy has led us to overlook other more active forms of planning that occur in various sites and settings. Instead, we offer an expanded understanding of what planning is, where it happens and who is involved. We also suggest more attention be given to values, particularly in terms of their role as a compass for navigating the terrain of decision-making in the collaborative planning process. We conclude with a revised model of a (collaborative) decision-making cycle that we suggest may be more appropriate when (re)building better homes, towns and cities.

Research papers, University of Canterbury Library

This study provides an initial examination of source parameter uncertainty in a New Zealand ground motion simulation model, by simulating multiple event realisations with perturbed source parameters. Small magnitude events in Canterbury have been selected for this study due to the small number of source input parameters, the wealth of recorded data, and the lack of appreciable off-fault non-linear effects. Which provides greater opportunity to identify systematic source, path and site effects, required to robustly investigate the causes of uncertainty.

Research papers, University of Canterbury Library

Peri-urban environments are critical to the connections between urban and rural ecosystems and their respective communities. Lowland floodplains are important examples that are attractive for urbanisation and often associated with the loss of rural lands and resources. In Christchurch, New Zealand, damage from major earthquakes led to the large-scale abandonment of urban residential properties in former floodplain areas creating a rare opportunity to re-imagine the future of these lands. This has posed a unique governance challenge involving the reassessment of land-use options and a renewed focus on disaster risk and climate change adaptation. Urban-rural tensions have emerged through decisions on relocating residential development, alternative proposals for land uses, and an unprecedented opportunity for redress of degraded traditional values for indigenous (Māori) people. Immediately following the earthquakes, existing statutory arrangements applied to many recovery needs and identified institutional responsibilities. Bespoke legislation was also created to address the scale of impacts. Characteristics of the approach have included attention to information acquisition, iterative assessment of land - use options, and a wide variety of opportunities for community participation. Challenges have included a protracted decision-making process with accompanying transaction costs, and a high requirement for coordination. The case typifies the challenges of achieving ecosystem governance where both urban and rural stakeholders have strong desires and an opportunity to exert influence. It presents a unique context for applying the latest thinking on ecosystem management, adaptation, and resilience, and offers transferable learning for the governance of peri-urban floodplains worldwide.

Research papers, University of Canterbury Library

School travel is a major aspect of a young person’s everyday activity. The relationship between the built environment that youth experience on their way to and from school, influences a number of factors including their development, health and wellbeing. This is especially important in low income areas where the built environment is often poorer, but the need for it to be high quality and accessible is greater. This study focusses on the community of Aranui, a relatively low income suburb in Christchurch, New Zealand. It pays particular attention to Haeata Community Campus, a state school of just under 800 pupils from year one through to year thirteen (ages 5-18). The campus opened in 2017 following the closure of four local schools (three primary and one secondary), as part of the New Zealand Government’s Education Renewal scheme following the Christchurch earthquakes of 2010/11. Dedicated effort toward understanding the local built environment, and subsequent travel patterns has been argued to be insufficiently considered. The key focus of this research was to understand the importance of the local environment in encouraging active school travel. The present study combines geospatial analysis, quantitative survey software Maptionnaire, and statistical models to explore the features of the local environment that influence school travel behaviour. Key findings suggest that distance to school and parental control are the most significant predictors of active transport in the study sample. Almost 75% of students live within two kilometres of the school, yet less than 40% utilise active transport. Parental control may be the key contributing factor to the disproportionate private vehicle use. However, active school travel is acknowledged as a complex process that is the product of many individual, household, and local environment factors. To see increased active transport uptake, the local environment needs to be of greater quality. Meaning that the built environment should be improved to be youth friendly, with greater walkability and safe, accessible cycling infrastructure.

Research papers, University of Canterbury Library

In recent work on commons and commoning, scholars have argued that we might delink the practice of commoning from property ownership, while paying attention to modes of governance that enable long-term commons to emerge and be sustained. Yet commoning can also occur as a temporary practice, in between and around other forms of use. In this article we reflect on the transitional commoning practices and projects enabled by the Christchurch post-earthquake organisation Life in Vacant Spaces, which emerged to connect and mediate between landowners of vacant inner city demolition sites and temporary creative or entrepreneurial users. While these commons are often framed as transitional or temporary, we argue they have ongoing reverberations changing how people and local government in Christchurch approach common use. Using the cases of the physical space of the Victoria Street site “The Commons” and the virtual space of the Life in Vacant Spaces website, we show how temporary commoning projects can create and sustain the conditions of possibility required for nurturing commoner subjectivities. Thus despite their impermanence, temporary commoning projects provide a useful counter to more dominant forms of urban development and planning premised on property ownership and “permanent” timeframes, in that just as the physical space of the city being opened to commoning possibilities, so too are the expectations and dispositions of the city’s inhabitants, planners, and developers.

Research papers, University of Canterbury Library

Results from cyclic undrained direct simple shear tests on reconstituted specimens of two sands from Christchurch are compared against the liquefaction resistance inferred from CPT-based empirical liquefaction triggering methods. Limitations in existing empirical triggering relationships to capture important effects related to processes which originated test soils are highlighted and discussed.

Research papers, University of Canterbury Library

Background: There has been a psychopathology focus in disaster research examining adolescent mental health and wellbeing, but recently studies have begun to also examine wellbeing-related constructs. Although an increased risk of posttraumatic stress disorder has been established in disaster-exposed adolescents, comparatively little is known about how disasters impact adolescent wellbeing, nor how factors within the post-disaster environment interact to influence holistic adolescent mental health and wellbeing. Objective: The objective of this study was to describe the holistic mental health and wellbeing of adolescents living in an earthquake-struck city by considering a range of mental health and wellbeing indicators, as well as risk and protective factors hypothesised to influence mental health and wellbeing. The dual-factor model of mental health was used as a framework to guide this study. Method: A survey of Christchurch secondary school students was used to gather data about their subjective wellbeing, risk of low wellbeing, psychological distress, quality of life, exposure to Adverse Childhood Experiences, social support from friends and family, school connectedness, and expectations about future quality of life. Results: A slim majority of students reported good subjective wellbeing (52.3%) and high current quality of life (56.4%), whereas a larger majority reported low risk of psychological distress (79%). An equal proportion of students reported high and low risk of low wellbeing. There were no statistically significant differences in any of the variables measured between adolescents who did and did not live through the Christchurch earthquakes. Regression analyses identified that school connectedness, social support from friends and family, and future expectations of quality of life significantly predicted subjective wellbeing, risk of low wellbeing, risk of psychological distress, and current quality of life. The number of Adverse Childhood Experiences significantly predicted only risk of psychological distress when the effects of other variables were controlled for. Conclusion: The findings of this study indicate that there is a low mean level of wellbeing and quality of life in this sample of adolescents living in a severely earthquake- affected community. School connectedness, social support from family and friends, and expectations about future quality of life were shown to significantly predict variance in subjective wellbeing, quality of life, and psychological distress. This suggests that there are social and environmental factors that can be targeted to improve holistic mental health and wellbeing in disaster-affected adolescents who have experienced high levels of trauma. Conclusions in this study are limited by the representativeness of the sample, the cross- sectional nature of the study, and potential sampling bias.

Research papers, University of Canterbury Library

Background: There has been a psychopathology focus in disaster research examining adolescent mental health and wellbeing, but recently studies have begun to also examine wellbeing-related constructs. Although an increased risk of posttraumatic stress disorder has been established in disaster-exposed adolescents, comparatively little is known about how disasters impact adolescent wellbeing, nor how factors within the post-disaster environment interact to influence holistic adolescent mental health and wellbeing. Objective: The objective of this study was to describe the holistic mental health and wellbeing of adolescents living in an earthquake-struck city by considering a range of mental health and wellbeing indicators, as well as risk and protective factors hypothesised to influence mental health and wellbeing. The dual-factor model of mental health was used as a framework to guide this study. Method: A survey of Christchurch secondary school students was used to gather data about their subjective wellbeing, risk of low wellbeing, psychological distress, quality of life, exposure to Adverse Childhood Experiences, social support from friends and family, school connectedness, and expectations about future quality of life. Results: A slim majority of students reported good subjective wellbeing (52.3%) and high current quality of life (56.4%), whereas a larger majority reported low risk of psychological distress (79%). An equal proportion of students reported high and low risk of low wellbeing. There were no statistically significant differences in any of the variables measured between adolescents who did and did not live through the Christchurch earthquakes. Regression analyses identified that school connectedness, social support from friends and family, and future expectations of quality of life significantly predicted subjective wellbeing, risk of low wellbeing, risk of psychological distress, and current quality of life. The number of Adverse Childhood Experiences significantly predicted only risk of psychological distress when the effects of other variables were controlled for. Conclusion: The findings of this study indicate that there is a low mean level of wellbeing and quality of life in this sample of adolescents living in a severely earthquake-affected community. School connectedness, social support from family and friends, and expectations about future quality of life were shown to significantly predict variance in subjective wellbeing, quality of life, and psychological distress. This suggests that there are social and environmental factors that can be targeted to improve holistic mental health and wellbeing in disaster-affected adolescents who have experienced high levels of trauma. Conclusions in this study are limited by the representativeness of the sample, the cross-sectional nature of the study, and potential sampling bias.

Research papers, University of Canterbury Library

Background: There has been a psychopathology focus in disaster research examining adolescent mental health and wellbeing, but recently studies have begun to also examine wellbeing-related constructs. Although an increased risk of posttraumatic stress disorder has been established in disaster-exposed adolescents, comparatively little is known about how disasters impact adolescent wellbeing, nor how factors within the post-disaster environment interact to influence holistic adolescent mental health and wellbeing. Objective: The objective of this study was to describe the holistic mental health and wellbeing of adolescents living in an earthquake-struck city by considering a range of mental health and wellbeing indicators, as well as risk and protective factors hypothesised to influence mental health and wellbeing. The dual-factor model of mental health was used as a framework to guide this study. Method: A survey of Christchurch secondary school students was used to gather data about their subjective wellbeing, risk of low wellbeing, psychological distress, quality of life, exposure to Adverse Childhood Experiences, social support from friends and family, school connectedness, and expectations about future quality of life. Results: A slim majority of students reported good subjective wellbeing (52.3%) and high current quality of life (56.4%), whereas a larger majority reported low risk of psychological distress (79%). An equal proportion of students reported high and low risk of low wellbeing. There were no statistically significant differences in any of the variables measured between adolescents who did and did not live through the Christchurch earthquakes. Regression analyses identified that school connectedness, social support from friends and family, and future expectations of quality of life significantly predicted subjective wellbeing, risk of low wellbeing, risk of psychological distress, and current quality of life. The number of Adverse Childhood Experiences significantly predicted only risk of psychological distress when the effects of other variables were controlled for. Conclusion: The findings of this study indicate that there is a low mean level of wellbeing and quality of life in this sample of adolescents living in a severely earthquake- affected community. School connectedness, social support from family and friends, and expectations about future quality of life were shown to significantly predict variance in subjective wellbeing, quality of life, and psychological distress. This suggests that there are social and environmental factors that can be targeted to improve holistic mental health and wellbeing in disaster-affected adolescents who have experienced high levels of trauma. Conclusions in this study are limited by the representativeness of the sample, the cross- sectional nature of the study, and potential sampling bias.

Research papers, University of Canterbury Library

The development of Digital City technologies to manage and visualise spatial information has increasingly become a focus of the research community, and application by city authorities. Traditionally, the Geographic Information Systems (GIS) and Building Information Models (BIM) underlying Digital Cities have been used independently. However, integrating GIS and BIM into a single platform provides benefits for project and asset management, and is applicable to a range of issues. One of these benefits is the means to access and analyse large datasets describing the built environment, in order to characterise urban risk from and resilience to natural hazards. The aim of this thesis is to further explore methodologies of integration in two distinct areas. The first, integration through connectivity of heterogeneous datasets where GIS spatial infrastructure data is merged with 3D BIM building data to create a digital twin. Secondly, integration through analysis whereby data from the digital twin are extracted and integrated with computational models. To achieve this, a workflow was developed to identify the required datasets of a digital twin, and develop a process of integrating those datasets through a combination of; semi-autonomous conversion, translation and extension of data; and semantic web and services-based processes. Through use of a designed schema, the data were streamed in a homogenous format in a web-based platform. To demonstrate the value of this workflow with respect to urban risk and resilience, the process was applied to the Taiora: Queen Elizabeth II recreation and sports centre in eastern Christchurch, New Zealand. After integration of as-built GIS and BIM datasets, targeted data extraction was implemented, with outputs tailored for analysis in an infrastructure serviceability loss model, which assessed potable water network performance in the 22nd February 2011 Christchurch Earthquake. Using the same earthquake conditions as the serviceability loss model, performance of infrastructure assets in service at the time of the 22nd February 2011 Christchurch Earthquake was compared to new assets rebuilt at the site, post-earthquake. Due to improved potable water infrastructure resilience resulting from installation of ductile piles, a decrease of 35.5% in the probability of service loss was estimated in the serviceability loss model. To complete the workflow, the results from the external analysis were uploaded to the web-based platform. One of the more significant outcomes from the workflow was the identification of a lack of mandated metadata standards for fittings/valves connecting a building to private laterals. Whilst visually the GIS and BIM data show the building and pipes as connected, the semantic data does not include this connectivity relationship. This has no material impact on the current serviceability loss model as it is not one of the defined parameters. However, a proposed modification to the model would utilise the metadata to further assess the physical connection robustness, and increase the number of variables for estimating probability of service loss. This thesis has made a methodological contribution to urban resilience analysis by demonstrating how readily available up-to-date building and infrastructure data can be integrated, and with tailored extraction from a Digital City platform, be used for disaster impact analysis in an external computational engine, with results in turn imported and visualised in the Digital City platform. The workflow demonstrated that translation and integration of data would be more successful if a regional/national mandate was implemented for the submission of consent documentation in a specified standard BIM format. The results of this thesis have identified that the key to ensuring the success of an integrated tool lies in the initial workflow required to safeguard that all data can be either captured or translated in an interoperable format.

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.

Research papers, University of Canterbury Library

The Canterbury earthquake and aftershock sequence in New Zealand during 2010-2011 subjected the city’s structures to a significant accumulated cyclic demand and raised significant questions regarding the low-cycle fatigue demands imposed upon the structures. There is a significant challenge to quantify the level of cumulative demand imposed on structures and to assess the percentage of a structure's fatigue life that has been consumed as a result of this earthquake sequence. It is important to be able to quantify the cumulative demand to determine how a building will perform in a subsequent large earthquake and inform repair and re-occupancy decisions. This paper investigates the cumulative fatigue demand for a structure located within the Christchurch Central Business District (CBD). Time history analysis and equivalent cycle counting methods are applied across the Canterbury earthquake sequence, using key events from September 4th 2010 and February 22nd , 2011 main shocks. The estimate of the cumulative fatigue demand is then compared to the expected capacity of a case study reinforced concrete bridge pier, to undertake a structure-specific fatigue assessment. The analysis is undertaken to approximate the portion of the structural fatigue capacity that has been consumed, and how much residual capacity remains. Results are assessed for recordings at the four Christchurch central city strong motion recording sites installed by the GeoNet programme, to provide an estimate of variation in results. The computed cyclic demand results are compared to code-based design methods and as assessment of the inelastic displacement demand of the reinforcing steel. Results are also presented in a fragility context where a de minimis (inconsequential), irreparable damage and full fatigue fracture are defined to provide a probabilistic assessment of the fatigue damage incurred. This methodology can provide input into the overall assessment of fatigue demands and residual capacity.

Research papers, University of Canterbury Library

Validating dynamic responses of engineered systems subjected to simulated ground motions is essential in scrutinising the applicability of simulated ground motions for engineering demand analyses. This paper compares the responses of two 3D building models subjected to recorded and simulated ground motions scaled to the NZS1170.5 design response spectrum, in order to evaluate the applicability of simulated ground motions for use in conventional engineering practice in New Zealand. The buildings were designed according to the NZS1170.5 and physically constructed in Christchurch prior to the 2010-2011 Canterbury earthquakes. 40 recorded ground motions from the 22 February 2011 Christchurch earthquake, along with the simulated ground motions for this event from Razafindrakoto et al. (2018) are considered. The seismic responses of the structures are principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, the results indicate a general agreement in seismic demands obtained using the recorded and simulated ensembles of ground motions and provide further evidence that simulated ground motions using state-of-the-art methods can be used in code-based structural performance assessments inplace of, or in combination with, ensembles of recorded ground motions.

Research papers, University of Canterbury Library

This paper investigates the effects of variability in source rupture parameters on site-specific physics-based simulated ground motions, ascertained through the systematic analysis of ground motion intensity measures. As a preliminary study, we consider simulations of the 22 February 2011 Christchurch earthquake using the Graves and Pitarka (2015) methodology. The effects of source variability are considered via a sensitivity study in which parameters (hypocentre location, earthquake magnitude, average rupture velocity, fault geometry and the Brune stress parameter) are individually varied by one standard deviation. The sensitivity of simulated ground motion intensity measures are subsequently compared against observational data. The preliminary results from this study indicate that uncertainty in the stress parameter and the rupture velocity have the most significant effect on the high frequency amplitudes. Conversely, magnitude uncertainty was found to be most influential on the spectral acceleration amplitudes at low frequencies. Further work is required to extend this preliminary study to exhaustively consider more events and to include parameter covariance. The ultimate results of this research will assist in the validation of the overall simulation method’s accuracy in capturing various rupture parameters, which is essential for the use of simulated ground motion models in probabilistic seismic hazard analysis.

Research papers, University of Canterbury Library

During the 2010 - 2011 Canterbury earthquake sequence, extensive liquefaction was observed in many areas of Christchurch city and its surroundings, causing widespread damage to buildings and infrastructure. While existing simplified methods were found to work well in some areas of the city, there were also large areas where these methods did not perform satisfactorily. In some of these cases, researchers have proposed that layers of fine grained material within the soil profile may be responsible for preventing the manifestation of liquefaction. This paper presents preliminary findings on the mechanisms at play when pressure differentials exist across a clay layer. It is found that if the clay layer is unable to distort, then pore fluid is unable to break-through the layer even with relatively high pressures, resulting in dissipation of excess pore pressures by seepage. If the layers are however able to distort, then it is possible for the pore fluid to break through the clay layer, potentially resulting in adverse effects in terms of the severity of liquefaction.

Research papers, University of Canterbury Library

Christchurch Ōtautahi, New Zealand, is a city of myriad waterways and springs. Māori, the indigenous people of New Zealand, have water quality at the core of their cultural values. The city’s rivers include the Avon/Ōtākaro, central to the city centre’s aesthetic appeal since early settlement, and the Heathcote/Ōpāwaho. Both have been degraded with increasing urbanisation. The destructive earthquake sequence that occurred during 2010/11 presented an opportunity to rebuild significant areas of the city. Public consultation identified enthusiasm to rebuild a sustainable city. A sustainable water sensitive city is one where development is constructed with the water environment in mind. Water sensitive urban design applies at all scales and is a holistic concept. In Christchurch larger-scale multi-value stormwater management solutions were incorporated into rapidly developed greenfield sites on the city’s outskirts and in satellite towns, as they had been pre-earthquake. Individual properties on greenfield sites and within the city, however, continued to be constructed without water sensitive features such as rainwater tanks or living roofs. This research uses semi-structured interviews, policy analysis, and findings from local and international studies to investigate the benefits of building-scale WSUD and the barriers that have resulted in their absence. Although several inter-related barriers became apparent, cost, commonly cited as a barrier to sustainable development in general, was strongly represented. However, it is argued that the issue is one of mindset rather than cost. Solutions are proposed, based on international and national experience, that will demonstrate the benefits of adopting water sensitive urban design principles including at the building scale, and thereby build public and political support. The research is timely - there is still much development to occur, and increasing pressures from urban densification, population growth and climate change to mitigate.

Research papers, University of Canterbury Library

A series of undrained cyclic direct simple shear (DSS) tests on specimens of sandy silty soils are used to evaluate the effects of fines content, fabric and layered structure on the liquefaction response of sandy soils containing non-plastic fines. Test soils originate from shallow deposits in Christchurch, New Zealand, where severe and damaging manifestations of liquefaction occurred during the 2010-2011 Canterbury earthquakes. A procedure for reconstituting specimens by water sedimentation is employed. This specimen preparation technique involves first pluviation of soil through a water column, and then application of gentle vibrations to the mould (tapping) to prepare specimens with different initial densities. This procedure is applied to prepare uniform specimens, and layered specimens with a silt layer atop a sand layer. Cyclic DSS tests are performed on water-sedimented specimens of two sands, a silt, and sand-silt mixtures with different fines contents. Through this testing program, effects of density, time of vibration during preparation, fines content, and layered structure on cyclic behaviour and liquefaction resistance are investigated. Additional information necessary to characterise soil behaviour is provided by particle size distribution analyses, index void ratio testing, and Scanning Electronic Microscope imaging. The results of cyclic DSS tests show that, for all tested soils, specimens vibrated for longer period of time have lower void ratios, higher relative density, and greater liquefaction resistance. One of the tested sands undergoes significant increase in relative density and liquefaction resistance following prolonged vibration. The other sand exhibits lower increase in relative density and in liquefaction resistance when vibrated for the same period of time. Liquefaction resistance of sand-silt mixtures prepared using this latter sand shows a correlation with relative density irrespective of fines content. In general, however, magnitudes of changes in liquefaction resistance for given variations in vibration time, relative density, or void ratio vary depending on soils under consideration. Characterization based on maximum and minimum void ratios indicates that tested soils develop different structures as fines are added to their respective host sands. These structures influence initial specimen density, strains during consolidation, cyclic liquefaction resistance, and undrained cyclic response of each soil. The different structures are the outcome of differences in particle size distributions, average particle sizes, and particle shapes of the two host sands and of the different relationships between these properties and those of the silt. Fines content alone does not provide an effective characterization of the effects of these factors. Monotonic DSS tests are also performed on specimens prepared by water sedimentation, and on specimens prepared by moist tamping, to identify the critical state lines of tested soils. These critical state lines provide the basis for an alternative interpretation of cyclic DSS tests results within the critical state framework. It is shown that test results imply general consistency between observed cyclic and monotonic DSS soil response. The effects of specimen layering are scrutinised by comparing DSS test results for uniform and layered specimens of the same soils. In this case, only a limited number of tests is performed, and the range of densities considered for the layered specimens is also limited. Caution is therefore required in interpretation of their results. The liquefaction resistance of layered specimens appears to be influenced by the bottom sand layer, irrespective of the global fines content of the specimen. The presence of a layered structure does not result in significant differences in terms of liquefaction response with respect to uniform sand specimens. Cyclic triaxial data for Christchurch sandy silty soils available from previous studies are used to comparatively examine the behaviour observed in the tests of this study. The cyclic DSS liquefaction resistance of water-sedimented specimens is consistent with cyclic triaxial tests on undisturbed specimens performed by other investigators. The two data sets result in similar liquefaction triggering relationships for these soils. However, stress-strain response characteristics for the two types of specimens are different, and undisturbed triaxial specimen exhibit a slower rate of increase in shear strains compared to water-sedimented DSS specimens. This could be due to the greater influence of fabric of the undisturbed specimens.

Research papers, University of Canterbury Library

The development of Digital City technologies to manage and visualise spatial information has increasingly become a focus of the research community, and application by city authorities. Traditionally, the Geographic Information Systems (GIS) and Building Information Models (BIM) underlying Digital Cities have been used independently. However, integrating GIS and BIM into a single platform provides benefits for project and asset management, and is applicable to a range of issues. One of these benefits is the means to access and analyse large datasets describing the built environment, in order to characterise urban risk from and resilience to natural hazards. The aim of this thesis is to further explore methodologies of integration in two distinct areas. The first, integration through connectivity of heterogeneous datasets where GIS spatial infrastructure data is merged with 3D BIM building data to create a digital twin. Secondly, integration through analysis whereby data from the digital twin are extracted and integrated with computational models. To achieve this, a workflow was developed to identify the required datasets of a digital twin, and develop a process of integrating those datasets through a combination of; semi-autonomous conversion, translation and extension of data; and semantic web and services-based processes. Through use of a designed schema, the data were streamed in a homogenous format in a web-based platform. To demonstrate the value of this workflow with respect to urban risk and resilience, the process was applied to the Taiora: Queen Elizabeth II recreation and sports centre in eastern Christchurch, New Zealand. After integration of as-built GIS and BIM datasets, targeted data extraction was implemented, with outputs tailored for analysis in an infrastructure serviceability loss model, which assessed potable water network performance in the 22nd February 2011 Christchurch Earthquake. Using the same earthquake conditions as the serviceability loss model, performance of infrastructure assets in service at the time of the 22nd February 2011 Christchurch Earthquake was compared to new assets rebuilt at the site, post-earthquake. Due to improved potable water infrastructure resilience resulting from installation of ductile piles, a decrease of 35.5% in the probability of service loss was estimated in the serviceability loss model. To complete the workflow, the results from the external analysis were uploaded to the web-based platform. One of the more significant outcomes from the workflow was the identification of a lack of mandated metadata standards for fittings/valves connecting a building to private laterals. Whilst visually the GIS and BIM data show the building and pipes as connected, the semantic data does not include this connectivity relationship. This has no material impact on the current serviceability loss model as it is not one of the defined parameters. However, a proposed modification to the model would utilise the metadata to further assess the physical connection robustness, and increase the number of variables for estimating probability of service loss. This thesis has made a methodological contribution to urban resilience analysis by demonstrating how readily available up-to-date building and infrastructure data can be integrated, and with tailored extraction from a Digital City platform, be used for disaster impact analysis in an external computational engine, with results in turn imported and visualised in the Digital City platform. The workflow demonstrated that translation and integration of data would be more successful if a regional/national mandate was implemented for the submission of consent documentation in a specified standard BIM format. The results of this thesis have identified that the key to ensuring the success of an integrated tool lies in the initial workflow required to safeguard that all data can be either captured or translated in an interoperable format.

Research papers, University of Canterbury Library

The increase of the world's population located near areas prone to natural disasters has given rise to new ‘mega risks’; the rebuild after disasters will test the governments’ capabilities to provide appropriate responses to protect the people and businesses. During the aftermath of the Christchurch earthquakes (2010-2012) that destroyed much of the inner city, the government of New Zealand set up a new partnership between the public and private sector to rebuild the city’s infrastructure. The new alliance, called SCIRT, used traditional risk management methods in the many construction projects. And, in hindsight, this was seen as one of the causes for some of the unanticipated problems. This study investigated the risk management practices in the post-disaster recovery to produce a specific risk management model that can be used effectively during future post-disaster situations. The aim was to develop a risk management guideline for more integrated risk management and fill the gap that arises when the traditional risk management framework is used in post-disaster situations. The study used the SCIRT alliance as a case study. The findings of the study are based on time and financial data from 100 rebuild projects, and from surveying and interviewing risk management professionals connected to the infrastructure recovery programme. The study focussed on post-disaster risk management in construction as a whole. It took into consideration the changes that happened to the people, the work and the environment due to the disaster. System thinking, and system dynamics techniques have been used due to the complexity of the recovery and to minimise the effect of unforeseen consequences. Based on an extensive literature review, the following methods were used to produce the model. The analytical hierarchical process and the relative importance index have been used to identify the critical risks inside the recovery project. System theory methods and quantitative graph theory have been used to investigate the dynamics of risks between the different management levels. Qualitative comparative analysis has been used to explore the critical success factors. And finally, causal loop diagrams combined with the grounded theory approach has been used to develop the model itself. The study identified that inexperienced staff, low management competency, poor communication, scope uncertainty, and non-alignment of the timing of strategic decisions with schedule demands, were the key risk factors in recovery projects. Among the critical risk groups, it was found that at a strategic management level, financial risks attracted the highest level of interest, as the client needs to secure funding. At both alliance-management and alliance-execution levels, the safety and environmental risks were given top priority due to a combination of high levels of emotional, reputational and media stresses. Risks arising from a lack of resources combined with the high volume of work and the concern that the cost could go out of control, alongside the aforementioned funding issues encouraged the client to create the recovery alliance model with large reputable construction organisations to lock in the recovery cost, at a time when the scope was still uncertain. This study found that building trust between all parties, clearer communication and a constant interactive flow of information, established a more working environment. Competent and clear allocation of risk management responsibilities, cultural shift, risk prioritisation, and staff training were crucial factors. Finally, the post-disaster risk management (PDRM) model can be described as an integrated risk management model that considers how the changes which happened to the environment, the people and their work, caused them to think differently to ease the complexity of the recovery projects. The model should be used as a guideline for recovery systems, especially after an earthquake, looking in detail at all the attributes and the concepts, which influence the risk management for more effective PDRM. The PDRM model is represented in Causal Loops Diagrams (CLD) in Figure 8.31 and based on 10 principles (Figure 8.32) and 26 concepts (Table 8.1) with its attributes.

Research papers, University of Canterbury Library

This thesis examines the closing of Aranui High School in 2016, a low socio-economic secondary school in eastern Christchurch, New Zealand, and reflects on its history through the major themes of innovation and the impact of central government intervention. The history is explored through the leadership of the school principals, and the necessity for constant adaptation by staff to new ways of teaching and learning, driven by the need to accommodate a more varied student population – academically, behaviourally and culturally – than most other schools in wider Christchurch. Several extreme changes, following a neoliberal approach to education policies at a national government level, impacted severely on the school’s ability to thrive and even survive over the 57 years of its existence, with the final impact of the 2010 and 2011 Canterbury earthquakes leading indirectly to Aranui High’s closure. The earthquakes provided the National government with the impetus to advocate for change to education in Christchurch; changes which impacted negatively on many schools in Christchurch, including Aranui High School. The announcement of the closure of Aranui High shocked many staff and students, who were devastated that the school would no longer exist. Aranui High School, Aranui Primary School, Wainoni Primary School and Avondale Primary School were all closed to make way for Haeata Community Campus, a year 1 to 13 school, which was built on the Aranui High site. Aranui High School served the communities of eastern Christchurch for 57 years from 1960 and deserves acknowledgment and remembrance, and my hope is that this thesis will provide a fair representation of the school’s story, including its successes and challenges, while also explaining the reasons behind the eventual closure. This thesis contributes to New Zealand public history and uses mixed research methods to examine Aranui High School’s role as a secondary school in eastern Christchurch. I argue that the closure of Aranui High School in 2016 was an unjustified act by the Ministry of Education.

Research papers, University of Canterbury Library

This article presents a subset of findings from a larger mixed methods CEISMIC1 funded study of twenty teachers’ earthquake experiences and post-earthquake adjustment eighteen months after a fatal earthquake struck Christchurch New Zealand, in the middle of a school day (Geonet Science, 2011; O’Toole & Friesen, 2016). This earthquake was a significant national and personal disaster with teachers’ emotional self-management as first responders being crucial to the students’ immediate safety (O’Toole & Friesen, 2016). At the beginning of their semi-structured interviews conducted eighteen months later, the teachers shared their earthquake stories (O’Toole & Friesen, 2016). They recalled the moment it struck in vivid detail, describing their experiences in terms of what they saw (destruction), heard (sonic boom, screaming children) and felt (fright and fear) as though they were back in that moment similar to flashbulb memory (Brown & Kulik, 1977). Their memories of the early aftermath were similarly vivid (Rubin & Kozin, 1984). This article focuses on how the mood meter (Brackett & Kremenitzer, 2011) was then used (with permission) to further explore the teachers’ perceived affect to enlighten their lived experiences.