Search

found 8 results

Research papers, University of Canterbury Library

The New Zealand city of Christchurch suffered a series of devastating earthquakes in 2010-11 that changed the urban landscape forever. A new rebuilt city is now underway, largely based on the expressed wishes of the populace to see Christchurch return to being a more people-oriented, cycle-friendly city that it was known for in decades past. Currently 7% of commuters cycle to work, supported by a 200km network of mostly conventional on-road painted cycle lanes and off-road shared paths. The new "Major Cycleways" plan aims to develop approximately 100km of high-quality cycling routes throughout the city in 5-7 years. The target audience is an unaccompanied 10-year-old cycling, which requires more separated cycleways and low-volume/speed "neighbourhood greenways" to meet this standard. This presentation summarises the steps undertaken to date to start delivering this network. Various pieces of research have helped to identify the types of infrastructure preferred by those currently not regularly cycling, as well as helping to assess the merits of different route choices. Conceptual cycleway guidelines have now been translated into detailed design principles for the different types of infrastructure being planned. While much of this work is based on successful designs from overseas, including professional advice from Dutch practitioners, an interesting challenge has been to adapt these designs as required to suit local road environments and road user expectations. The first parts of the new network are being rolled out now, with the hope that this will produce an attractive and resilient network for the future population that leads to cycling being a major part of the local way of life.

Research papers, University of Canterbury Library

This presentation summarizes the development of high-resolution surficial soil velocity models in the Canterbury, New Zealand basin. Shallow (<30m) shear wave velocities were primarily computed based on a combination of a large database of over 15,000 cone penetration test (CPT) logs in and around Christchurch, and a recently-developed Christchurch-specific empirical correlation between soil shear wave velocity and CPT. Large active-source testing at 22 locations and ambient-wavefield surface wave and H/V testing at over 80 locations were utilized in combination with 1700 water well logs to constrain the inter-bedded stratigraphy and velocity of Quaternary sediments up to depths of several hundred meters. Finally, seismic reflection profiles and the ambient-wavefield surface wave data provide constraint on velocities from several hundred meters to several kilometres. At all depths, the high resolution data illustrates the complexity of the soil conditions in the region, and the developed 3D models are presently being used in broadband ground motion simulations to further interpret the observed strong ground motions in the 2010-2011 Canterbury earthquake sequence.

Research papers, University of Canterbury Library

This thesis examines how 18 University of Canterbury students based in Christchurch experienced housing insecurity during the three years after a series of major earthquakes from late 2010 and throughout 2011. I adopted a qualitative exploratory approach to gather students’ accounts and examine their experiences which were analysed using constructivist grounded theory methods. Three core categories were identified from the data: mobility, recreating security, and loss. Mobility included the effects of relocation and dislocation, as well as how the students searched for stability. Recreating security required a renewed sense of belonging and also addressed the need to feel physically safe. Lastly, loss included the loss of material possessions and also the loss of voice and political representation. The theory that emerged from these findings is that the extent to which students were able to control their mobility largely explained their experiences of housing insecurity. When students experienced a loss of control over their mobility they effectively addressed this by being resourceful and drawing on existing forms of capital. This resourcefulness generated a new form of capital, here called security capital, which represents a conceptual contribution to existing debates on students’ experiences of homelessness in a disaster context.

Research papers, University of Canterbury Library

This article reports on research conducted in Christchurch, New Zealand, after the 22 February 2011 earthquake. This quake and thousands of subsequent aftershocks have left the city of Christchurch with serious infrastructure damage to roads, sewage supply, housing and commercial buildings. The emergence of a vibrant art and craft movement in the Christchurch region post earthquake has been an unexpected aspect of the recovery process. The article begins with a review of the literature on traditional responses to disaster recovery illustrating how more contemporary approaches are community-focused. We review the links between crafting and well-being, and report on qualitative research conducted with five focus groups and nine individuals who have contributed to this movement in Christchurch. The findings illustrate the role crafting has played post earthquake, in terms of processing key elements of the disaster for healing and recovery, creating opportunities for social support; giving to others; generating learning and meaning making and developing a vision for the future. The data analysis is underpinned by theory related to post-traumatic growth and ecological concerns. The role of social work in promoting low-cost initiatives such as craft groups to foster social resilience and aid in the recovery from disaster trauma is explored. This discussion considers why such approaches are rare in social work.

Research papers, University of Canterbury Library

he strong motion station at Heathcote Valley School (HVSC) recorded unusually high peak ground accelerations (2.21g vertical and 1.41g horizontal) during the February 2011 Christchurch earthquake. Ground motions recorded at HVSC in numerous other events also exhibited consistently higher intensities compared with nearby strong motion stations. We investigated the underlying causes of such high intensity ground motions at HVSC by means of 2D dynamic finite element analyses, using recorded ground motions during the 2010-2011 Canterbury earthquake sequence. The model takes advantage of a LiDAR-based digital elevation model (DEM) to account for the surface topography, while the geometry and dynamic properties of the surficial soils are characterized by seismic cone penetration tests (sCPT) and Multi-Channel Analyses of Surface Waves (MASW). Comparisons of simulated and recorded ground motions suggests that our model performs well for distant events, while for near-field events, ground motions recorded at the adopted reference station at Lyttelton Port are not reasonable input motions for the simulation. The simulations suggest that Rayleigh waves generated at the inclined interface of the surficial colluvium and underlying volcanic rock strongly affect the ground motions recorded at HVSC, in particular, being the dominant contributor to the recorded vertical motions.

Research papers, University of Canterbury Library

The Avon River and the Avon-Heathcote Estuary/Ihutai are features of the urban environment of Christchurch City and are popular for recreational and tourist activities. These include punting, rowing, organized yachting, water skiing, shoreline walking, bird watching, recreational fishing and aesthetic appreciation. The Canterbury earthquakes of 2010 and 2011 significantly affected the estuarine and river environments, affecting both the valued urban recreation resources and infrastructure. The aim of the research is to evaluate recreational opportunities using a questionnaire, assess levels of public participation in recreation between winter 2014 and summer 2014-2015 and evaluate the quality of recreational resources. The objective is to determine the main factors influencing recreational uses before and after the February 2011 earthquake and to identify future options for promoting recreational activities. Resource evaluation includes water quality, wildlife values, habitats, riparian strip and the availability of facilities and infrastructure. High levels of recreational participation usually occurred at locations that provided many facilities along with their suitability for family activities, scenic beauty, relaxation, amenities and their proximity to residences. Some locations included more land-based activities, while some included more water-based activities. There were greater opportunities for recreation in summer compared to winter. Activities that were negatively affected by the earthquake such as rowing, kayaking and sailing have resumed. But activities at some places may be limited due to the lack of proper tracks, jetty, public toilets and other facilities and infrastructure. Also, some locations had high levels of bacterial pollution, excessive growth of aquatic plants and a low number of amenity values. These problems need to be solved to facilitate recreational uses. In recovering from the earthquake, the enhancement of recreation in the river and the Estuary will lead to a better quality of life and the improved well-being and psychological health of Christchurch residents. It was concluded that the Avon River and the Avon-Heathcote Estuary/Ihutai continue to provide various opportunities of recreation for users.

Research papers, University of Canterbury Library

This report summarizes the development of a region-wide surficial soil shear wave velocity (Vs ) model based on the unique combination of a large high-spatial-density database of cone penetration test (CPT) logs in the greater Christchurch urban area (> 15, 000 logs as of 1 February 2014) and the Christchurch-specific empirical correlation between soil Vs and CPT data developed by McGann et al. [1, 2]. This model has applications for site characterization efforts via maps of time-averaged Vs over specific depths (e.g. Vs30, Vs10), and for numerical modeling efforts via the identification of typical Vs profiles for different regions and soil behaviour types within Christchurch. In addition, the Vs model can be used to constrain the near-surface velocities for the 3D seismic velocity model of the Canterbury basin [3] currently being developed for the purpose of broadband ground motion simulation. The general development of these region-wide near-surface Vs models includes the following general phases, with each discussed in separate chapters of this report. • An evaluation of the available CPT dataset for suitability, and the definition of other datasets and assumptions necessary to characterize the surficial sediments of the region to 30 m depth. • The development of time-averaged shear wave velocity (Vsz) surfaces for the Christchurch area from the adopted CPT dataset (and supplementary data/assumptions) using spatial interpolation. The Vsz surfaces are used to explore the characteristics of the near-surface soils in the regions and are shown to correspond well with known features of the local geology, the historical ecosystems of the area, and observations made following the 2010- 2011 Canterbury earthquakes. • A detailed analysis of the Vs profiles in eight subregions of Christchurch is performed to assess the variablity in the soil profiles for regions with similar Vsz values and to assess Vsz as a predictive metric for local site response. It is shown that the distrubution of soil shear wave velocity in the Christchurch regions is highly variable both spatially (horizontally) and with depth (vertically) due to the varied geological histories for different parts of the area, and the highly stratified nature of the nearsurface deposits. This variability is not considered to be greatly significant in terms of current simplified site classification systems; based on computed Vs30 values, all considered regions can be categorized as NEHRP sites class D (180 < Vs < 360 m/s) or E (Vs < 180 m/s), however, detailed analysis of the shear wave velocity profiles in different subregions of Christchurch show that the expected surficial site response can vary quite a bit across the region despite the relative similarity in Vs30

Research papers, University of Canterbury Library

With origins in the South Bronx area of New York in the early 1970s, hip-hop culture is now produced and consumed globally. While hip-hop activities can be varied, hip-hop is generally considered to have four forms or “elements”: DJing, MCing, b-boying/b-girling, and graffiti. Although all four elements of hip-hop have become a part of many youth work initiatives across the globe, public debate and controversy continue to surround hip-hop activities. Very little research and literature has explored the complexities involved in the assembling of hip-hop activities in youth work sites of practice using these hip-hop elements. This study attends to the gap in hip-hop and human service literature by tracing how hip-hop activities were assembled in several sites of youth work activity in Christchurch, New Zealand. Actor-network theory (ANT) is the methodological framework used to map the assemblage of hip-hop-youth work activities in this study. ANT follows how action is distributed across both human and non-human actors. By recognising the potential agency of “things”, this research traces the roles played by human actors, such as young people and youth workers, together with those of non-human actors such as funding documents, social media, clothing, and youth venue equipment. This ethnographic study provides rich descriptions or “snapshots” of some of the key socio-material practices that shaped the enactment of hip-hop-youth work activities. These are derived from fieldwork undertaken between October 2009 and December 2011, where participant observation took place across a range of sites of hip-hop-youth work activity. In addition to this fieldwork, formal interviews were undertaken with 22 participants, the majority being youth workers, young people, and youth trust administrators. The ANT framework reveals the complexity of the task of assembling hip-hop in youth work worlds. The thesis traces the work undertaken by both human and non-human actors in generating youth engagement in hip-hop-youth work activities. Young people’s hip-hop interests are shown to be varied, multiple, and continually evolving. It is also shown how generating youth interest in hip-hop-youth work activities involved overcoming young people’s indifference or lack of awareness of the hip-hop resources a youth trust had on offer. Furthermore, the study highlights where hip-hop activities were edited or “tinkered” with to avoid hip-hop “bads”. The thesis also unpacks how needed resources were enlisted, and how funders’ interests were translated into supporting hip-hop groups and activities. By tracing the range of actors mobilised to enact hip-hop-youth work activities, this research reveals how some youth trusts could avoid having to rely on obtaining government funds for their hip-hop activities. The thesis also includes an examination of one youth trust’s efforts to reconfigure its hip-hop activities after the earthquakes that struck Christchurch city in 2010 and 2011. Working both in and on the world, the text that is this thesis is also understood as an intervention. This study constitutes a deliberate attempt to strengthen understandings of hip-hop as a complex, multiple, and fluid entity. It therefore challenges traditional media and literature representations that simplify and thus either stigmatise or celebrate hip-hop. As such, this study opens up possibilities to consider the opportunities, as well as the complexities of assembling hip-hop in youth work sites of practice.