Liquefaction-induced lateral spreading in large seismic events often results in pervasive and costly damage to engineering structures and lifelines, making it a critical component of engineering design. However, the complex nature of this phenomenon leads to designing for such a hazard extremely challenging and there is a clear for an improved understanding and predicting liquefaction-induced lateral spreading. The 2010-2011 Canterbury (New Zealand) Earthquakes triggered severe liquefaction-induced lateral spreading along the streams and rivers of the Christchurch region, causing extensive damage to roads, bridges, lifelines, and structures in the vicinity. The unfortunate devastation induced from lateral spreading in these events also rendered the rare opportunity to gain an improved understanding of lateral spreading displacements specific to the Christchurch region. As part of this thesis, the method of ground surveying was employed following the 4 September 2010 Darfield (Mw 7.1) and 22 February 2011 Christchurch (Mw 6.2) earthquakes at 126 locations (19 repeated) throughout Christchurch and surrounding suburbs. The method involved measurements and then summation of crack widths along a specific alignment (transect) running approximately perpendicular to the waterway to indicate typically a maximum lateral displacement at the bank and reduction of the magnitude of displacements with distance from the river. Rigorous data processing and comparisons with alternative measurements of lateral spreading were performed to verify results from field observations and validate the method of ground surveying employed, as well as highlight the complex nature of lateral spreading displacements. The welldocumented field data was scrutinized to gain an understanding of typical magnitudes and distribution patterns (distribution of displacement with distance) of lateral spreading observed in the Christchurch area. Maximum displacements ranging from less than 10 cm to over 3.5 m were encountered at the sites surveyed and the area affected by spreading ranged from less than 20 m to over 200 m from the river. Despite the highly non-uniform displacements, four characteristic distribution patterns including large, distributed ground displacements, block-type movements, large and localized ground displacements, and areas of little to no displacements were identified. Available geotechnical, seismic, and topographic data were collated at the ground surveying sites for subsequent analysis of field measurements. Two widely-used empirical models (Zhang et al. (2004), Youd et al. (2002)) were scrutinized and applied to locations in the vicinity of field measurements for comparison with model predictions. The results indicated generally poor correlation (outside a factor of two) with empirical predictions at most locations and further validated the need for an improved, analysis- based method of predicting lateral displacements that considers the many factors involved on a site-specific basis. In addition, the development of appropriate model input parameters for the Youd et al. (2002) model led to a site-specific correlation of soil behavior type index, Ic, and fines content, FC, for sites along the Avon River in Christchurch that matched up well with existing Ic – FC relationships commonly used in current practice. Lastly, a rigorous analysis was performed for 25 selected locations of ground surveying measurements along the Avon River where ground slope conditions are mild (-1 to 2%) and channel heights range from about 2 – 4.5 m. The field data was divided into categories based on the observed distribution pattern of ground displacements including: large and distributed, moderate and distributed, small to negligible, and large and localized. A systematic approach was applied to determine potential critical layers contributing to the observed displacement patterns which led to the development of characteristic profiles for each category considered. The results of these analyses outline an alternative approach to the evaluation of lateral spreading in which a detailed geotechnical analysis is used to identify the potential for large spreading displacements and likely spatial distribution patterns of spreading. Key factors affecting the observed magnitude and distribution of spreading included the thickness of the critical layer, relative density, soil type and layer continuity. It was found that the large and distributed ground displacements were associated with a thick (1.5 – 2.5 m) deposit of loose, fine to silty sand (qc1 ~4-7 MPa, Ic 1.9-2.1, qc1n_cs ~50-70) that was continuous along the bank and with distance from the river. In contrast, small to negligible displacements were characterized by an absence of or relatively thin (< 1 m), discontinuous critical layer. Characteristic features of the moderate and distributed displacements were found to be somewhere between these two extremes. The localized and large displacements showed a characteristic critical layer similar to that observed in the large and distributed sites but that was not continuous and hence leading to the localized zone of displacement. The findings presented in this thesis illustrate the highly complex nature of lateral displacements that cannot be captured in simplified models but require a robust geotechnical analysis similar to that performed for this research.
One of the less understood geotechnical responses to the cyclic loading from the MW6.2 Christchurch Earthquake, on the 22nd of February 2011, is the fissuring in the loessial soil-mantled, footslope positions of the north-facing valleys of the Port Hills. The fissures are characterized by mostly horizontal offset (≤500mm), with minor vertical displacement (≤300mm), and they extend along both sides of valleys for several hundred metres in an approximately contour-parallel orientation. The fissure traces correspond to extensional features mapped in other studies. Previous studies have suggested that the fissures are the headscarps of incipient landslides, but the surface and subsurface features are not typical of landslide movement. Whilst there are some features that correlate with landslide movement, there are many features that contradict the landslide movement hypothesis. Of critical importance to this investigation was the fact that there are no landslide flanks, there has been no basal shear surface found, there is little deformation in the so-called ‘landslide body’, and there have been no recorded zones of low shear strength in the soil deposit that are indicative of a basal shear surface. This thesis is a detailed geotechnical study on the fissures along part of Ramahana Road in the Hillsborough Valley, Christchurch. Shallow and deep investigation methods found that the predominant soil is loess-colluvium, to depths of ~20m, and this soil has variable geotechnical characteristics depending on the layer sampled. The factor that has the most influence on shear strength was found to be the moisture content. Direct shear-box testing of disturbed, recompacted loess-colluvium found that the soil had a cohesion of 35-65kPa and a friction angle of 38-43° when the soil moisture content was at 8-10%. However when the moisture content was at 19-20% the soil’s cohesion decreased to 3-5kPa and its friction angle decreased to 33-38°, this moisture content is at or slightly above the plastic limit. An electrical resistivity geophysical survey was conducted perpendicular to multiple fissure traces and through the compressional zone at 17 Ramahana Road. The electrical resistivity line found that there was an area of high resistivity at the toe of the slope, and an area of high conductivity downslope of this and at greater depths. This area correlated to the compressional zone recorded by previous studies. Moisture content testing of the soil in these locations showed that the soil in the resistive area was relatively dry (9%) compared to the surrounding soil (13%), whilst the soil in the conductive area was relatively wet (22%)compared to the surrounding soil (19%). Density tests of the soil in the compressional zone recorded that the resistive area had a higher dry density than the surrounding soil (~1790 kg/m3 compared to ~1650 kg/m3). New springs arose downslope of the compressional zone contemporaneously with the fissures, and it is interpreted that these have arisen from increased hydraulic head in the Banks Peninsula bedrock aquifer system, and earthquake induced-bedrock fracturing. A test pit was dug across an infilled fissure trace at 17 Ramahana Road to a depth of 3m. The fissure trace had an aperture of 450-470mm at the ground surface, but it gradually lost aperture with depth until 2.0-2.1m where it became a segmented fissure trace with 1-2mm aperture. A mixed-colluvium layer was intercepted by the fissure trace at 2.4m depth, and there was no observable vertical offset of this layer. The fissure trace was at an angle of 78° at the ground surface, but it also flattened with depth, which gave it a slightly curved appearance. The fissure trace was at an assumed angle of 40-50° near the base of the test pit. Rotational slide, translational slide and lateral spread landslide movement types were compared and contrasted as possibilities for landslide movement types, whilst an alternative hypothesis was offered that the fissures are tensile failures with a quasi-toppling motion involving a cohesive block of loessial soil moving outwards from the slope, with an accommodating compressional strain in the lower less cohesive soil. The mechanisms behind this movement are suggested to be the horizontal earthquake inertia forces from the Christchurch Earthquake, the static shear stress of the slope, and bedrock uplift of the Port Hills in relation to the subsidence of the Christchurch city flatlands. Extremely high PGA is considered to be a prerequisite to the fissure trace development, and these can only be induced in the Hillsborough Valley from a Port Hills Fault rupture, which has a recurrence interval of ~10,000 years. The current understanding of how the loess-colluvium soil would behave under cyclic loading is limited, and the mechanisms behind the suggested movement type are not completely understood. Further research is needed to confirm the proposed mechanism of the fissure traces. Laboratory tests such as the cyclic triaxial and cyclic shear test would be beneficial in future research to quantitatively test how the soil behaves under cyclic loading at various moisture contents and clay contents, and centrifuge experiments would be of great use to qualitatively test the suggested mode of movement in the loessial soil.
The Canterbury earthquakes in 2010 and 2011 had a significant impact on landlords and tenants of commercial buildings in the city of Christchurch. The devastation wrought on the city was so severe that in an unprecedented response to this disaster a cordon was erected around the central business district for nearly two and half years while demolition, repairs and rebuilding took place. Despite the destruction, not all buildings were damaged. Many could have been occupied and used immediately if they had not been within the cordoned area. Others had only minor damage but repairs to them could not be commenced, let alone completed, owing to restrictions on access caused by the cordon. Tenants were faced with a major problem in that they could not access their buildings and it was likely to be a long time before they would be allowed access again. The other problem was uncertainty about the legal position as neither the standard form leases in use, nor any statute, provided for issues arising from an inaccessible building. The parties were therefore uncertain about their legal rights and obligations in this situation. Landlords and tenants were unsure whether tenants were required to pay rent for a building that could not be accessed or whether they could terminate their leases on the basis that the building was inaccessible. This thesis looks at whether the common law doctrine of frustration could apply to leases in these circumstances, where the lease had made no provision. It analyses the history of the doctrine and how it applies to a lease, the standard form leases in use at the time of the earthquakes and the unexpected and extraordinary nature of the earthquakes. It then reports on the findings of the qualitative empirical research undertaken to look at the experiences of landlords and tenants after the earthquakes. It is argued that the circumstances of landlords and tenants met the test for the doctrine of frustration. Therefore, the doctrine could have applied to leases to enable the parties to terminate them. It concludes with a suggestion for reform in the form of a new Act to govern the special relationship between commercial landlords and tenants, similar to legislation already in place covering other types of relationships like those in residential tenancies and employment. Such legislation could provide dispute resolution services to enable landlords and tenants to have access to justice to determine their legal rights at all times, and in particular, in times of crisis.
The previously unknown Greendale Fault was buried beneath the Canterbury Plains and ruptured in the September 4th 2010 moment magnitude (Mw) 7.1 Darfield Earthquake. The Darfield Earthquake and subsequent Mw 6 or greater events that caused damage to Christchurch highlight the importance of unmapped faults near urban areas. This thesis examines the morphology, age and origin of the Canterbury Plains together with the paleoseismology and surface-rupture displacement distributions of the Greendale Fault. It offers new insights into the surface-rupture characteristics, paleoseismology and recurrence interval of the Greendale Fault and related structures involved in the 2010 Darfield Earthquake. To help constrain the timing of the penultimate event on the Greendale Fault the origin and age of the faulted glacial outwash deposits have been examined using sedimentological analysis of gravels and optically stimulated luminescence (OSL) dating combined with analysis of GPS and LiDAR survey data. OSL ages from this and other studies, and the analysis of surface paleochannel morphology and subsurface gravel deposits indicate distinct episodes of glacial outwash activity across the Canterbury Plains, at ~20 to 24 and ~28 to 33 kyr separated by a hiatus in sedimentation possibly indicating an interstadial period. These data suggest multiple glacial periods between ~18 and 35 kyr which may have occurred throughout the Canterbury region and wider New Zealand. A new model for the Waimakariri Fan is proposed where aggradation is mainly achieved during episodic sheet flooding with the primary river channel location remaining approximately fixed. The timing, recurrence interval and displacements of the penultimate surface-rupturing earthquake on the Greendale Fault have been constrained by trenching the scarp produced in 2010 at two locations. These excavations reveal a doubling of the magnitude of surface displacement at depths of 2-4 m. Aided by OSL ages of sand lenses in the gravel deposits, this factor-of-two increase is interpreted to indicate that in the central section of the Greendale Fault the penultimate surface-rupturing event occurred between ca. 20 and 30 kyr ago. The Greendale Fault remained undetected prior to the Darfield earthquake because the penultimate fault scarp was eroded and buried during Late Pleistocene alluvial activity. The Darfield earthquake rupture terminated against the Hororata Anticline Fault (HAF) in the west and resulted in up to 400 mm of uplift on the Hororata Anticline immediately above the HAF. Folding in 2010 is compared to Quaternary and younger deformation across the anticline recorded by a seismic reflection line, GPS-measured topographic profiles along fluvial surfaces, and river channel sinuosity and morphology. It is concluded that the HAF can rupture during earthquakes dissimilar to the 2010 event that may not be triggered by slip on the Greendale Fault. Like the Greendale Fault geomorphic analyses provide no evidence for rupture of the HAF in the last 18 kyr, with the average recurrence interval for the late Quaternary inferred to be at least ~10 kyr. Surface rupture of the Greendale Fault during the Darfield Earthquake produced one of the most accessible and best documented active fault displacement and geometry datasets in the world. Surface rupture fracture patterns and displacements along the fault were measured with high precision using real time kinematic (RTK) GPS, tape and compass, airborne light detection and ranging (LiDAR), and aerial photos. This allowed for detailed analysis of the cumulative strike-slip displacement across the fault zone, displacement gradient (ground shear strain) and the type of displacement (i.e. faulting or folding). These strain profiles confirm that the rupture zone is generally wide (~30 to ~300 metres) with >50% of displacement (often 70-80%) accommodated by ground flexure rather than discrete fault slip and ground cracking. The greatest fault-zone widths and highest proportions of folding are observed at fault stepovers.
This report provides an initial overview and gap analysis of the multi-hazards interactions that might affect fluvial and pluvial flooding (FPF) hazard in the Ōpāwaho Heathcote catchment. As per the terms of reference, this report focuses on a one-way analysis of the potential effects of multi-hazards on FPF hazard, as opposed to a more complex multi-way analysis of interactions between all hazards. We examined the relationship between FPF hazard and hazards associated with the phenomena of tsunamis; coastal erosion; coastal inundation; groundwater; earthquakes; and mass movements. Tsunamis: Modelling research indicates the worst-case tsunami scenarios potentially affecting the Ōpāwaho Heathcote catchment are far field. Under low probability, high impact tsunami scenarios waves could travel into Pegasus Bay and the Avon-Heathcote Estuary Ihutai, reaching the mouth and lower reaches of the Heathcote catchment and river, potentially inundating and eroding shorelines in sub-catchments 1 to 5, and temporarily blocking fluvial drainage more extensively. Any flooding infrastructure or management actions implemented in the area of tsunami inundation would ideally be resilient to tsunami-induced inundation and erosion. Model results currently available are a first estimate of potential tsunami inundation under contemporary sea and land level conditions. In terms of future large tsunami events, these models likely underestimate effects in riverside sub-catchments, as well as effects under future sea level, shoreline and other conditions. Also of significance when considering different FPF management structures, it is important to be mindful that certain types of flood structures can ‘trap’ inundating water coming from ocean directions, leading to longer flood durations and salinization issues. Coastal erosion: Model predictions indicate that sub-catchments 1 to 3 could potentially be affected by coastal erosion by the timescale of 2065, with sub-catchments 1-6 predicted to be potentially affected by coastal erosion by the time scale of 2115. In addition, the predicted open coast effects of this hazard should not be ignored since any significant changes in the New Brighton Spit open coast would affect erosion rates and exposure of the landward estuary margins, including the shorelines of the Ōpāwaho Heathcote catchment. Any FPF flooding infrastructure or management activities planned for the potentially affected sub-catchments needs to recognise the possibility of coastal erosion, and to have a planned response to the predicted potential shoreline translation. Coastal inundation: Model predictions indicate coastal inundation hazards could potentially affect sub-catchments 1 to 8 by 2065, with a greater area and depth of inundation possible for these same sub-catchments by 2115. Low-lying areas of the Ōpāwaho Heathcote catchment and river channel that discharge into the estuary are highly vulnerable to coastal inundation since elevated ocean and estuary water levels can block the drainage of inland systems, compounding FPF hazards. Coastal inundation can overwhelm stormwater and other drainage network components, and render river dredging options ineffective at best, flood enhancing at worst. A distinction can be made between coastal inundation and coastal erosion in terms of the potential impacts on affected land and assets, including flood infrastructure, and the implications for acceptance, adaptation, mitigation, and/or modification options. That is, responding to inundation could include structural and/or building elevation solutions, since unlike erosion, inundation does not necessarily mean the loss of land. Groundwater: Groundwater levels are of significant but variable concern when examining flooding hazards and management options in the Ōpāwaho Heathcote catchment due to variability in soils, topographies, elevations and proximities to riverine and estuarine surface waterbodies. Much of the Canterbury Plains part of the Ōpāwaho Heathcote catchment has a water table that is at a median depth of <1m from the surface (with actual depth below surface varying seasonally, inter-annually and during extreme meteorological events), though the water table depth rapidly shifts to >6m below the surface in the upper Plains part of the catchment (sub-catchments 13 to 15). Parts of Waltham/Linwood (sub-catchments 5 & 6) and Spreydon (sub-catchment 10) have extensive areas with a particularly high water table, as do sub-catchments 18, 19 and 20 south of the river. In all of the sub-catchments where groundwater depth below surface is shallow, it is necessary to be mindful of cascading effects on liquefaction hazard during earthquake events, including earthquake-induced drainage network and stormwater infrastructure damage. In turn, subsidence induced by liquefaction and other earthquake processes during the CES directly affected groundwater depth below surface across large parts of the central Ōpāwaho Heathcote catchment. The estuary margin of the catchment also faces increasing future challenges with sea level rise, which has the potential to elevate groundwater levels in these areas, compounding existing liquefaction and other earthquake associated multi-hazards. Any increases in subsurface runoff due to drainage system, development or climate changes are also of concern for the loess covered hill slopes due to the potential to enhance mass movement hazards. Earthquakes: Earthquake associated vertical ground displacement and liquefaction have historically affected, or are in future predicted to affect, all Ōpāwaho Heathcote sub-catchments. During the CES, these phenomena induced a significant cascades of changes in the city’s drainage systems, including: extensive vertical displacement and liquefaction induced damage to stormwater ‘greyware’, reducing functionality of the stormwater system; damage to the wastewater system which temporarily lowered groundwater levels and increased stormwater drainage via the wastewater network on the one hand, creating a pollution multi-hazard for FPF on the other hand; liquefaction and vertical displacement induced river channel changes affected drainage capacities; subsidence induced losses in soakage and infiltration capacities; changes occurred in topographic drainage conductivity; estuary subsidence (mainly around the Ōtākaro Avon rivermouth) increased both FPF and coastal inundation hazards; estuary bed uplift (severe around the Ōpāwaho Heathcote margins), reduced tidal prisms and increased bed friction, producing an overall reduction the waterbody’s capacity to efficiently flush catchment floodwaters to sea; and changes in estuarine and riverine ecosystems. All such possible effects need to be considered when evaluating present and future capacities of the Ōpāwaho Heathcote catchment FPF management systems. These phenomena are particularly of concern in the Ōpāwaho Heathcote catchment since stormwater networks must deal with constraints imposed by stream and river channels (past and present), estuarine shorelines and complex hill topography. Mass movements: Mass movements are primarily a risk in the Port Hills areas of the Ōpāwaho Heathcote catchment (sub-catchments 1, 2, 7, 9, 11, 16, 21), though there are one or two small but susceptible areas on the banks of the Ōpāwaho Heathcote River. Mass movements in the form of rockfalls and debris flows occurred on the Port Hills during the CES, resulting in building damage, fatalities and evacuations. Evidence has also been found of earthquake-triggered tunnel gully collapsesin all Port Hill Valleys. Follow-on effects of these mass movements are likely to occur in major future FPF and other hazard events. Of note, elevated groundwater levels, coastal inundation, earthquakes (including liquefaction and other effects), and mass movement exhibit the most extensive levels of multi-hazard interaction with FPF hazard. Further, all of the analysed multi-hazard interactions except earthquakes were found to consistently produce increases in the FPF hazard. The implications of these analyses are that multihazard interactions generally enhance the FPF hazard in the Ōpāwaho Heathcote catchment. Hence, management plans which exclude adjustments for multi-hazard interactions are likely to underestimate the FPF hazard in numerous different ways. In conclusion, although only a one-way analysis of the potential effects of selected multi-hazards on FPF hazard, this review highlights that the Ōpāwaho Heathcote catchment is an inherently multi- hazard prone environment. The implications of the interactions and process linkages revealed in this report are that several significant multi-hazard influences and process interactions must be taken into account in order to design a resilient FPF hazard management strategy.