In 2010 and 2011 Christchurch, New Zealand experienced a series of earthquakes that caused extensive damage across the city, but primarily to the Central Business District (CBD) and eastern suburbs. A major feature of the observed damage was extensive and severe soil liquefaction and associated ground damage, affecting buildings and infrastructure. The behaviour of soil during earthquake loading is a complex phenomena that can be most comprehensively analysed through advanced numerical simulations to aid engineers in the design of important buildings and critical facilities. These numerical simulations are highly dependent on the capabilities of the constitutive soil model to replicate the salient features of sand behaviour during cyclic loading, including liquefaction and cyclic mobility, such as the Stress-Density model. For robust analyses advanced soil models require extensive testing to derive engineering parameters under varying loading conditions for calibration. Prior to this research project little testing on Christchurch sands had been completed, and none from natural samples containing important features such as fabric and structure of the sand that may be influenced by the unique stress-history of the deposit. This research programme is focussed on the characterisation of Christchurch sands, as typically found in the CBD, to facilitate advanced soil modelling in both res earch and engineering practice - to simulate earthquake loading on proposed foundation design solutions including expensive ground improvement treatments. This has involved the use of a new Gel Push (GP) sampler to obtain undisturbed samples from below the ground-water table. Due to the variable nature of fluvial deposition, samples with a wide range of soil gradations, and accordingly soil index properties, were obtained from the sampling sites. The quality of the samples is comprehensively examined using available data from the ground investigation and laboratory testing. A meta-quality assessment was considered whereby a each method of evaluation contributed to the final quality index assigned to the specimen. The sampling sites were characterised with available geotechnical field-based test data, primarily the Cone Penetrometer Test (CPT), supported by borehole sampling and shear-wave velocity testing. This characterisation provides a geo- logical context to the sampling sites and samples obtained for element testing. It also facilitated the evaluation of sample quality. The sampling sites were evaluated for liquefaction hazard using the industry standard empirical procedures, and showed good correlation to observations made following the 22 February 2011 earthquake. However, the empirical method over-predicted liquefaction occurrence during the preceding 4 September 2010 event, and under-predicted for the subsequent 13 June 2011 event. The reasons for these discrepancies are discussed. The response of the GP samples to monotonic and cyclic loading was measured in the laboratory through triaxial testing at the University of Canterbury geomechanics laboratory. The undisturbed samples were compared to reconstituted specimens formed in the lab in an attempt to quantify the effect of fabric and structure in the Christchurch sands. Further testing of moist tamped re- constituted specimens (MT) was conducted to define important state parameters and state-dependent properties including the Critical State Line (CSL), and the stress-strain curve for varying state index. To account for the wide-ranging soil gradations, selected representative specimens were used to define four distinct CSL. The input parameters for the Stress-Density Model (S-D) were derived from a suite of tests performed on each representative soil, and with reference to available GP sample data. The results of testing were scrutinised by comparing the data against expected trends. The influence of fabric and structure of the GP samples was observed to result in similar cyclic strength curves at 5 % Double Amplitude (DA) strain criteria, however on close inspection of the test data, clear differences emerged. The natural samples exhibited higher compressibility during initial loading cycles, but thereafter typically exhibited steady growth of plastic strain and excess pore water pressure towards and beyond the strain criteria and initial liquefaction, and no flow was observed. By contrast the reconstituted specimens exhibited a stiffer response during initial loading cycles, but exponential growth in strains and associated excess pore water pressure beyond phase-transformation, and particularly after initial liquefaction where large strains were mobilised in subsequent cycles. These behavioural differences were not well characterised by the cyclic strength curve at 5 % DA strain level, which showed a similar strength for both GP samples and MT specimens. A preliminary calibration of the S-D model for a range of soil gradations is derived from the suite of laboratory test data. Issues encountered include the influence of natural structure on the peak-strength–state index relationship, resulting in much higher peak strengths than typically observed for sands in the literature. For the S-D model this resulted in excessive stiffness to be modelled during cyclic mobility, when the state index becomes large momentarily, causing strain development to halt. This behaviour prevented modelling the observed re- sponse of silty sands to large strains, synonymous with “liquefaction”. Efforts to reduce this effect within the current formulation are proposed as well as future research to address this issue.
This presentation summarizes the development of high-resolution surficial soil velocity models in the Canterbury, New Zealand basin. Shallow (<30m) shear wave velocities were primarily computed based on a combination of a large database of over 15,000 cone penetration test (CPT) logs in and around Christchurch, and a recently-developed Christchurch-specific empirical correlation between soil shear wave velocity and CPT. Large active-source testing at 22 locations and ambient-wavefield surface wave and H/V testing at over 80 locations were utilized in combination with 1700 water well logs to constrain the inter-bedded stratigraphy and velocity of Quaternary sediments up to depths of several hundred meters. Finally, seismic reflection profiles and the ambient-wavefield surface wave data provide constraint on velocities from several hundred meters to several kilometres. At all depths, the high resolution data illustrates the complexity of the soil conditions in the region, and the developed 3D models are presently being used in broadband ground motion simulations to further interpret the observed strong ground motions in the 2010-2011 Canterbury earthquake sequence.
This thesis addresses the topic of local bond behaviour in RC structures. The mechanism of bond refers to the composite action between deformed steel reinforcing bars and the surrounding concrete. Bond behaviour is an open research topic with a wide scope, particularly because bond it is such a fundamental concept to structural engineers. However, despite many bond-related research findings having wide applications, the primary contribution of this research is an experimental evaluation of the prominent features of local bond behaviour and the associated implications for the seismic performance of RC structures. The findings presented in this thesis attempt to address some structural engineering recommendations made by the Canterbury Earthquakes Royal Commission following the 2010-2011 Canterbury (New Zealand) earthquake sequence. A chapter of this thesis discusses the structural behaviour of flexure-dominated RC wall structures with an insufficient quantity of longitudinal reinforcement, among other in situ conditions, that causes material damage to predominantly occur at a single crack plane. In this particular case, the extent of concrete damage and bond deterioration adjacent to the crack plane will influence the ductility capacity that is effectively provided by the reinforcing steel. As a consequence of these in situ conditions, some lightly reinforced wall buildings in Christchurch lost their structural integrity due to brittle fracture of the longitudinal reinforcement. With these concerning post-earthquake observations in mind, there is the underlying intention that this thesis presents experimental evidence of bond behaviour that allows structural engineers to re-assess their confidence levels for the ability of lightly reinforced concrete structures to achieve the life-safety seismic performance objective the ultimate limit state. Three chapters of this thesis are devoted to the experimental work that was conducted as the main contribution of this research. Critical details of the experimental design, bond testing method and test programme are reported. The bond stress-slip relationship was studied through 75 bond pull-out tests. In order to measure the maximum local bond strength, all bond tests were carried out on deformed reinforcing bars that did not yield as the embedded bond length was relatively short. Bond test results have been presented in two separate chapters in which 48 monotonic bond tests and 27 cyclic bond tests are presented. Permutations of the experiments include the loading rate, cyclic loading history, concrete strength (25 to 70 MPa), concrete age, cover thickness, bar diameter (16 and 20 mm), embedded length, and position of the embedded bond region within the specimen (close or far away to the free surface). The parametric study showed that the concrete strength significantly influences the maximum bond strength and that it is reasonable to normalise the bond stress by the square-root of the concrete compressive strength, √(f'c). The generalised monotonic bond behaviour is described within. An important outcome of the research is that the measured bond strength and stiffness was higher than stated by the bond stress-slip relationship in the fib Model Code 2010. To account for these observed differences, an alternative model is proposed for the local monotonic bond stress-slip relationship. Cyclic bond tests showed a significant proportion of the total bond degradation occurs after the loading cycle in the peak bond strength range, which is when bond slip has exceeded 0.5 mm. Subsequent loading to constant slip values showed a linear relationship between the amount of bond strength degradation and the log of the number of cycles that were applied. To a greater extent, the cyclic bond deterioration depends on the bond slip range, regardless of whether the applied load cycling is half- or fully-reversed. The observed bond deterioration and hysteretic energy dissipated during cyclic loading was found to agree reasonably well between these cyclic tests with different loading protocols. The cyclic bond deterioration was also found to be reasonably consistent exponential damage models found in the literature. This research concluded that the deformed reinforcing bars used in NZ construction, embedded in moderate to high strength concrete, are able to develop high local bond stresses that are mobilised by a small amount of local bond slip. Although the relative rib geometry was not varied within this experimental programme, a general conclusion of this thesis is that deformed bars currently available in NZ have a relative rib bearing area that is comparatively higher than the test bars used in previous international research. From the parametric study it was found that the maximum monotonic bond strength is significant enhanced by dynamic loading rates. Experimental evidence of high bond strength and initial bond stiffness generally suggests that only a small amount of local bond slip that can occur when the deformed test bar was subjected to large tension forces. Minimal bond slip and bond damage limits the effective yielding length that is available for the reinforcing steel to distribute inelastic material strains. Consequently, the potential for brittle fracture of the reinforcement may be a more problematic and widespread issue than is apparent to structural engineers. This research has provided information that improve the reliability of engineering predictions (with respect to ductility capacity) of maximum crack widths and the extent of bond deterioration that might occur in RC structures during seismic actions.
This paper summarizes the development of a region-wide surficial shear wave velocity model based on the combination of the large high-spatial-density database of cone penetration test (CPT) logs in and around Christchurch, New Zealand and a recently-developed Christchurch-specific empirical correlation between soil shear wave velocity and CPT. The ongoing development of this near-surface shear wave velocity model has applications for site characterization efforts via the development of maps of time-averaged shear wave velocities over specific depths, and the identification of regional similarities and differences in soil shear stiffness.
Objective: The nature of disaster research makes it difficult to adequately measure the impact that significant events have on a population. Large, representative samples are required, ideally with comparable data collected before the event. When Christchurch, New Zealand, was struck by multiple, devastating earthquakes, there presented an opportunity to investigate the effects of dose-related quakes (none, one, two or three over a 9-month period) on the cognition of Canterbury’s elderly population through the New Zealand Brain Research Institute’s (NZBRI’s) cognitive screening study. The related effects of having a concomitant medical condition, sex, age and estimated- full scale IQ (Est-FSIQ) on cognition were also investigated. Method: 609 participants were tested on various neuropsychological tests and a self-rated dementia scale in a one hour interview at the NZBRI. Four groups were established, based on the number of major earthquakes experienced at the time of testing: “EQ-dose: None” (N = 51) had experienced no quakes; “EQ-dose: One” (N = 193) had experienced the initial quake in September 2010; “EQ-dose: Two” (N = 82) also experienced the most devastating February 2011 quake; and “EQ-dose: Three” (N = 265) also the June 2011 quake at testing. Results: Two neuropsychological variables of Trail A and the AD8 were impacted by an EQ-dose effect, while having a medical condition was associated with poorer function on the MoCA, Rey Copy and Recall, Trail A, and AD8. Having a major medical condition led to worse performance on the Rey Copy and Recall following the major February earthquake. Males performed significantly better on Trail A and Rey Planning, while females better on the MoCA. Older participants (>73) had significantly lower scores on the MoCA than younger participants (<74), while those with a higher Est-FSIQ (>111) had better scores on the MoCA and Rey Recall than participants with a lower Est-FSIQ. Finally, predicted variable analysis (based on calculated, sample-specific Z-scores) failed to find a significant earthquake effect when variables of age, sex and Est-FSIQ were controlled for, while there was a significant effect of medical condition on each measure. Conclusion: The current thesis provides evidence suggesting resilience amongst Canterbury’s elderly population in the face of the sequence of significant quakes that struck the region over a year from September 2010. By contrast, having a major medical condition was a ‘more significant life event’ in terms of impact on cognition in this group.
Severe liquefaction was repeatedly observed during the 2010 - 2011 C hristchurch earthquake s , particularly affecting deposits of fine sands and silty sands of recent fluvial or estuarine origin. The effects of liquefaction included major sliding of soil tow ard water bodies ( i.e. lateral spreading ) rang ing from centimetres to several metres. In this paper, a series of undrained cyclic torsional shear tests were conducted to evaluate the liquefaction and extremely large deformation properties of Christchurch b oiled sand . In these tests, the simple shear conditions were reproduced in order to apply realistic stress conditions that soil s experience in the field during horizontal seismic shaking. Several hollow cylindrical medium dense specimens ( D r = 50%) were pr epared by pluviation method, isotropically consolidated at an effective stress of 100 kPa and then cyclically sheared under undrained conditions up to 10 0% double amplitude shear strain (γ DA ) . The cyclic strength at different levels of γ DA of 7.5%, 15%, 3 0 % and 6 0%, development of extremely large post - liquefaction deformation and shear strain locali s ation properties were assessed from the analysis of the effective stress paths and stress - strain responses . To reveal possible distinctiveness, the cyclic undra ined behaviour of CHCH boiled sand was compared with that of Toyoura sand previously examined under similar testing conditions
As a consequence of the 2010 – 2011 Canterbury earthquake sequence, Christchurch experienced widespread liquefaction, vertical settlement and lateral spreading. These geological processes caused extensive damage to both housing and infrastructure, and increased the need for geotechnical investigation substantially. Cone Penetration Testing (CPT) has become the most common method for liquefaction assessment in Christchurch, and issues have been identified with the soil behaviour type, liquefaction potential and vertical settlement estimates, particularly in the north-western suburbs of Christchurch where soils consist mostly of silts, clayey silts and silty clays. The CPT soil behaviour type often appears to over-estimate the fines content within a soil, while the liquefaction potential and vertical settlement are often calculated higher than those measured after the Canterbury earthquake sequence. To investigate these issues, laboratory work was carried out on three adjacent CPT/borehole pairs from the Groynes Park subdivision in northern Christchurch. Boreholes were logged according to NZGS standards, separated into stratigraphic layers, and laboratory tests were conducted on representative samples. Comparison of these results with the CPT soil behaviour types provided valuable information, where 62% of soils on average were specified by the CPT at the Groynes Park subdivision as finer than what was actually present, 20% of soils on average were specified as coarser than what was actually present, and only 18% of soils on average were correctly classified by the CPT. Hence the CPT soil behaviour type is not accurately describing the stratigraphic profile at the Groynes Park subdivision, and it is understood that this is also the case in much of northwest Christchurch where similar soils are found. The computer software CLiq, by GeoLogismiki, uses assessment parameter constants which are able to be adjusted with each CPT file, in an attempt to make each more accurate. These parameter changes can in some cases substantially alter the results for liquefaction analysis. The sensitivity of the overall assessment method, raising and lowering the water table, lowering the soil behaviour type index, Ic, liquefaction cutoff value, the layer detection option, and the weighting factor option, were analysed by comparison with a set of ‘base settings’. The investigation confirmed that liquefaction analysis results can be very sensitive to the parameters selected, and demonstrated the dependency of the soil behaviour type on the soil behaviour type index, as the tested assessment parameters made very little to no changes to the soil behaviour type plots. The soil behaviour type index, Ic, developed by Robertson and Wride (1998) has been used to define a soil’s behaviour type, which is defined according to a set of numerical boundaries. In addition to this, the liquefaction cutoff point is defined as Ic > 2.6, whereby it is assumed that any soils with an Ic value above this will not liquefy due to clay-like tendencies (Robertson and Wride, 1998). The method has been identified in this thesis as being potentially unsuitable for some areas of Christchurch as it was developed for mostly sandy soils. An alternative methodology involving adjustment of the Robertson and Wride (1998) soil behaviour type boundaries is proposed as follows: Ic < 1.31 – Gravelly sand to dense sand 1.31 < Ic < 1.90 – Sands: clean sand to silty sand 1.90 < Ic < 2.50 – Sand mixtures: silty sand to sandy silt 2.50 < Ic < 3.20 – Silt mixtures: clayey silt to silty clay 3.20 < Ic < 3.60 – Clays: silty clay to clay Ic > 3.60 – Organics soils: peats. When the soil behaviour type boundary changes were applied to 15 test sites throughout Christchurch, 67% showed an improved change of soil behaviour type, while the remaining 33% remained unchanged, because they consisted almost entirely of sand. Within these boundary changes, the liquefaction cutoff point was moved from Ic > 2.6 to Ic > 2.5 and altered the liquefaction potential and vertical settlement to more realistic ii values. This confirmed that the overall soil behaviour type boundary changes appear to solve both the soil behaviour type issues and reduce the overestimation of liquefaction potential and vertical settlement. This thesis acts as a starting point towards researching the issues discussed. In particular, future work which would be useful includes investigation of the CLiq assessment parameter adjustments, and those which would be most suitable for use in clay-rich soils such as those in Christchurch. In particular consideration of how the water table can be better assessed when perched layers of water exist, with the limitation that only one elevation can be entered into CLiq. Additionally, a useful investigation would be a comparison of the known liquefaction and settlements from the Canterbury earthquake sequence with the liquefaction and settlement potentials calculated in CLiq for equivalent shaking conditions. This would enable the difference between the two to be accurately defined, and a suitable adjustment applied. Finally, inconsistencies between the Laser-Sizer and Hydrometer should be investigated, as the Laser-Sizer under-estimated the fines content by up to one third of the Hydrometer values.
A major lesson from the 2011 Christchurch earthquake was the apparent lack of ductility of some lightly reinforced concrete (RC) wall structures. In particular, the structural behaviour of the critical wall in the Gallery Apartments building demonstrated that the inelastic deformation capacity of a structure, as well as potentially brittle failure of the reinforcement, is dependent on the level of bond deterioration between reinforcement and surrounding concrete that occurs under seismic loading. This paper presents the findings of an experimental study on bond behaviour between deformed reinforcing bars and the surrounding concrete. Bond strength and relative bond slip was evaluated using 75 pull-out tests under monotonic and cyclic loading. Variations of the experiments include the loading rate, loading history, concrete strength (25 to 70 MPa), concrete age, cover thickness, bar diameter (16 and 20 mm), embedded length, and the position of the embedded bond region within the specimen (deep within or close to free surface). Select test results are presented with inferred implications for RC structures.
Following the 2010-2011 Canterbury (New Zealand) earthquake sequence, lightly reinforced wall structures in the Christchurch central business district were observed to form undesirable crack patterns in the plastic hinge region, while yield penetration either side of cracks and into development zones was less than predicted using empirical expressions. To some extent this structural behaviour was unexpected and has therefore demonstrated that there may be less confidence in the seismic performance of conventionally designed reinforced concrete (RC) structures than previously anticipated. This paper provides an observation-based comparison between the behaviour of RC structural components in laboratory testing and the unexpected structural behaviour of some case study buildings in Christchurch that formed concentrated inelastic deformations. The unexpected behaviour and poor overall seismic performance of ‘real’ buildings (compared to the behaviour of laboratory test specimens) was due to the localization of peak inelastic strains, which in some cases has arguably led to: (i) significantly less ductility capacity; (ii) less hysteretic energy dissipation; and (iii) the fracture of the longitudinal reinforcement. These observations have raised concerns about whether lightly reinforced wall structures can satisfy the performance objective of “Life Safety” at the Ultimate Limit State. The significance of these issues and potential consequences has prompted a review of potential problems with the testing conditions and procedures that are commonly used in seismic experimentations on RC structures. This paper attempts to revisit the principles of RC mechanics, in particular, the influence of loading history, concrete tensile strength, and the quantity of longitudinal reinforcement on the performance of real RC structures. Consideration of these issues in future research on the seismic performance of RC might improve the current confidence levels in newly designed conventional RC structures.
The recent Canterbury earthquake sequence in 2010-2011 highlighted a uniquely severe level of structural damage to modern buildings, while confirming the high vulnerability and life threatening of unreinforced masonry and inadequately detailed reinforced concrete buildings. Although the level of damage of most buildings met the expected life-safety and collapse prevention criteria, the structural damage to those building was beyond economic repair. The difficulty in the post-event assessment of a concrete or steel structure and the uneconomical repairing costs are the big drivers of the adoption of low damage design. Among several low-damage technologies, post-tensioned rocking systems were developed in the 1990s with applications to precast concrete members and later extended to structural steel members. More recently the technology was extended to timber buildings (Pres-Lam system). This doctoral dissertation focuses on the experimental investigation and analytical and numerical prediction of the lateral load response of dissipative post-tensioned rocking timber wall systems. The first experimental stages of this research consisted of component testing on both external replaceable devices and internal bars. The component testing was aimed to further investigate the response of these devices and to provide significant design parameters. Post-tensioned wall subassembly testing was then carried out. Firstly, quasi-static cyclic testing of two-thirds scale post-tensioned single wall specimens with several reinforcement layouts was carried out. Then, an alternative wall configuration to limit displacement incompatibilities in the diaphragm was developed and tested. The system consisted of a Column-Wall-Column configuration, where the boundary columns can provide the support to the diaphragm with minimal uplifting and also provide dissipation through the coupling to the post-tensioned wall panel with dissipation devices. Both single wall and column-wall-column specimens were subjected to drifts up to 2% showing excellent performance, limiting the damage to the dissipating devices. One of the objectives of the experimental program was to assess the influence of construction detailing, and the dissipater connection in particular proved to have a significant influence on the wall’s response. The experimental programs on dissipaters and wall subassemblies provided exhaustive data for the validation and refinement of current analytical and numerical models. The current moment-rotation iterative procedure was refined accounting for detailed response parameters identified in the initial experimental stage. The refined analytical model proved capable of fitting the experimental result with good accuracy. A further stage in this research was the validation and refinement of numerical modelling approaches, which consisted in rotational spring and multi-spring models. Both the modelling approaches were calibrated versus the experimental results on post-tensioned walls subassemblies. In particular, the multi-spring model was further refined and implemented in OpenSEES to account for the full range of behavioural aspects of the systems. The multi-spring model was used in the final part of the dissertation to validate and refine current lateral force design procedures. Firstly, seismic performance factors in accordance to a Force-Based Design procedure were developed in accordance to the FEMA P-695 procedure through extensive numerical analyses. This procedure aims to determine the seismic reduction factor and over-strength factor accounting for the collapse probability of the building. The outcomes of this numerical analysis were also extended to other significant design codes. Alternatively, Displacement-Based Design can be used for the determination of the lateral load demand on a post-tensioned multi-storey timber building. The current DBD procedure was used for the development of a further numerical analysis which aimed to validate the procedure and identify the necessary refinements. It was concluded that the analytical and numerical models developed throughout this dissertation provided comprehensive and accurate tools for the determination of the lateral load response of post-tensioned wall systems, also allowing the provision of design parameters in accordance to the current standards and lateral force design procedures.
The empirical liquefaction triggering chart of Idriss and Boulanger (2008) is compared to direct measurements of the cyclic resistance of Christchurch silty sands via undisturbed and reconstituted lab specimens. Comparisons suggest that overall there is a reasonable agreement between the empirical triggering curve and the interpreted test data. However, the influence of fines on cyclic resistance appears to be over-predicted by the empirical method, particularly for non-plastic silty sands that are commonly encountered in flood over-bank deposits in Christchurch and nearby settlements
Following the Mw 6.2 Christchurch Earthquake on 22 February 2011, extensive ground cracking in loessial soils was reported in some areas of the Port Hills, southeast of central Christchurch. This study was undertaken to investigate the mechanisms of earthquake-induced ground damage on the eastern side of the Hillsborough Valley. A zone of extensional cracking up to 40m wide and 600m long was identified along the eastern foot-slope, accompanied by compression features and spring formation at the toe of the slope. An engineering geological and geomorphological model was developed for the eastern Hillsborough Valley that incorporates geotechnical investigation data sourced from the Canterbury Geotechnical Database (CGD), the findings of trenching and seismic refraction surveying carried out for this research, and interpretation of historical aerial photographs. The thickness and extent of a buried peat swamp at the base of the slope was mapped, and found to coincide with significant compression features. Ground cracking was found to have occurred entirely within loess-colluvium and to follow the apices of pre-1920s tunnel-gully fan debris at the southern end of the valley. The ground-cracking on the eastern side of the Hillsborough Valley is interpreted to have formed through tensile failure of the loess-colluvium. Testing was carried out to determine the tensile strength of Port Hills loess colluvium as a function of water content and density, in order to better understand the occurrence and distribution of the observed ground cracking. A comprehensive review of the soil tensile strength testing literature was undertaken, from which a test methodology was developed. Results show remoulded loess-colluvium to possess tensile strength of 7 - 28 kPa across the range of tested moisture contents (10-15%) and dry densities (1650-1900kg/m3). A positive linear relationship was observed between tensile strength and dry density, and a negative linear relationship between moisture content and tensile strength. The observed ground damage and available geotechnical information (inclinometer and piezometer records provided by the Earthquake Commission) were together used to interpret the mechanism(s) of slope movement that occurred in the eastern Hillsborough Valley. The observed ground damage is characteristic of translational movement, but without the development of lateral release scarps, or a basal sliding surface - which was not located during drilling. It is hypothesised that shear displacement has been accommodated by multiple slip surfaces of limited extent within the upper 10m of the slope. Movement has likely occurred within near-saturated colluvial units that have lost strength during earthquake shaking. The eastern Hillsborough Valley is considered to be an ‘incipient translational slide’, as both the patterns of damage and shearing are consistent with the early stages of such slide development. Sliding block analysis was utilised to understand how the eastern Hillsborough Valley may perform in a future large magnitude earthquake. Known cumulative displacements of ~0.3m for eastern Hillsborough Valley during the 2010-2011 Canterbury Earthquake Sequence were compared with modelled slope displacements to back-analyse a lower-bound yield acceleration of 0.2 - 0.25g. Synthetic broadband modelling for future Alpine and Hope Fault earthquakes indicates PGAs of approximately 0.08g for soil sites in the Christchurch area, as such, slope movement is unlikely to be reactivated by an Alpine Fault or Hope Fault earthquake. This does not take into account the possible role of strength loss due to excess pore pressure that may occur during these future events.
This paper summarizes the development of a high-resolution surficial shear wave velocity model based on the combination of the large high-spatial-density database of cone penetration test (CPT) logs in and around Christchurch, New Zealand and a recently-developed Christchurch-specific empirical correlation between soil shear wave velocity and CPT. This near-surface shear wave velocity model has applications for site characterization efforts via the development of maps of time-averaged shear wave velocities over specific depths, as well as use in site response analysis and ground motion simulation.
Access to clean and safe drinking water is a fundamental human requirement. However, in many areas of the world natural water sources have been impacted by a variety of biological and chemical contaminants. The ingestion of these contaminants may cause acute or chronic health problems. To prevent such illnesses, many technologies have been developed to treat, disinfect and supply safe drinking water quality. However, despite these advancements, water supply distribution systems can adversely affect the drinking water quality before it is delivered to consumers. The primary aim of this research was to investigate the effect that water distribution systems may have on household drinking water quality in Christchurch, New Zealand and Addis Ababa, Ethiopia. Water samples were collected from the source water and household taps in both cities. The samples were then tested for various physical, chemical and biological water quality parameters. The data collected was also used to determine if water samples complied with national drinking water quality standards in both countries. Independent samples t-test statistical analyses were also performed to determine if water quality measured in the samples collected from the source and household taps was significantly different. Water quality did not vary considerably between the source and tap water samples collected in Christchurch City. No bacteria were detected in any sample. However, the pH and total iron concentrations measured in source and tap water samples were found to be significantly different. The lower pH values measured in tap water samples suggests that corrosion may be taking place in the distribution system. No water samples transgressed the Drinking Water Standards for New Zealand (DWSNZ) MAVs. Monitoring data collected by the Christchurch City Council (CCC) was also used for comparison. A number of pH, turbidity and total iron concentration measurements collected by the CCC in 2011 were found to exceed the guideline values. This is likely due to structural damage to the source wells and pump-stations that occurred during the 2011 earthquake events. Overall, it was concluded that the distribution system does not adversely affect the quality of Christchurch City’s household drinking water. The water quality measured in samples collected from the source (LTP) and household taps in Addis Ababa was found to vary considerably. The water collected from the source complied with the Ethiopian (WHO) drinking water quality standards. However, tap water samples were often found to have degraded water quality for the physical and chemical parameters tested. This was especially the case after supply interruption and reinstatement events. Bacteria were also often detected in household tap water samples. The results from this study indicate that water supply disruptions may result in degraded water quality. This may be due to a drop in pipeline pressure and the intrusion of contaminants through the leaky and cross-connected pipes in the distribution network. This adversely affects the drinking water quality in Addis Ababa.
Recent field investigations were carried out to define the shear wave velocity (VS) profile and site periods across the Canterbury region, supplementing earlier efforts in urban Christchurch. Active source surface wave testing, ambient wave field (passive) and H/V spectral ratio methods were used to characterise the soil profile in the region. H/V spectral ratio peaks indicate site periods in the range of 5-7 seconds across much of the Canterbury Plains, broadly consistent with those based on a 1D velocity model for the region. Site periods decrease rapidly in the vicinity of the Canterbury foothills and the Banks Peninsula outcrops. In Christchurch, the Riccarton Gravels result in a significant mode of vibration that has a much shorter period than the site period of the entire soil column down to basement rock.
Current research in geotechnical engineering at the University of Canterbury includes a number of laboratory testing programmes focussed on understanding the behaviour of natural soil deposits in Christchurch during the 2010-2011 Canterbury Earthquake Sequence. Many soils found in Christchurch are sands or silty sands with little to no plasticity, making them very difficult to sample using established methods. The gel-push sampling methodology, developed by Kiso-Jiban Consultants in Japan, was developed to address some of the deficiencies of existing sampling techniques and has been deployed on two projects in Christchurch. Gel push sampling is carried out with a range of samplers which are modified versions of existing technology, and the University of Canterbury has acquired three versions of the tools (GP-S, GP-Tr, GP-D). Soil samples are extracted from the bottom of a freshly drilled borehole and are captured within a liner barrel, close to 1m in length. A lubricating polymer gel coats the outside of the soil sample as it enters the liner barrel. The frictional rubbing which normally occurs on the sides of the soil samples using existing techniques is eliminated by the presence of the polymer gel. The operation of the gel-push samplers is significantly more complicated than conventional push-tube samplers, and in the initial trials a number of operational difficulties were encountered, requiring changes to the sampling procedures. Despite these issues, a number of high quality soil samples were obtained on both projects using the GP-S sampler to capture silty soil. Attempts were made to obtain clean sands using a different gel-push sampler (GP-TR) in the Red Zone. The laboratory testing of these sands indicated that they were being significantly disturbed during the sampling and/or transportation procedures. While it remains too early to draw definitive conclusions regarding the performance of the gel-push samplers, the methodology has provided some promising results. Further trialling of the tools are required to refine operating procedures understand the full range of soil conditions which can be successfully sampled using the tools. In parallel with the gel-push trials, a Dames and Moore fixed-piston sampler has been used by our research partners from Berkeley to obtain soil samples at a number of sites within Christchurch. This sampler features relatively short (50cm), thin-walled liner barrels which is advanced into the ground under the action of hydraulic pressure. By reducing the overall length of the soil being captured, the disturbance to the soil as it enters the liner barrel is significantly reduced. The Dames and Moore sampler is significantly easier to operate than the gel-push sampler, and past experience has shown it to be successful in soft, plastic materials (i.e. clays and silty clays). The cyclic resistance of one silty clay obtained using both the gel-push and Dames & Moore samplers has been found to be very similar, and ongoing research aims to establish whether similar results are obtained for different soil types, including silty materials and clean sands.
This paper presents a seismic velocity model of Canterbury, New Zealand based on 3D geologic surfaces and velocities from a range of data sources. The model provides the 3D crustal structure in the region at multiple length scales for seismic wave propagation simulations, such as broadband ground motion and shallow site response analyses related to understanding the ground motions and site responses during the 2010- 2011 Canterbury earthquakes. Pre-Quaternary geologic horizons are calculated based on the reinterpretation of a comprehensive network of seismic reflection surveys from seven different campaigns over the past 50 years, as well as point constraints across an array of petroleum industry drill holes. Particular attention is given to a detailed representation of Quaternary stratigraphy, representing shallow (z<250m) near-surface layers in the model. Seismic velocities are obtained from seismic reflection processing (for Vp) and also recently performed active and passive surface wave analyses (for Vs). Over 1,700 water wells in the region are used to constrain the complex inter-bedded Quaternary stratigraphy (gravels, sands, silts, organics etc.) near the coastline, including beneath urban Christchurch, which has resulted from fluvial deposition and marine regression and transgression. For the near-surface Springston and Christchurch Formations in the Christchurch urban area (z<50m), high-spatial resolution seismic velocities (including Vs30 ) were obtained from over 13,000 cone penetration tests combined with a recently developed CPT-Vs correlation.
he strong motion station at Heathcote Valley School (HVSC) recorded unusually high peak ground accelerations (2.21g vertical and 1.41g horizontal) during the February 2011 Christchurch earthquake. Ground motions recorded at HVSC in numerous other events also exhibited consistently higher intensities compared with nearby strong motion stations. We investigated the underlying causes of such high intensity ground motions at HVSC by means of 2D dynamic finite element analyses, using recorded ground motions during the 2010-2011 Canterbury earthquake sequence. The model takes advantage of a LiDAR-based digital elevation model (DEM) to account for the surface topography, while the geometry and dynamic properties of the surficial soils are characterized by seismic cone penetration tests (sCPT) and Multi-Channel Analyses of Surface Waves (MASW). Comparisons of simulated and recorded ground motions suggests that our model performs well for distant events, while for near-field events, ground motions recorded at the adopted reference station at Lyttelton Port are not reasonable input motions for the simulation. The simulations suggest that Rayleigh waves generated at the inclined interface of the surficial colluvium and underlying volcanic rock strongly affect the ground motions recorded at HVSC, in particular, being the dominant contributor to the recorded vertical motions.
Live monitoring data and simple dynamic reduced-order models of the Christchurch Women’s Hospital (CWH) help explain the performance of the base isolation (BI) system of the hospital during the series of Canterbury earthquakes in 2011-2012. A Park-Wen-Ang hysteresis model is employed to simulate the performance of the BI system and results are compared to measured data recorded above the isolation layer and on the 6th story. Simplified single, two and three degree of freedom models (SDOF, 2DOF and 3DOF) show that the CWH structure did not behave as an isolated but as a fixed-base structure. Comparisons of accelerations and deflections between simulated and monitored data show a good match for isolation stiffness values of approximately two times of the value documented in the design specification and test protocol. Furthermore, an analysis of purely measured data revealed very little to no relative motion across the isolators for large events of moment magnitude scale (Mw) 5.8 and 6.0 that occurred within 3 hours of each other on December 23, 2011. One of the major findings is that the BI system during the seismic events on December 23, 2011 did not yield and that the superstructure performed as a fixed-base building, indicating a need to reevaluate the analysis, design and implementation of these structures.
The effects of soil-foundation-structure interaction (SFSI) have been a topic of discussion amongst the structural and geotechnical community for many decades. The complexity of the mechanisms, as well as the need for inter-disciplinary knowledge of geotechnical and structural dynamics has plagued the advancement and the consequent inclusion of SFSI effects in design. A rigorous performance-based design methodology should not just consider the performance of the superstructure but the supporting foundation system as well. Case studies throughout history (eg. Kobe 1995, Kocaeli 1999 and Christchurch earthquakes 2010-2011) have demonstrated that a poor performance at the foundation level can result in a full demolition of the structure and, in general terms, that the extent of damage to, and repairability of, the building system as a whole, is given by the combination of the damage to the soil, foundation and superstructure. The lack of consideration of the modifying factors of SFSI and an absence of intuitive performance levels for controlling foundation and soil behaviour under seismic loads has resulted in inadequate designs for buildings sited on soft soil. For engineers to be satisfied that their designs meet the given performance levels they must first, understand how SFSI affects the overall system performance and secondly have tools available to adequately account for it in their design/assessment. This dissertation presents an integrated performance-based design procedure for buildingfoundation systems that considers all of the major mechanisms of SFSI. A new soil-foundation macro-element model was implemented into a nonlinear finite element software and validated against several experimental tests. The numerical model was used to provide insights in to the mechanisms of SFSI and statistical analysis on the results yielded simple expressions that allow the behaviour to be quantified. Particular attention was paid to the effects of shear force on the foundation response and the quantification of the rocking mode of response. The residual deformations of the superstructure and distribution of forces up the structure were also investigated. All of the major SFSI mechanisms are discussed in detail and targeted numerical studies are used to explain and demonstrate concepts. The design procedure was validated through the design and assessment of a series of concrete buildings that were designed to account for the effects of SFSI.
The Sendai Framework for Disaster Risk Reduction 2015-2030 finds that, despite progress in disaster risk reduction over the last decade “evidence indicates that exposure of persons and assets in all countries has increased faster than vulnerability has decreased, thus generating new risk and a steady rise in disaster losses” (p.4, UNISDR 2015). Fostering cooperation among relevant stakeholders and policy makers to “facilitate a science-policy interface for effective decisionmaking in disaster risk management” is required to achieve two priority areas for action, understanding disaster risk and enhancing disaster preparedness (p. 13, p. 23, UNISDR 2015). In other topic areas, the term science-policy interface is used interchangeably with the term boundary organisation. Both terms are usually used refer to systematic collaborative arrangements used to manage the intersection, or boundary, between science and policy domains, with the aim of facilitating the joint construction of knowledge to inform decision-making. Informed by complexity theory, and a constructivist focus on the functions and processes that minimize inevitable tensions between domains, this conceptual framework has become well established in fields where large complex issues have significant economic and political consequences, including environmental management, biodiversity, sustainable development, climate change and public health. To date, however, there has been little application of this framework in the disaster risk reduction field. In this doctoral project the boundary management framework informs an analysis of the research response to the 2010-2011 Canterbury Earthquake Sequence, focusing on the coordination role of New Zealand’s national Natural Hazards Research Platform. The project has two aims. It uses this framework to tell the nuanced story of the way this research coordination role evolved in response to both the complexity of the unfolding post-disaster environment, and to national policy and research developments. Lessons are drawn from this analysis for those planning and implementing arrangements across the science-policy boundary to manage research support for disaster risk reduction decision-making, particularly after disasters. The second aim is to use this case study to test the utility of the boundary management framework in the disaster risk reduction context. This requires that terminology and concepts are explained and translated in terms that make this analysis as accessible as possible across the disciplines, domains and sectors involved in disaster risk reduction. Key findings are that the focus on balance, both within organisations, and between organisations and domains, and the emphasis on systemic effects, patterns and trends, offer an effective and productive alternative to the more traditional focus on individual or organisational performance. Lessons are drawn concerning the application of this framework when planning and implementing boundary organisations in the hazard and disaster risk management context.
This report summarizes the development of a region-wide surficial soil shear wave velocity (Vs ) model based on the unique combination of a large high-spatial-density database of cone penetration test (CPT) logs in the greater Christchurch urban area (> 15, 000 logs as of 1 February 2014) and the Christchurch-specific empirical correlation between soil Vs and CPT data developed by McGann et al. [1, 2]. This model has applications for site characterization efforts via maps of time-averaged Vs over specific depths (e.g. Vs30, Vs10), and for numerical modeling efforts via the identification of typical Vs profiles for different regions and soil behaviour types within Christchurch. In addition, the Vs model can be used to constrain the near-surface velocities for the 3D seismic velocity model of the Canterbury basin [3] currently being developed for the purpose of broadband ground motion simulation. The general development of these region-wide near-surface Vs models includes the following general phases, with each discussed in separate chapters of this report. • An evaluation of the available CPT dataset for suitability, and the definition of other datasets and assumptions necessary to characterize the surficial sediments of the region to 30 m depth. • The development of time-averaged shear wave velocity (Vsz) surfaces for the Christchurch area from the adopted CPT dataset (and supplementary data/assumptions) using spatial interpolation. The Vsz surfaces are used to explore the characteristics of the near-surface soils in the regions and are shown to correspond well with known features of the local geology, the historical ecosystems of the area, and observations made following the 2010- 2011 Canterbury earthquakes. • A detailed analysis of the Vs profiles in eight subregions of Christchurch is performed to assess the variablity in the soil profiles for regions with similar Vsz values and to assess Vsz as a predictive metric for local site response. It is shown that the distrubution of soil shear wave velocity in the Christchurch regions is highly variable both spatially (horizontally) and with depth (vertically) due to the varied geological histories for different parts of the area, and the highly stratified nature of the nearsurface deposits. This variability is not considered to be greatly significant in terms of current simplified site classification systems; based on computed Vs30 values, all considered regions can be categorized as NEHRP sites class D (180 < Vs < 360 m/s) or E (Vs < 180 m/s), however, detailed analysis of the shear wave velocity profiles in different subregions of Christchurch show that the expected surficial site response can vary quite a bit across the region despite the relative similarity in Vs30
Spatial variations in river facies exerted a strong influence on the distribution of liquefaction features observed in Christchurch during the 2010-11 Canterbury Earthquake Sequence (CES). Liquefaction and liquefaction-induced ground deformation was primarily concentrated near modern waterways and areas underlain by Holocene fluvial deposits with shallow water tables (< 1 to 2 m). In southern Christchurch, spatial variations of liquefaction and subsidence were documented in the suburbs within inner meander loops of the Heathcote River. Newly acquired geospatial data, geotechnical reports and eye-witness discussions are compiled to provide a detailed account of the surficial effects of CES liquefaction and ground deformation adjacent to the Heathcote River. LiDAR data and aerial photography are used to produce a new series of original figures which reveal the locations of recurrent liquefaction and subsidence. To investigate why variable liquefaction patterns occurred, the distribution of surface ejecta and associated ground damage is compared with near-surface sedimentologic, topographic, and geomorphic variability to seek relationships between the near-surface properties and observed ground damages. The most severe liquefaction was concentrated within a topographic low in the suburb of St Martins, an inner meander loop of the Heathcote River, with liquefaction only minor or absent in the surrounding areas. Subsurface investigations at two sites in St Martins enable documentation of fluvial stratigraphy, the expressions of liquefaction, and identification of pre-CES liquefaction features. Excavation to water table depths (~1.5 m below the surface) across sand boils reveals multiple generations of CES liquefaction dikes and sills that cross-cut Holocene fluvial and anthropogenic stratigraphy. Based on in situ geotechnical tests (CPT) indicating sediment with a factor of safety < 1, the majority of surface ejecta was sourced from well-sorted fine to medium sand at < 5 m depth, with the most damaging liquefaction corresponding with the location of a low-lying sandy paleochannel, a remnant river channel from the Holocene migration of the meander in St Martins. In the adjacent suburb of Beckenham, where migration of the Heathcote River has been laterally confined by topography associated with the volcanic lithologies of Banks Peninsula, severe liquefaction was absent with only minor sand boils occurring closest to the modern river channel. Auger sampling across the suburb revealed thick (>1 m) clay-rich overbank and back swamp sediments that produced a stratigraphy which likely confined the units susceptible to liquefaction and prevented widespread ejection of liquefied material. This analysis suggests river migration promotes the formation and preservation of fluvial deposits prone to liquefaction. Trenching revealed the strongest CES earthquakes with large vertical accelerations favoured sill formation and severe subsidence at highly susceptible locations corresponding with an abandoned channel. Less vulnerable sites containing deeper and thinner sand bodies only liquefied in the strongest and most proximal earthquakes forming minor localised liquefaction features. Liquefaction was less prominent and severe subsidence was absent where lateral confinement of a Heathcote meander has promoted the formation of fluvial stratum resistant to liquefaction. Correlating CES liquefaction with geomorphic interpretations of Christchurch’s Heathcote River highlights methods in which the performance of liquefaction susceptibility models can be improved. These include developing a reliable proxy for estimating soil conditions in meandering fluvial systems by interpreting the geology and geomorphology, derived from LiDAR data and modern river morphology, to improve the methods of accounting for the susceptibility of an area. Combining geomorphic interpretations with geotechnical data can be applied elsewhere to identify regional liquefaction susceptibilities, improve existing liquefaction susceptibility datasets, and predict future earthquake damage.
Research on responses to trauma has historically focused on the negative repercussions of a struggle with adversity. However, more recently, researchers have begun to examine posttraumatic growth: the positive psychological change that emerges from the struggle with a potentially traumatic event. Associations have been found between posttraumatic growth and greater peritraumatic distress, greater objective severity of trauma exposure, greater perceived stressfulness of events, social support, female gender, cognitive and behavioural responses to trauma, and personality measures. Posttraumatic growth has been measured typically in individuals with varying levels of posttraumatic stress disorder symptoms and other psychological difficulties, such as depression and anxiety. Although some theory and research posits that higher resilience would prohibit posttraumatic growth, no studies have examined posttraumatic growth in a resilient sample. The Canterbury earthquake sequence of 2010 and 2011 involved potentially traumatic events that saw the community struggle with a variety of challenges. However, in the midst of earthquake destruction, some positive initiatives emerged, driven by locals. The Gap Filler project (using city spaces left empty from fallen buildings for art and interactive community projects) and the Student Volunteer Army (groups of volunteers coordinated to help others in need) are examples of this. In this context, it seemed likely that posttraumatic growth was occurring and might be seen in individuals who were coping well with challenges. Culture is theorised to influence the posttraumatic growth process (Calhoun, Cann, & Tedeschi, 2010), and the nature of the trauma undergone is also likely to influence the process of growth. The current thesis measures posttraumatic growth quantitatively and qualitatively in a New Zealand sample. It measures and describes posttraumatic growth in a resilient population after the earthquake sequence of 2010 and 2011 in Canterbury, New Zealand. Findings are used to test current models of posttraumatic growth for individuals coping well after trauma and to elaborate on mechanisms proposed by models such as the comprehensive model of posttraumatic growth (Calhoun et al., 2010) and the organismic valuing theory of growth through adversity (Joseph & Linley, 2005). Correlates of posttraumatic growth are examined and likely supporting factors of posttraumatic growth are identified for this population. Study 1 used quantitative analysis to explore correlates of posttraumatic growth and found that greater posttraumatic growth related to greater peritraumatic distress, greater perceived stressfulness of earthquake events, greater objective stressfulness of earthquake events, greater difficulty with stressful life events, less satisfaction with social support, and female gender. Findings from Study 1 give important detail about the nature of distress included in the comprehensive model of posttraumatic growth (Calhoun et al., 2010) for this population. Levels of posttraumatic growth were lower than those in North American studies but similar to those in a Chinese study. The current sample, however, showed lower endorsement of Relating to Others than the Chinese study, perhaps because of cultural differences. Study 2 used qualitative analysis to examine the experience of posttraumatic growth in the sample. The theme of ‘a greater sense of community’ was found and adds to the comprehensive model of posttraumatic growth, in that an expression of posttraumatic growth (a greater connection with others) can inform ongoing social processing in the posttraumatic growth process. Having a formal or informal role in earthquake recovery appeared to influence self-concept and reflection; this elaborates on the influence of role on reflection in Calhoun et al.’s model. Findings illustrate possible mechanisms of the organismic valuing process theorised by Joseph and Linley (2005). Implications include the importance of providing opportunities for individuals to take on a role after a crisis, encouraging them to act to respond to difficulties, and encouraging them to meet personal needs for relatedness, competence, and autonomy. Finding positive aspects to a difficult situation, as well as acknowledging adversity, can be supported in future to help individuals process their traumas. As a society, we can help individuals cope with adversity by providing ways they can meet their needs for relatedness, competence, and autonomy. Community groups likely provide opportunities for members to act in ways that meet such needs. This will allow them to effectively act to meet their needs in times of crisis.