Search

found 8 results

Research papers, University of Canterbury Library

The Leader Fault was one of at least 17 faults that ruptured the ground surface across the northeastern South Island of New Zealand during the Mw 7.8 2016 Kaikōura Earthquake. The southern ~6 km of the Leader Fault, here referred to as the South Leader Fault (SLF), ruptured the North Canterbury (tectonic) Domain and is the primary focus of this study. The main objective of the thesis is to understand the key factors that contributed to the geometry and kinematics of the 2016 SLF rupture and its intersection with The Humps Fault (HF). This thesis employs a combination of techniques to achieve the primary objective, including detailed mapping of the bedrock geology, geomorphology and 2016 rupture, measurement of 2016 ground surface displacements, kinematic analysis of slip vectors from the earthquake, and logging of a single natural exposure across a 2016 rupture that was treated as a paleoseismic trench. The resulting datasets were collected in the field, from terrestrial LiDAR and InSAR imagery, and from historical (pre-earthquake) aerial photographs for a ~11 km2 study area. Surface ruptures in the study area are a miniature version of the entire rupture from the earthquake; they are geometrically and kinematically complex, with many individual and discontinuous segments of varying orientations and slip senses which are distributed across a zone up to ~3.5 km wide. Despite this variability, three main groups of ruptures have been identified. These are: 1) NE-SW striking, shallow to moderate dipping (25-45°W) faults that are approximately parallel to Cenozoic bedding with mainly reverse dip-slip and, and for the purposes of this thesis, are considered to be part of the SLF. 2) N-S striking, steeply dipping (~85°E) oblique sinistral faults that are up to the west and part of the SLF. 3) E-NE striking, moderate to steeply dipping (45-68°N) dextral reverse faults which are part of the HF. Bedding-parallel faults are interpreted to be flexural slip structures formed during folding of the near-surface Cenozoic strata, while the steeply dipping SLF ruptured a pre-existing bedrock fault which has little topographic expression. Groups 1 and 2 faults were both locally used for gravitational failure during the earthquake. Despite this non-tectonic fault movement, the slip vectors for faults that ruptured during the earthquake are broadly consistent with NCD tectonics and the regional ~100-120° trend of the principal horizontal stress/strain axes. Previous earthquake activity on the SLF is required by its displacement of Cenozoic formations but Late Quaternary slip on the fault prior to 2016 is neither supported by pre-existing fault scarps nor by changes in topography across the fault. By contrast, at least two earthquakes (including 2016) appear to have ruptured the HF from the mid Holocene, consistent with recurrence intervals of no more than ~7 kyr, and with preliminary observations from trenches on the fault farther to the west. The disparity in paleoearthquake records of the two faults suggests that they typically do not rupture together, thus it is concluded that the HF-SLF rupture pattern observed in the Kaikōura Earthquake rarely occurs in a single earthquake.

Research papers, University of Canterbury Library

The south Leader Fault (SLF) is a newly documented active structure that ruptured the surface during the Mw 7.8 Kaikoura earthquake. The Leader Fault is a NNE trending oblique left lateral thrust that links the predominantly right lateral ‘The Humps’ and Conway-Charwell faults. The present research uses LiDAR at 0.5 m resolution and field mapping to determine the factors controlling the surface geometries and kinematics of the south Leader Fault ruptures at the ground surface. The SLF zone is up to 2km wide and comprises a series of echelon NE-striking thrusts linked by near-vertical N-S striking faults. The thrusts are upthrown to the west by up to 1 m and dip 35-45°. Thrust slip surfaces are parallel with Cretaceous-Cenozoic bedding and may reflect flexural slip folding. By contrast, the northerly striking faults dip steeply (65° west- 85° east), and accommodate up to 3m of oblique left lateral displacement at the ground surface and displace Cenozoic bedding. Some of the SLF has been mapped in bedrock, although none were known to be active prior to the earthquake or have a strong topographic expression. The complexity of fault rupture and the width of the fault zone appears to reflect the occurrence of faulting and folding at the ground surface during the earthquake.

Research papers, University of Canterbury Library

Surface rupture and slip from the Mw 7.8 2016 Kaikōura Earthquake have been mapped in the region between the Leader and Charwell rivers using field mapping and LiDAR data. The eastern Humps, north Leader and Conway-Charwell faults ruptured the ground surface in the study area. The E-NE striking ‘The Humps’ Fault runs along the base of the Mt Stewart range front, appears to dip steeply NW and intersects the NNW-NNE Leader Fault which itself terminates northwards at the NE striking Conway-Charwell Fault. The eastern Humps Fault is up to the NW and accommodates oblique slip with reverse and right lateral displacement. Net slip on ‘The Humps’ Fault is ≤4 m and produced ≤4 m uplift of the Mt Stewart range during the earthquake. The Leader Fault strikes NNW-NNE with dips ranging from ~10° west to 80° east and accommodated ≤4 m net slip comprising left-lateral and up-to-the-west vertical displacement. Like the Humps west of the study area, surface-rupture of the Leader Fault occurred on multiple strands. The complexity of rupture on the Leader Fault is in part due to the occurrence of bedding-parallel slip within the Cretaceous-Cenozoic sequence. Although the Mt Stewart range front is bounded by ‘The Humps’ Fault, in the study area neither this fault nor the Leader Fault were known to have been active before the earthquake. Fieldwork and trenching investigations are ongoing to characterise the geometry, kinematics and paleoseismic history of the mapped active faults.

Research papers, University of Canterbury Library

This study investigates evidence for linkages and fault interactions centred on the Cust Anticline in Northwest Canterbury between Starvation Hill to the southwest and the Ashley and Loburn faults to the northeast. An integrated programme of geologic, geomorphic, paleo-seismic and geophysical analyses was undertaken owing to a lack of surface exposures and difficulty in distinguishing active tectonic features from fluvial and/or aeolian features across the low-relief Canterbury Plains. LiDAR analysis identified surface expression of several previously unrecognised active fault traces across the low-relief aggradation surfaces of the Canterbury Plains. Their presence is consistent with predictions of a fault relay exploiting the structural mesh across the region. This is characterised by interactions of northeast-striking contractional faults and a series of re-activating inherited Late Cretaceous normal faults, the latter now functioning as E–W-striking dextral transpressive faults. LiDAR also allowed for detailed analysis of the surface expression of individual faults and folds across the Cust Anticline contractional restraining bend, which is evolving as a pop-up structure within the newly established dextral shear system that is exploiting the inherited, now re-activated, basement fault zone. Paleo-seismic trenches were located on the crest of the western arm of the Cust Anticline and across a previously unrecognised E–W-striking fault trace, immediately southwest of the steeply plunging Cust Anticline termination. These studies confirmed the location and structural style of north-northeast-striking faults and an E–W-striking fault associated with the development of this structural culmination. A review of available industry seismic reflection lines emphasised the presence of a series of common structural styles having the same underlying structural drivers but with varying degrees of development and expression, both in the seismic profiles and in surface elevations across the study area. Based on LiDAR surface mapping and preliminary re-analysis of industry seismic reflection data, four fault zones are identified across the restraining bend structural culminations, which together form the proposed Oxford–Cust–Ashley Fault System. The 2010–2012 Canterbury Earthquake Sequence showed many similarities to the structural pattern established across the Oxford–Cust–Ashley Fault System, emphasising the importance of identification and characterization of presently hidden fault sources, and the understanding of fault network linkages, in order to improve constraints on earthquake source potential. Improved understanding of potentially-interactive fault sources in Northwest Canterbury, with the potential for combined initial fault rupture and spatial and temporal rupture propagation across this fault system, can be used in probabilistic seismic hazard analysis for the region, which is essential for the suitability and sustainability of future social and economic development.

Research papers, University of Canterbury Library

The November 2016 MW 7.8 Kaikōura Earthquake initiated beneath the North Culverden basin on The Humps fault and propagated north-eastwards, rupturing at least 17 faults along a cumulative length of ~180 km. The geomorphic expression of The Humps Fault across the Emu Plains, along the NW margin of Culverden basin, comprises a series of near-parallel strands separated by up to 3 km across strike. The various strands strike east to east-northeast and have been projected to mainly dip steeply to the south in seismic data (~80°). In this area, the fault predominantly accommodates right-lateral slip, with uplift and subsidence confined to releasing and restraining bends and step-overs at a range of scales. The Kaikōura event ruptured pre-existing fault scarps along the Emu Plains, which had been partly identified prior to the earthquake. Geomorphology and faulting expression of The Humps Fault on The Emu Plains was mapped, along with faulting related structures which did not rupture in the 2016 earthquake. Fault ruptures strands are combined into sections and the kinematic deformation of sections analysed to provide a moment tensor fault plane solution. This fault plane solution is consistent with the regional principal horizontal shortening direction (PHS) of ~115°, similar to seismic focal mechanism solutions of some of the nearby aftershocks of the Kaikōura earthquake, and similar to the adjacent Hope Fault. To constrain the timing of paleoseismic events, a trench was excavated across the fault where it crossed a late Quaternary alluvial fan. Mapping of stratigraphy exposed in the trench walls, and dating of variably deformed strata, constrains the pre-historic earthquake event history at the trench site. The available data provides evidence for at least three paleo-earthquakes within the last 15.1 ka, with a possible fourth (penultimate) event. These events are estimated to have occurred at 7.7-10.3 ka, 10.3-14.8 ka, and one or more events that are older than ~15.1 ka. Some evidence suggests an additional penultimate event between 1850 C.E and 7.7 ka. Time-integrated slip-rates at three locations on the fault are measured using paleo-channels as piercing points. These sites give horizontal slip rates of 0.57 ± 0.1 mm/year, 0.49 ± 0.1 mm/year and one site constrains a minimum of between 0.1 - 0.4 mm/year. Two vertical slip-rates are calculated to be constrained to a maximum of 0.2 ± 0.02 mm/year at one site and between 0.02 and 0.1 mm/year at another site. Prior to this study, The Humps fault had only been partially documented in reconnaissance level mapping in the district, and no previous paleoseismic or slip rate data had been reported. This project has provided a detailed fault zone tectonic geomorphic map and established new slip-rate and paleoseismic data. The results highlight that The Humps fault plays an important role in regional seismicity and in accommodating plate boundary deformation across the North Canterbury region.

Research papers, University of Canterbury Library

Rock mass defect controlled deep-seated landslides are widespread within the deeply incised landscapes formed in Tertiary soft rock terrain in New Zealand. The basal failure surfaces of deep-seated slope failures are defined by thin, comparatively weak and laterally continuous bedding parallel layers termed critical stratigraphic horizons. These horizons have a sedimentary origin and have typically experienced some prior tectonically induced shear displacement at the time of slope failure. The key controls on the occurrence and form of deep-seated landslides are considered in terms of rock mass defect properties and tectonic and climatic forcing. The selection of two representative catchments (in southern Hawke's Bay and North Canterbury) affected by tectonic and climatic forcing has shown that the spatial and temporal initiation of deep-seated bedrock landslides in New Zealand Tertiary soft rock terrain is a predictable rather than a stochastic process; and that deep-seated landslides as a mass wasting process have a controlling role in landscape evolution in many catchments formed in Tertiary soft rock terrain. The Ella Landslide in North Canterbury is a deep-seated (~85 m) translational block slide that has failed on a 5 - 10 mm thick, kaolinite-rich, pre-sheared critical stratigraphic horizon. The residual strength of this sedimentary horizon, (C'R 2.6 - 2.7 kPa, and Ѳ'R = 16 - 21°), compared to the peak strength of the dominant lithology (C' = 176 kPa, and Ѳ' = 37°) defines a high strength contrast in the succession, and therefore a critical location for the basal failure surface of deep-seated slope failures. The (early to mid Holocene) Ella Landslide debris formed a large landslide dam in the Kate Stream catchment and this has significantly retarded rates of mass wasting in the middle catchment. Numerical stability analysis shows that this slope failure would have most likely required the influence of earthquake induced strong ground motion and the event is tentatively correlated to a Holocene event on the Omihi Fault. The influence of this slope failure is likely to affect the geomorphic development of the catchment on a scale of 10⁴ - 10⁵ years. In deeply incised catchments at the southeastern margin of the Maraetotara Plateau, southern Hawke's Bay, numerous widespread deep-seated landslides have basal failure surfaces defined by critical stratigraphic horizons in the form of thin « 20 mm) tuffaceous beds in the Makara Formation flysch (alternating sandstone and mudstone units). The geometry of deep-seated slope failures is controlled by these regularly spaced (~70 m), very weak critical stratigraphic horizons (C'R 3.8 - 14.2 kPa, and Ѳ'R = 2 - 5°), and regularly spaced (~45 m) and steeply dipping (-50°) critical conjugate joint/fault sets, which act as slide block release surfaces. Numerical stability analysis and historical precedent show that the temporal initiation of deep-seated landslides is directly controlled by short term tectonic forcing in the form of periodic large magnitude earthquakes. Published seismic hazard data shows the recurrence interval of earthquakes producing strong ground motions of 0.35g at the study site is every 150 yrs, however, if subduction thrust events are considered the level of strong ground motion may be much higher. Multiple occurrences of deep-seated slope failure are correlated to failure on the same critical stratigraphic horizon, in some cases in three adjacent catchments. Failure on multiple critical stratigraphic horizons leads to the development of a "stepped" landscape morphology. This slope form will be maintained during successive accelerated stream incision events (controlled by long term tectonic and climatic forcing) for as long as catchments are developing in this specific succession. Rock mass defect controlled deep seated landslides are controlling catchment head progression, landscape evolution and hillslope morphology in the Hawke's Bay study area and this has significant implications for the development of numerical landscape evolution models of landscapes formed in similar strata. Whereas the only known numerical model to consider deep seated landslides as an erosion process (ZSCAPE) considers them as stochastic in time and space, this study shows that this could not be applied to a landscape where the widespread spatial occurrence of deep-seated landslides is controlled by rock mass defects. In both of the study areas for this project, and by implication in many catchments in Tertiary soft rock terrain, deep-seated landslides controlled by rock mass defect strength, spacing and orientation, and tectonic and climatic forcing have an underlying control on landscape evolution. This study quantifies parameters for the development of numerical landscape evolution models that would assess the role of specific parameters, such as uplift rates, incision rates and earthquake recurrence in catchment evolution in Tertiary soft rock terrain.

Research papers, University of Canterbury Library

The Eastern Humps and Leader faults, situated in the Mount Stewart Range in North Canterbury, are two of the ≥17 faults which ruptured during the 2016 MW7.8 Kaikōura Earthquake. The earthquake produced complex, intersecting ground ruptures of these faults and the co-seismic uplift of the Mount Stewart Range. This thesis aims to determine how these two faults accommodated deformation during the 2016 earthquake and how they interact with each other and with pre-existing geological structures. In addition, it aims to establish the most likely subsurface geometry of the fault complex across the Mount Stewart Range, and to investigate the paleoseismic history of the Leader Fault. The Eastern Humps Fault strikes ~240° and dips 80° to 60° to the northwest and accommodated right- lateral – reverse-slip, with up to 4 m horizontal and 2 m vertical displacement in the 2016 earthquake. The strike of the Leader Fault varies from ~155 to ~300°, and dips ~30 to ~80° to the west/northwest, and mainly accommodated left-lateral – reverse-slip of up to 3.5 m horizontal and 3.5 m vertical slip in the 2016 earthquake. On both the Eastern Humps and Leader faults the slip is variable along strike, with areas of low total displacement and areas where horizontal and vertical displacement are negatively correlated. Fault traces with low total displacement reflect the presence of off-fault (distributed) displacement which is not being captured with field measurements. The negative correlation of horizontal and vertical displacement likely indicates a degree of slip partitioning during the 2016 earthquake on both the Eastern Humps and Leader faults. The Eastern Humps and Leader faults have a complex, interdependent relationship with the local bedrock geology. The Humps Fault appears to be a primary driver of ongoing folding and deformation of the local Mendip Syncline and folding of the Mount Stewart Range, which probably began prior to, or synchronous with, initial rupture of The Humps Fault. The Leader Fault appears to use existing lithological weaknesses in the Cretaceous-Cenozoic bedrock stratigraphy to rupture to the surface. This largely accounts for the strong variability on the strike and dip of the Leader Fault, as the geometry of the surface ruptures tend to reflect the strike and dip of the geological strata which it is rupturing through. The Leader Fault may also accommodate some degree of flexural slip in the Cenozoic cover sequence of the Mendip Syncline, contributing to the ongoing growth of the fold. The similarity between topography and uplift profiles from the 2016 earthquake suggest that growth of the Mount Stewart Range has been primarily driven by multiple (>500) discrete earthquakes that rupture The Humps and Leader faults. The spatial distribution of surface displacements across the Mount Stewart Range is more symmetrical than would be expected if uplift is driven primarily by The Humps and Leader faults alone. Elastic dislocation forward models were used to model potential sub-surface geometries and the resulting patterns of deformation compared to photogrammetry-derived surface displacements. Results show a slight preference for models with a steeply southeast-dipping blind fault, coincident with a zone of seismicity at depth, as a ‘backthrust’ to The Humps and Leader faults. This inferred Mount Stewart Fault accommodated contractional strain during the 2016 earthquake and contributes to the ongoing uplift of the Mount Stewart Range with a component of folding. Right-lateral and reverse shear stress change on the Hope Fault was also modelled using Coulomb 3.3 software to examine whether slip on The Humps and Leader faults could transfer enough stress onto the Hope Fault to trigger through-going rupture. Results indicate that during the 2016 earthquake right-lateral shear and reverse stress only increased on the Hope Fault in small areas to the west of the Leader Fault, and similar ruptures would be unlikely to trigger eastward propagating rupture unless the Hope Fault was close to failure prior to the earthquake. Paleoseismic trenches were excavated on the Leader Fault at four locations from 2018 to 2020, revealing near surface (< 4m depth) contractional deformation of Holocene stratigraphy. Three of the trench locations uncovered clear evidence for rupture of the Leader Fault prior to 2016, with fault displacement of near surface stratigraphy being greater than displacement recorded during the 2016 earthquake. Radiocarbon dating of in-situ organic material from two trenches indicate a date of the penultimate earthquake on the Leader Fault within the past 1000 years. This date is consistent with The Humps and Leader faults having ruptured simultaneously in the past, and with multi-fault ruptures involving The Humps, Leader, Hundalee and Stone Jug faults having occurred prior to the 2016 Kaikōura earthquake. Overall, the results contribute to an improved understanding of the Kaikōura earthquake and highlight the importance of detailed structural and paleoseismic investigations in determining controls on earthquake ‘complexity’.

Research papers, University of Canterbury Library

The Acheron rock avalanche is located in the Red Hill valley almost 80 km west of Christchurch and is one of 42 greywacke-derived rock avalanches identified in the central Southern Alps. It overlies the Holocene active Porters Pass Fault; a component of the Porters Pass-Amberley Fault Zone which extends from the Rakaia River to beyond the Waimakariri River. The Porters Pass Fault is a dextral strike-slip fault system viewed as a series of discontinuous fault scarps. The location of the fault trace beneath the deposit suggests it may represent a possible source of seismic shaking resulting in the formation of the Acheron rock avalanche. The rock mass composition of the rock avalanche source scar is Torlesse Supergroup greywacke consisting of massive sandstone and thinly bedded mudstone sequences dipping steeply north into the centre of the source basin. A stability analysis identified potential instability along shallow north dipping planar defects, and steep south dipping toppling failure planes. The interaction of the defects with bedding is considered to have formed conditions for potential instability most likely triggered by a seismic event. The dTositional area of the rock avalanche covers 7.2 x 105 m2 with an estimated volume of 9 x 10 m3 The mobilised rock mass volume was calculated at 7.5 x 106 m3• Run out of the debris from the top of the source scar to the distal limit reached 3500m, descending over a vertical fall of almost 700m with an estimated Fahrboschung of 0.2. The run out of the rock avalanche displayed moderate to high mobility, travelling at an estimated maximum velocity of 140-160 km/hour. The rapid emplacement of the deposit is confirmed by highly fragmented internal composition and burial of forest vegetation New radiocarbon ages from buried wood retrieved from the base of Acheron rock avalanche deposit represents an emplacement age closely post-dating (Wk 12094) 1152 ± 51 years B.P. This differs significantly from a previous radiocarbon age of (NZ547) 500 ± 69 years B.P. and modal lichenometry and weathering-rind thickness ages of approximately 460 ± 10 yrs and 490 ± 50 years B.P. The new age shows no resemblance to an earthquake event around 700- 500 years B.P. on the Porters Pass-Amberley Fault Zone. The DAN run out simulation using a friction model rheology successfully replicated the long run out and velocity of the Acheron rock avalanche using a frictron angle of 27° and high earth pressure coefficients of 5.5, 5.2, and 5.9. The elevated earth pressure coefficients represent dispersive pressures derived from dynamic fragmentation of the debris within the mobile rock avalanche, supporting the hypothesis of Davies and McSaveney (2002). The DAN model has potential applications for areas prone to large-scale instability in the elevated slopes and steep waterways of the Southern Alps. A paleoseismic investigation of a newly identified scarp of the Porters Pass Fault partially buried by the rock avalanche was conducted to identify any evidence of a coseismic relationship to the Acheron rock avalanche. This identified three-four fault traces striking at 078°, and a sag pond displaying a sequence of overbank deposits containing two buried soils representing an earthquake event horizon. A 40cm vertical offset of the ponded sediment and lower buried soil horizqn was recorded, which was dated to (Wk 13112 charcoal in palosol) 653 ± 54 years B.P. and (Wk 13034 palosol) 661 ± 34 years B.P. The evidence indicates a fault rupture occurred along the Porters Pass Fault, west of Porters Pass most likely extending to the Red Lakes terraces, post-dating 700 years B.P., resulting in 40cm of vertical displacement and an unknown component of dextral strike slip movement. This event post­ dates the event one (1000 ± 100 years B.P) at Porters Pass previously considered to represent the most recent rupture along the fault line. This points to a probable source for resetting of the modal weathering-rind thicknesses and lichen size populations in the Red Hill valley and possibly the Red Lakes terraces. These results suggest careful consideration must be given to the geomorphic and paleoseismic history of a specific site when applying surface dating techniques and furthermore the origin of dates used in literature and their useful range should be verified. An event at 700-500 years B.P did not trigger the Acheron rock avalanche as previously assumed supporting Howard's conclusions. The lack of similar aged rupture evidence in either of the Porters Pass and Coleridge trenches supports Howard's hypothesis of segmentation of the Porters Pass Fault; where rupture occurs along one fault segment but not along another. The new rock avalanche age closely post-dating 1200-1100 years B.P. resembles the poorly constrained event one rupture age of 1700-800 years B.P for the Porters Pass Fault and the tighter constrained Round Top event of 1010 ± 50 years B.P. on the Alpine Fault. Eight other rock avalanche deposits spread across the central Southern Alps also resemble the new ages however are unable to be assigned specific earthquake events due to the large associated error bars of± 270 years. This clustering of ages does represent compelling lines of evidence for large magnitude earthquake events occurring over the central Southern Alps. The presence of a rock avalanche deposit does not signify an earthquake based on the historical evidence in the Southern Alps however clustering of ages does suggest that large Mw >7 earthquakes occurred across the Southern Alps between 1200-900 years BP.