Very little research exists on total house seismic performance. This testing programme provides stiffness and response data for five houses of varying ages including contributions of non-structural elements. These light timber framed houses in Christchurch, New Zealand had minor earthquake damage from the 2011 earthquakes and were lateral load tested on site to determine their strength and stiffness, and preliminary damage thresholds. Dynamic characteristics were also investigated. Various loading schemes were utilised including quasi-static loading above the foundation, unidirectional loading through the floor diaphragm, cyclic quasi-static loading and snapback tests. Dynamic analysis on two houses provided the seismic safety levels of post-quake houses with respect to local hazard levels. Compared with New Zealand Building Standards all the tested houses had an excess of strength, damage is a significant consideration in earthquake resilience and was observed in all of the houses. A full size house laboratory test is proposed.
Christchurch Ōtautahi, New Zealand, is a city of myriad waterways and springs. Māori, the indigenous people of New Zealand, have water quality at the core of their cultural values. The city’s rivers include the Avon/Ōtākaro, central to the city centre’s aesthetic appeal since early settlement, and the Heathcote/Ōpāwaho. Both have been degraded with increasing urbanisation. The destructive earthquake sequence that occurred during 2010/11 presented an opportunity to rebuild significant areas of the city. Public consultation identified enthusiasm to rebuild a sustainable city. A sustainable water sensitive city is one where development is constructed with the water environment in mind. Water sensitive urban design applies at all scales and is a holistic concept. In Christchurch larger-scale multi-value stormwater management solutions were incorporated into rapidly developed greenfield sites on the city’s outskirts and in satellite towns, as they had been pre-earthquake. Individual properties on greenfield sites and within the city, however, continued to be constructed without water sensitive features such as rainwater tanks or living roofs. This research uses semi-structured interviews, policy analysis, and findings from local and international studies to investigate the benefits of building-scale WSUD and the barriers that have resulted in their absence. Although several inter-related barriers became apparent, cost, commonly cited as a barrier to sustainable development in general, was strongly represented. However, it is argued that the issue is one of mindset rather than cost. Solutions are proposed, based on international and national experience, that will demonstrate the benefits of adopting water sensitive urban design principles including at the building scale, and thereby build public and political support. The research is timely - there is still much development to occur, and increasing pressures from urban densification, population growth and climate change to mitigate.
This study examines the performance of nonlinear total-stress wave-propagation site response analysis for modelling site effects in physics-based ground motion simulations of the 2010-2011 Canterbury, New Zealand earthquake sequence. This approach allows for explicit modeling of 3-dimensional ground motion phenomena at the regional scale, as well as detailed site effects and soil nonlinearity at the local scale. The approach is compared to a more commonly used empirical VS30 (30 m time-averaged shear wave velocity)-based method for computing site amplification as proposed by Graves and Pitarka (2010, 2015).
Background This study examines the performance of site response analysis via nonlinear total-stress 1D wave-propagation for modelling site effects in physics-based ground motion simulations of the 2010-2011 Canterbury, New Zealand earthquake sequence. This approach allows for explicit modeling of 3D ground motion phenomena at the regional scale, as well as detailed nonlinear site effects at the local scale. The approach is compared to a more commonly used empirical VS30 (30 m time-averaged shear wave velocity)-based method for computing site amplification as proposed by Graves and Pitarka (2010, 2015), and to empirical ground motion prediction via a ground motion model (GMM).
This thesis focuses on the role of legal preparedness for managing large-scale urban disasters in Aotearoa New Zealand. It uses the Auckland Volcanic Field as a case study to answer the question: ‘is New Zealand’s current legal framework prepared to respond to and recover from a large-scale urban disaster?’. The Auckland Volcanic Field was chosen as the main case study because a future eruption is a low likelihood, high-impact event that New Zealand is going to have to manage in the future. Case studies are a key feature of this thesis as both New Zealand based and overseas examples are used to explore the role of legal preparedness by identifying and investigating a range of legal issues that need to be addressed in advance of a future Auckland Volcanic Field eruption. Of particular interest is the impact of legal preparedness for the recovery phase. The New Zealand case studies include; Canterbury earthquake sequence 2010-2011, the Kaikōura earthquake 2016, the Auckland flooding 2018, and the North Island Severe Weather event 2023, which encompasses both the Auckland Anniversary weekend flooding and Cyclone Gabrielle. As New Zealand has not experienced a large-scale urban volcanic eruption, overseas examples are explored to provide insights into the legal issues that are volcano specific. The overseas volcanic case studies cover eruptions in Heimaey (Iceland), the Soufrière Hills (Montserrat and the Grenadines), La Soufrière (St Vincent) and Tungurahua (Ecuador). New Zealand’s past experiences highlight a trend for introducing post-event legal frameworks to manage recovery. Consequently, the current disaster management system is not prioritising legal preparedness and instead is choosing to rely on exceptional powers. Unsurprisingly, the introduction of new post-event recovery frameworks has repercussions. In New Zealand, new post-event legal frameworks are introduced swiftly under urgency, they contain broad unstructured decision-making powers, and are often flawed. As these exceptional new frameworks sit outside the ‘normal’ legal frameworks, they in effect create a parallel “shadow system”. Based on the evidence explored in this thesis it does not appear that Auckland’s current disaster management framework is prepared to deal with a large-scale urban event caused by an Auckland Volcanic Field eruption. Following this conclusion, it is the submission of this thesis that New Zealand’s current legal framework is not prepared to respond to and recover from a large-scale urban disaster. To become legally prepared, New Zealand needs to consider the legal tools required to manage large-scale urban disasters in advance. This will prevent the creation of a legal vacuum in the aftermath of disasters and the need for new recovery frameworks. Adopting a new attitude will require a change in approach towards legal preparedness which prioritises it, rather than sidelining it. This may also require changes within New Zealand’s disaster management system including the introduction of a formal monitoring mechanism, which will support and prioritise legal preparedness. This thesis has shown that not legally preparing for future disasters is a choice which carries significant consequences. None of these consequences are inevitable when managing large-scale disasters, however they are inevitable when frameworks are not legally prepared in advance. To not legally prepare, is to prepare to fail and thus create a disaster by choice.
Environmental stress and disturbance can affect the structure and functioning of marine ecosystems by altering their physical, chemical and biological features. In estuaries, benthic invertebrate communities play important roles in structuring sediments, influencing primary production and biogeochemical flux, and occupying key food web positions. Stress and disturbance can reduce species diversity, richness and abundance, with ecological theory predicting that biodiversity will be at its lowest soon after a disturbance with assemblages dominated by opportunistic species. The Avon-Heathcote Estuary in Christchurch New Zealand has provided a novel opportunity to examine the effects of stress, in the form of eutrophication, and disturbance, in the form of cataclysmic earthquake events, on the structure and functioning of an estuarine ecosystem. For more than 50 years, large quantities (up to 500,000m3/day) of treated wastewater were released into this estuary but in March 2010 this was diverted to an ocean outfall, thereby reducing the nutrient loading by around 90% to the estuary. This study was therefore initially focussed on the reversal of eutrophication and consequent effects on food web structure in the estuary as it responded to lower nutrients. In 2011, however, Christchurch was struck with a series of large earthquakes that greatly changed the estuary. Massive amounts of liquefied sediments, covering up to 65% of the estuary floor, were forced up from deep below the estuary, the estuary was tilted by up to a 50cm rise on one side and a corresponding drop on the other, and large quantities of raw sewage from broken wastewater infrastructure entered the estuary for up to nine months. This study was therefore a test of the potentially synergistic effects of nutrient reduction and earthquake disturbance on invertebrate communities, associated habitats and food web dynamics. Because there was considerable site-to-site heterogeneity in the estuary, the sites in this study were selected to represent a eutrophication gradient from relatively “clean” (where the influence of tidal flows was high) to highly impacted (near the historical discharge site). The study was structured around these sites, with components before the wastewater diversion, after the diversion but before the earthquakes, and after the earthquakes. The eutrophication gradient was reflected in the composition and isotopic chemistry of primary producer and invertebrate communities and the characteristics of sediments across the sample sites. Sites closest to the former wastewater discharge pipe were the most eutrophic and had cohesive organic -rich, fine sediments and relatively depauperate communities dominated by the opportunistic taxa Capitellidae. The less-impacted sites had coarser, sandier sediments with fewer pollutants and far less organic matter than at the eutrophic sites, relatively high diversity and lower abundances of micro- and macro-algae. Sewage-derived nitrogen had became incorporated into the estuarine food web at the eutrophic sites, starting at the base of the food chain with benthic microalgae (BMA), which were found to use mostly sediment-derived nitrogen. Stable isotopic analysis showed that δ13C and δ15N values of most food sources and consumers varied spatially, temporally and in relation to the diversion of wastewater, whereas the earthquakes did not appear to affect the overall estuarine food web structure. This was seen particularly at the most eutrophic site, where isotopic signatures became more similar to the cleaner sites over two-and-a-half years after the diversion. New sediments (liquefaction) produced by the earthquakes were found to be coarser, have lower concentrations of heavy metals and less organic matter than old (existing) sediments. They also had fewer macroinvertebrate inhabitants initially after the earthquakes but most areas recovered to pre-earthquake abundance and diversity within two years. Field experiments showed that there were higher amounts of primary production and lower amounts of nutrient efflux from new sediments at the eutrophic sites after the earthquakes. Primary production was highest in new sediments due to the increased photosynthetic efficiency of BMA resulting from the increased permeability of new sediments allowing increased light penetration, enhanced vertical migration of BMA and the enhanced transport of oxygen and nutrients. The reduced efflux of NH4-N in new sediments indicated that the capping of a large portion of eutrophic old sediments with new sediments had reduced the release of legacy nutrients (originating from the historical discharge) from the sediments to the overlying water. Laboratory experiments using an array of species and old and new sediments showed that invertebrates altered levels of primary production and nutrient flux but effects varied among species. The mud snail Amphibola crenata and mud crab Austrohelice crassa were found to reduce primary production and BMA biomass through the consumption of BMA (both species) and its burial from bioturbation and the construction of burrows (Austrohelice). In contrast, the cockle Austrovenus stutchburyi did not significantly affect primary production and BMA biomass. These results show that changes in the structure of invertebrate communities resulting from disturbances can also have consequences for the functioning of the system. The major conclusions of this study were that the wastewater diversion had a major effect on food web dynamics and that the large quantities of clean and unpolluted new sediments introduced to the estuary during the earthquakes altered the recovery trajectory of the estuary, accelerating it at least throughout the duration of this study. This was largely through the ‘capping’ effect of the new liquefied, coarser-grained sediments as they dissipated across the estuary and covered much of the old organic-rich eutrophic sediments. For all aspects of this study, the largest changes occurred at the most eutrophic sites; however, the surrounding habitats were important as they provided the context for recovery of the estuary, particularly because of the very strong influence of sediments, their biogeochemistry, microalgal and macroalgal dynamics. There have been few studies documenting system level responses to eutrophication amelioration and to the best on my knowledge there are no other published studies examining the impacts of large earthquakes on benthic communities in an estuarine ecosystem. This research gives valuable insight and advancements in the scientific understanding of the effects that eutrophication recovery and large-scale disturbances can have on the ecology of a soft-sediment ecosystem.
Recent severe earthquakes, such as the 2010-2011 Christchurch earthquake series, have put emphasis on building resilience all over the world. To achieve such resilience, procedures for low damage seismic design have been developed to satisfy both life safety requirements and the need to minimize undesirable economic effects of required building repair or structural member replacement following a major earthquake. Seismic resisting systems following this concept are expected to withstand severe earthquakes without requiring major post-earthquake repairs, using isolating mechanisms or sacrificial systems that either do not need repair or are readily repairable or replaceable. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs) and symmetric friction connections (SFCs) in braces of the braced frames. A 9 m tall, configurable three-storey steel framed composite floor building incorporating frictionbased connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. The structural systems are configurable, allowing different moment and braced frame structural systems tested in two horizontal directions. The structure is designed and detailed to undergo, at worst, minor damage under a planned series of severe earthquakes.
Bulk rock strength is greatly dependent on fracture density, so that reductions in rock strength associated with faulting and fracturing should be reflected by reduced shear coupling and hence S-wave velocity. This study is carried out along the Canterbury rangefront and in Otago. Both lie within the broader plate boundary deformation zone in the South Island of New Zealand. Therefore built structures are often, , located in areas where there are undetected or poorly defined faults with associated rock strength reduction. Where structures are sited near to, or across, such faults or fault-zones, they may sustain both shaking and ground deformation damage during an earthquake. Within this zone, management of seismic hazards needs to be based on accurate identification of the potential fault damage zone including the likely width of off-plane deformation. Lateral S-wave velocity variability provides one method of imaging and locating damage zones and off-plane deformation. This research demonstrates the utility of Multi-Channel Analysis of Surface Waves (MASW) to aid land-use planning in such fault-prone settings. Fundamentally, MASW uses surface wave dispersive characteristics to model a near surface profile of S-wave velocity variability as a proxy for bulk rock strength. The technique can aid fault-zone planning not only by locating and defining the extent of fault-zones, but also by defining within-zone variability that is readily correlated with measurable rock properties applicable to both foundation design and the distribution of surface deformation. The calibration sites presented here have well defined field relationships and known fault-zone exposure close to potential MASW survey sites. They were selected to represent a range of progressively softer lithologies from intact and fractured Torlesse Group basement hard rock (Dalethorpe) through softer Tertiary cover sediments (Boby’s Creek) and Quaternary gravels. This facilitated initial calibration of fracture intensity at a high-velocity-contrast site followed by exploration of the limits of shear zone resolution at lower velocity contrasts. Site models were constructed in AutoCAD in order to demonstrate spatial correlations between S-wave velocity and fault zone features. Site geology was incorporated in the models, along with geomorphology, river profiles, scanline locations and crosshole velocity measurement locations. Spatial data were recorded using a total-station survey. The interpreted MASW survey results are presented as two dimensional snapshot cross-sections of the three dimensional calibration-site models. These show strong correlations between MASW survey velocities and site geology, geomorphology, fluvial profiles and geotechnical parameters and observations. Correlations are particularly pronounced where high velocity contrasts exist, whilst weaker correlations are demonstrated in softer lithologies. Geomorphic correlations suggest that off-plane deformation can be imaged and interpreted in the presence of suitable topographic survey data. A promising new approach to in situ and laboratory soft-rock material and mass characterisation is also presented using a Ramset nail gun. Geotechnical investigations typically involve outcrop and laboratory scale determination of rock mass and material properties such as fracture density and unconfined compressive strength (UCS). This multi-scale approach is espoused by this study, with geotechnical and S-wave velocity data presented at multiple scales, from survey scale sonic velocity measurements, through outcrop scale scanline and crosshole sonic velocity measurements to laboratory scale property determination and sonic velocity measurements. S-wave velocities invariably increased with decreasing scale. These scaling relationships and strategies for dealing with them are investigated and presented. Finally, the MASW technique is applied to a concealed fault on the Taieri Ridge in Macraes Flat, Central Otago. Here, high velocity Otago Schist is faulted against low velocity sheared Tertiary and Quaternary sediments. This site highlights the structural sensitivity of the technique by apparently constraining the location of the principal fault, which had been ambiguous after standard processing of the seismic reflection data. Processing of the Taieri Ridge dataset has further led to the proposal of a novel surface wave imaging technique termed Swept Frequency Imaging (SFI). This inchoate technique apparently images the detailed structure of the fault-zone, and is in agreement with the conventionally-determined fault location and an existing partial trench. Overall, the results are promising and are expected to be supported by further trenching in the near future.
People aged 65 years and older are the fastest growing age group in New Zealand. By the mid-2070s, there are predictions that this age group is likely to comprise approximately one third of the population. Older people are encouraged to stay in their own homes within their community for as long as possible with support to encourage the extension of ageing in place. Currently around 14% of those aged 75 years or older, make the move into retirement villages. This is expected to increase. Little is known by retirement villages about the wellbeing and health of those who decide to live independently in these facilities. Predicting the need for a continuum of care is challenging. This research measured the wellbeing and health of older adults. It was situated in a critical realist paradigm, overlaid with an empathetic axiology. A focused literature review considered the impact on wellbeing from the aspects of living place, age, gender, health status and the 2010/2011 Canterbury earthquakes. Longitudinal studies used the Enlightenment Scale and the interRAI Community Health Assessment (CHA) to measure the wellbeing and health of one group of residents (n=120) living independently in one retirement village in Canterbury, New Zealand. The research was extended to incorporate two cross-section studies when initial results for wellbeing were found to be higher than anticipated. These additional studies included participants living independently from other retirement villages (n=115) and those living independently within the community (n=354). A total of 589 participants, aged 65 – 97 years old, completed the Enlightenment Scale across the four studies. Across the living places, wellbeing continued to significantly improve with age. The Enlightenment Scale was a useful measure of wellbeing with older adults. Participants in the longitudinal studies largely maintained a relatively good health status, showing little change over the study period of 15 months. Predictions for the need for a move to supportive care were not able to be made using the CHA. The health status of participants did not influence their level of wellbeing. The key finding of note is that the wellbeing score of older adults increases by 1.27 points per year, using the Enlightenment Scale, irrespective of where they live.
In practice, several competing liquefaction evaluation procedures (LEPs) are used to compute factors of safety against soil liquefaction, often for use within a liquefaction potential index (LPI) framework to assess liquefaction hazard. At present, the influence of the selected LEP on the accuracy of LPI hazard assessment is unknown, and the need for LEP-specific calibrations of the LPI hazard scale has never been thoroughly investigated. Therefore, the aim of this study is to assess the efficacy of three CPT-based LEPs from the literature, operating within the LPI framework, for predicting the severity of liquefaction manifestation. Utilising more than 7000 liquefaction case studies from the 2010–2011 Canterbury (NZ) earthquake sequence, this study found that: (a) the relationship between liquefaction manifestation severity and computed LPI values is LEP-specific; (b) using a calibrated, LEP-specific hazard scale, the performance of the LPI models is essentially equivalent; and (c) the existing LPI framework has inherent limitations, resulting in inconsistent severity predictions against field observations for certain soil profiles, regardless of which LEP is used. It is unlikely that revisions of the LEPs will completely resolve these erroneous assessments. Rather, a revised index which more adequately accounts for the mechanics of liquefaction manifestation is needed.
In this paper we introduce CityViewAR, a mobile outdoor Augmented Reality (AR) application for providing AR information visualization on a city scale. The CityViewAR application was developed to provide geographical information about the city of Christchurch, which was hit by several major earthquakes in 2010 and 2011. The application provides information about destroyed buildings and historical sites that were affected by the earthquakes. The geo-located content is provided in a number of formats including 2D map views, AR visualization of 3D models of buildings on-site, immersive panorama photographs, and list views. The paper describes the iterative design and implementation details of the application, and gives one of the first examples of a study comparing user response to AR and non-AR viewing in a mobile tourism application. Results show that making such information easily accessible to the public in a number of formats could help people to have richer experience about cities. We provide guidelines that will be useful for people developing mobile AR applications for city-scale tourism or outdoor guiding, and discuss how the underlying technology could be used for applications in other areas.
The 2010-2011 Christchurch earthquakes generated damage in several Reinforced Concrete (RC) buildings, which had RC walls as the principal resistant element against earthquake demand. Despite the agreement between structural engineers and researchers in an overall successfully performance there was a lack of knowledge about the behaviour of the damaged structures, and even deeper about a repaired structure, which triggers arguments between different parties that remains up to these days. Then, it is necessary to understand the capacity of the buildings after the earthquake and see how simple repairs techniques improve the building performance. This study will assess the residual capacity of ductile slender RC walls according to current standards in New Zealand, NZS 3101.1 2006 A3. First, a Repaired RC walls Database is created trying to gather previous studies and to evaluate them with existing international guidelines. Then, an archetype building is designed, and the wall is extracted and scaled. Four half-scale walls were designed and will be constructed and tested at the Structures Testing Laboratory at The University of Auckland. The overall dimensions are 3 [m] height, 2 [m] length and 0.175 [m] thick. All four walls will be identical, with differences in the loading protocol and the presence or absence of a repair technique. Results are going to be useful to assess the residual capacity of a damaged wall compare to the original behaviour and also the repaired capacity of walls with simpler repair techniques. The expected behaviour is focussed on big changes in stiffness, more evident than in previously tested RC beams found in the literature.
Peri-urban environments are critical to the connections between urban and rural ecosystems and their respective communities. Lowland floodplains are important examples that are attractive for urbanisation and often associated with the loss of rural lands and resources. In Christchurch, New Zealand, damage from major earthquakes led to the large-scale abandonment of urban residential properties in former floodplain areas creating a rare opportunity to re-imagine the future of these lands. This has posed a unique governance challenge involving the reassessment of land-use options and a renewed focus on disaster risk and climate change adaptation. Urban-rural tensions have emerged through decisions on relocating residential development, alternative proposals for land uses, and an unprecedented opportunity for redress of degraded traditional values for indigenous (Māori) people. Immediately following the earthquakes, existing statutory arrangements applied to many recovery needs and identified institutional responsibilities. Bespoke legislation was also created to address the scale of impacts. Characteristics of the approach have included attention to information acquisition, iterative assessment of land - use options, and a wide variety of opportunities for community participation. Challenges have included a protracted decision-making process with accompanying transaction costs, and a high requirement for coordination. The case typifies the challenges of achieving ecosystem governance where both urban and rural stakeholders have strong desires and an opportunity to exert influence. It presents a unique context for applying the latest thinking on ecosystem management, adaptation, and resilience, and offers transferable learning for the governance of peri-urban floodplains worldwide.
A one story, two bays, approximately half scaled, perimeter moment frame containing precastprestressed floor units was built and tested at the University of Canterbury to investigate the effect of precastprestressed floor units on the seismic performance of reinforced concrete moment resisting frame. This paper gives an overview of the experimental set up and summarizes the results obtained from the test. The results show that elongation in the beam plastic hinges is partially restrained by the prestressed floor, which increases the strength of the beams much more than that being specified in the codes around the world.
This research briefing reports on the key findings of a computer-assisted text analysis of records from The Press newspaper related to the Earthquake Commission (EQC) from 2010 to 2019. The briefing has been prepared as a submission to the Public Inquiry into the Earthquake Commission. The aim of producing this research briefing is to provide the Public Inquiry with preliminary findings of a large-scale overview of media coverage on EQC and to identify and quantify key features and trends in public discourse about EQC over time. This research, which aggregates many stories and voices over time, offers a unique lens to view how EQC has been collectively represented, understood and experienced by the people of Canterbury.
In this dissertation it is argued that the Canterbury Earthquake Recovery Act 2011 and the Canterbury Earthquake Recovery Authority were both necessary and inevitable given the trends and traditions of civil defence emergency management (CDEM) in New Zealand. The trends and traditions of civil defence are such that principles come before practice, form before function, and change is primarily brought about through crisis and criticism. The guiding question of the research was why were a new governance system and law made after the Canterbury earthquakes in 2010 and 2011? Why did this outcome occur despite the establishment of a modern emergency management system in 2002 which included a recovery framework that had been praised by international scholars as leading edge and a model for other countries? The official reason was the unprecedented scale and demands of the recovery – but a disaster of such scale is the principle reason for having a national emergency management system. Another explanation is the lack of cooperation among local authorities – but that raises the question of whether the CDEM recovery framework would have been successful in another locality. Consequentially, the focus of this dissertation is on the CDEM recovery framework and how New Zealand came to find itself making disaster law during a disaster. Recommendations include a review of emergency powers for recovery, a review of the capabilities needed to fulfil the mandate of Recovery Managers, and the establishment of a National Recovery Office with a cadre of Recovery Managers that attend every recovery to observe, advise, or assume control as needed. CDEM Group Recovery Managers would be seconded to the National Recovery Office which would allow for experience in recovery management to be developed and institutionalised through regular practice.
The development of cheap, whilst effective and relatively non-invasive structural retrofit techniques for existing non-ductile reinforced concrete (RC) structures still remains the most challenging issue for a wide implementation on a macro scale. Seismic retrofit is too often being confused as purely structural strengthening. As part of a six-years national project on “Seismic retrofit solutions for NZ multi-storey building”, focus has been given at the University of Canterbury on the development of a counter-intuitive retrofit strategy for earthquake vulnerable existing rc frame, based on a “selective weakening” (SW) approach. After an overview of the SW concept, this paper presents the experimental and numerical validation of a SW retrofit strategy for earthquake vulnerable existing RC frame with particular focus on the exterior beam-column (b-c) joints. The exterior b-c joint is a critically vulnerable region in many existing pre-1970s RC frames. By selectively weakening the beam by cutting the bottom longitudinal reinforcements and/or adding external pre-stressing to the b-c joint, a more desirable inelastic mechanism can be attained, leading to improved global seismic performance. The so-called SW retrofit is implemented on four 2/3-scaled exterior RC b-c joint subassemblies, tested under quasi-static cyclic loading at the University of Canterbury. Complemented by refined 3D Finite Element (FE) models and dynamic time-history analyses results, the experimental results have shown the potential of a simple and cost-effective yet structurally efficient structural rehabilitation technique. The research also demonstrated the potential of advanced 3D fracture-mechanics-based microplane concrete modelling for refined FE analysis of non-ductile RC b-c joints.
Abstract. Natural (e.g., earthquake, flood, wildfires) and human-made (e.g., terrorism, civil strife) disasters are inevitable, can cause extensive disruption, and produce chronic and disabling psychological injuries leading to formal diagnoses (e.g., post-traumatic stress disorder [PTSD]). Following natural disasters of earthquake (Christchurch, Aotearoa/New Zealand, 2010–11) and flood (Calgary, Canada, 2013), controlled research showed statistically and clinically significant reductions in psychological distress for survivors who consumed minerals and vitamins (micronutrients) in the following months. Following a mass shooting in Christchurch (March 15, 2019), where a gunman entered mosques during Friday prayers and killed and injured many people, micronutrients were offered to survivors as a clinical service based on translational science principles and adapted to be culturally appropriate. In this first translational science study in the area of nutrition and disasters, clinical results were reported for 24 clients who completed the Impact of Event Scale – Revised (IES-R), the Depression Anxiety Stress Scales (DASS), and the Modified-Clinical Global Impression (M-CGI-I). The findings clearly replicated prior controlled research. The IES-R Cohen’s d ESs were 1.1 (earthquake), 1.2 (flood), and 1.13 (massacre). Effect sizes (ESs) for the DASS subscales were also consistently positive across all three events. The M-CGI-I identified 58% of the survivors as “responders” (i.e., self-reported as “much” to “very much” improved), in line with those reported in the earthquake (42%) and flood (57%) randomized controlled trials, and PTSD risk reduced from 75% to 17%. Given ease of use and large ESs, this evidence supports the routine use of micronutrients by disaster survivors as part of governmental response.
Heathcote Valley school strong motion station (HVSC) consistently recorded ground motions with higher intensities than nearby stations during the 2010-2011 Canterbury earthquakes. For example, as shown in Figure 1, for the 22 February 2011 Christchurch earthquake, peak ground acceleration at HVSC reached 1.4 g (horizontal) and 2 g (vertical), the largest ever recorded in New Zealand. Strong amplification of ground motions is expected at Heathcote Valley due to: 1) the high impedance contrast at the soil-rock interface, and 2) the interference of incident and surface waves within the valley. However, both conventional empirical ground motion prediction equations (GMPE) and the physics-based large scale ground motions simulations (with empirical site response) are ineffective in predicting such amplification due to their respective inherent limitations.
The lateral capacity of a conventional CLT shear wall is often governed by the strength and stiffness of its connections, which do not significantly utilize the in-plane strength of the CLT. Therefore, CLT shear walls are not yet being used efficiently in the construction of mass timber buildings due to a lack of research on high-capacity connections and alternative wall configurations. In this study, cyclic experiments were completed on six full-scale, 5-ply cantilever CLT shear walls with high-capacity hold-downs using mixed angle screws and bolts. All specimens exhibited significantly higher strength and stiffness than previously tested conventional CLT shear walls in the literature. The base connections demonstrated ductile failure modes through yielding of the hold-down connections. Based on the experimental results, numerical models were calibrated to investigate the seismic behaviour of CLT shear walls for prototype buildings of 3 and 6-storeys in Christchurch, NZ. As an alternative to cantilever (single) shear walls, a type of coupled wall with steel link beams between adjacent CLT wall piers was investigated. Effective coupling requires the link beam-to-wall connections to have adequate strength to ensure ductile link beam responses and adequate stiffness to yield the link beams at a relatively low inter-storey drift level. To this end, three beam-to-wall connection types were developed and cyclically tested to investigate their behaviour and feasibility. Based on the test results of the critical connection, a 3-storey, 2/3-scale coupled CLT wall specimen with three steel link beams and mixed angle screwed hold-downs was cyclically tested to evaluate its performance and experimentally validate the system concept. The test results showed a relatively high lateral strength compared to conventional CLT shear walls, as well as a high system ductility ratio of 7.6. Failure of the system was characterised by combined bending and withdrawal of the screws in the mixed angle screw hold-downs, yielding and eventual inelastic buckling of the steel link beams, CLT toe crushing, and local CLT delamination. Following the initial test, the steel link beams, mixed angle screw hold-downs, and damaged CLT regions were repaired, then the wall specimen was re-tested. The repaired wall behaved similarly to the original test and exhibited slightly higher energy dissipation and peak strength, but marginally more rapid strength deterioration under cyclic loading. Several hybrid coupled CLT shear walls were numerically modelled and calibrated based on the results of the coupled wall experiments. Pushover analyses were conducted on a series of configurations to validate a capacity design method for the system and to investigate reasonable parameter values for use in the preliminary design of the system. Additionally, an iterative seismic design method was proposed and used to design sample buildings of 6, 8, and 10-storeys using both nonlinear pushover and nonlinear time history analyses to verify the prototype designs. Results of the sample building analyses demonstrated adequate seismic behaviour and the proposed design parameters were found to be appropriate. In summary, high-capacity CLT shear walls can be used for the resistance of earthquakes by using stronger base connections and coupled wall configurations. The large-scale experimental testing in this study has demonstrated that both cantilever and coupled CLT shear walls are feasible LLRSs which can provide significantly greater lateral strength, stiffness, and energy dissipation than conventional CLT shear wall configurations.
SeisFinder is an open-source web service developed by QuakeCoRE and the University of Canterbury, focused on enabling the extraction of output data from computationally intensive earthquake resilience calculations. Currently, SeisFinder allows users to select historical or future events and retrieve ground motion simulation outputs for requested geographical locations. This data can be used as input for other resilience calculations, such as dynamic response history analysis. SeisFinder was developed using Django, a high-level python web framework, and uses a postgreSQL database. Because our large-scale computationally-intensive numerical ground motion simulations produce big data, the actual data is stored in file systems, while the metadata is stored in the database.
Overview of SeisFinder SeisFinder is an open-source web service developed by QuakeCoRE and the University of Canterbury, focused on enabling the extraction of output data from computationally intensive earthquake resilience calculations. Currently, SeisFinder allows users to select historical or future events and retrieve ground motion simulation outputs for requested geographical locations. This data can be used as input for other resilience calculations, such as dynamic response history analysis. SeisFinder was developed using Django, a high-level python web framework, and uses a postgreSQL database. Because our large-scale computationally-intensive numerical ground motion simulations produce big data, the actual data is stored in file systems, while the metadata is stored in the database. The basic SeisFinder architecture is shown in Figure 1.
Geomorphic, structural and chronological data are used to establish the late Quaternary paleoseismicity of the active dextral-oblique Northern Esk Fault in North Canterbury, New Zealand. Detailed field mapping of the preserved c. 35 km of surface traces between the Hurunui River and Ashley Head reveals variations in strike ranging from 005° to 057°. Along with kinematic data collected from fault plane striae and offset geomorphic markers along the length of the fault these variations are used to distinguish six structural subsections of the main trace, four dextral-reverse and two dextral-normal. Displacements of geomorphic markers such as minor streams and ridges are measured using differential GPS and rangefinder equipment to reveal lateral offsets ranging from 3.4 to 23.7 m and vertical offsets ranging from < 1 to 13.5 m. Characteristic single event displacements of c. 5 m and c. 2 m have been calculated for strike-slip and reverse sections respectively. The use of fault scaling relationships reveals an anomalously high displacement to surface rupture length ratio when compared to global data sets. Fault scaling relationships based on width limited ruptures and magnitude probabilities from point measurements of displacement imply earthquake magnitudes of Mw 7.0 to 7.5. Optically Stimulated Luminescence (OSL) ages from displaced Holocene alluvial terraces at the northern extent of the active trace along with OSL and radiocarbon samples of the central sections constrain the timing of the last two surface rupturing events (11.15 ±1.65 and 3.5 ± 2.8 ka) and suggest a recurrence interval of c. 5612 ± 445 years and late Quaternary reverse and dextral slip rates of c. 0.31 mm/yr and 0.82 mm/yr respectively. The results of this study show that the Northern Esk Fault accommodates an important component of the c. 0.7 – 2 mm/yr of unresolved strain across the plate boundary within the North Canterbury region and affirm the Esk Fault as a source of potentially damaging ground shaking in the Canterbury region.
The 2010–2011 Canterbury earthquakes and their aftermath have been described by the Human Rights Commission as one of New Zealand's greatest contemporary human rights challenges. This article documents the shortcomings in the realisation of the right to housing in post-quake Canterbury for homeowners, tenants and the homeless. The article then considers what these shortcomings tell us about New Zealand's overall human rights framework, suggesting that the ongoing and seemingly intractable nature of these issues and the apparent inability to resolve them indicate an underlying fragility implicit in New Zealand's framework for dealing with the consequences of a large-scale natural disaster. The article concludes that there is a need for a comprehensive human rights-based approach to disaster preparedness, response and recovery in New Zealand.
Major earthquakes, such as the Canterbury and Kaikoura events recorded in New Zealand in 2010 and 2016 respectively, highlighted that floor systems can be heavily damaged. At a reduced or full scale, quasi-static experimental tests on structural sub-assemblies can help to establish the seismic performance of structural systems. However, the experimental performance obtained with such tests is likely to be dependent on the drift protocol adopted. This paper provides an overview of the drift protocols which have been assumed in previous relevant experimental activities, with emphasis on those adopted for testing floor systems. The paper also describes the procedure used to define the loading protocol applied in the testing of a large precast concrete floor diaphragm as part of the Recast floor project at the University of Canterbury. Finally, major limits of current loading protocols, and areas of future research, are identified.
Researchers have begun to explore the opportunity presented by blue-green infrastructure(a subset of nature-based solutions that provide blue and green space in urban infrastructure)as a response to the pressures of climate change. The 2010/2011 Canterbury earthquake sequence created a unique landscape within which there is opportunity to experiment with and invest in new solutions to climate change adaptation in urban centres. Constructed wetlands are an example of blue-green infrastructure that can potentially support resilience in urban communities. This research explores interactions between communities and constructed wetlands to understand how this may influence perceptions of community resilience. The regeneration of the Ōtākaro Avon River Corridor (OARC) provides a space to investigate these relationships. Seven stakeholders from the community, industry, and academia, each with experience in blue-green infrastructure in the OARC, participated in a series of semi-structured interviews. Each participant was given the opportunity to reflect on their perspectives of community, community resilience, and constructed wetlands and their interconnections. Interview questions aligned with the overarching research objectives to (1) understand perceptions around the role of wetlands in urban communities, (2) develop a definition for community resilience in the context of the Ōtākaro Avon community, and (3) reflect on how wetlands can contribute to (or detract from) community resilience. This study found that constructed wetlands can facilitate learning about the challenges and solutions needed to adapt to climate change. From the perspective of the community representatives, community resilience is linked to social capital. Strong social networks and a relationship with nature were emphasised as core components of a community’s ability to adapt to disruption. Constructed wetlands are therefore recognised as potentially contributing to community resilience by providing spaces for people to engage with each other and nature. Investment in constructed wetlands can support a wider response to climate change impacts. This research was undertaken with the support of the Ōtākaro Living Laboratory Trust, who are invested in the future of the OARC. The outcomes of this study suggest that there is an opportunity to use wetland spaces to establish programmes that explore the perceptions of constructed wetlands from a broader community definition, at each stage of the wetland life cycle, and at wider scales(e.g., at a city scale or beyond).
This paper explores the scope of small-scale radio to create an auditory geography of place. It focuses on the short term art radio project The Stadium Broadcast, which was staged in November 2014 in an earthquake-damaged sports stadium in Christchurch, New Zealand. Thousands of buildings and homes in Christchurch have been demolished since the Februrary 22, 2011 earthquake, and while Lancaster Park sports stadium is still standing, it has been unused since that date and its future remains uncertain. The Stadium Broadcast constructed a radio memorial to the Park’s 130 year history through archival recordings, the memories of local people, observation of its current state, and a performed site-specificity. The Stadium Broadcast reflected on the spatiality of radio sounds and transmissions, memory, post-disaster transitionality, and the im-permanence of place.
Novel Gel-push sampling was employed to obtain high quality samples of Christchurch sands from the Central Business District, at sites where liquefaction was observed in 22 February 2011, and 13 June 2011 earthquakes. The results of cyclic triaxial testing on selected undisturbed specimens of typical Christchurch sands are presented and compared to empirical procedures used by practitioners. This comparison suggests cyclic triaxial data may be conservative, and the Magnitude Scaling Factor used in empirical procedures may be unconservative for highly compressible soils during near source moderate to low magnitude events. Comparison to empirical triggering curves suggests the empirical method generally estimates the cyclic strength of Christchurch sands within a reasonable degree of accuracy as a screening evaluation tool for liquefaction hazard, however for sands with moderate to high fines content it may be significantly unconservative, highlighting the need for high quality sampling and testing on important projects where seismic performance is critical.
Unreinforced masonry (URM) structures comprise a majority of the global built heritage. The masonry heritage of New Zealand is comparatively younger to its European counterparts. In a country facing frequent earthquakes, the URM buildings are prone to extensive damage and collapse. The Canterbury earthquake sequence proved the same, causing damage to over _% buildings. The ability to assess the severity of building damage is essential for emergency response and recovery. Following the Canterbury earthquakes, the damaged buildings were categorized into various damage states using the EMS-98 scale. This article investigates machine learning techniques such as k-nearest neighbors, decision trees, and random forests, to rapidly assess earthquake-induced building damage. The damage data from the Canterbury earthquake sequence is used to obtain the forecast model, and the performance of each machine learning technique is evaluated using the remaining (test) data. On getting a high accuracy the model is then run for building database collected for Dunedin to predict expected damage during the rupture of the Akatore fault.
This article explores the scope of small-scale radio to create an auditory geography of place. It focuses on the short-term art radio project The Stadium Broadcast, which was staged in November 2014 in an earthquake-damaged sports stadium in Christchurch, New Zealand. Thousands of buildings and homes in Christchurch have been demolished since the February 22, 2011, earthquake, and by the time of the broadcast the stadium at Lancaster Park had been unused for three years and nine months, and its future was uncertain. The Stadium Broadcast constructed a radio memorial to the Park’s 130-year history through archival recordings, the memories of local people, observation of its current state, and a performed site-specificity. The Stadium Broadcast reflected on the spatiality of radio sounds and transmissions, memory, postdisaster transitionality, and the impermanence of place.