Search

found 7 results

Research papers, University of Canterbury Library

The Canterbury earthquake sequence in New Zealand’s South Island induced widespread liquefaction phenomena across the Christchurch urban area on four occasions (4 Sept 2010; 22 Feb; 13 June; 23 Dec 2011), that resulted in widespread ejection of silt and fine sand. This impacted transport networks as well as infiltrated and contaminated the damaged storm water system, making rapid clean-up an immediate post-earthquake priority. In some places the ejecta was contaminated by raw sewage and was readily remobilised in dry windy conditions, creating a long-term health risk to the population. Thousands of residential properties were inundated with liquefaction ejecta, however residents typically lacked the capacity (time or resources) to clean-up without external assistance. The liquefaction silt clean-up response was co-ordinated by the Christchurch City Council and executed by a network of contractors and volunteer groups, including the ‘Farmy-Army’ and the ‘Student-Army’. The duration of clean-up time of residential properties and the road network was approximately 2 months for each of the 3 main liquefaction inducing earthquakes; despite each event producing different volumes of ejecta. Preliminary cost estimates indicate total clean-up costs will be over NZ$25 million. Over 500,000 tonnes of ejecta has been stockpiled at Burwood landfill since the beginning of the Canterbury earthquakes sequence. The liquefaction clean-up experience in Christchurch following the 2010-2011 earthquake sequence has emerged as a valuable case study to support further analysis and research on the coordination, management and costs of large volume deposition of fine grained sediment in urban areas.

Research papers, University of Canterbury Library

The seismic response of unreinforced masonry (URM) buildings, in both their as-built or retrofitted configuration, is strongly dependent on the characteristics of wooden floors and, in particular, on their in-plane stiffness and on the quality of wall-to-floor connections. As part of the development of alternative performance-based retrofit strategies for URM buildings, experimental research has been carried out by the authors at the University of Canterbury, in order to distinguish the different elements contributing to the whole diaphragm's stiffness. The results have been compared to the ones predicted through the use of international guidelines in order to highlight shortcomings and qualities and to propose a simplified formulation for the evaluation of the stiffness properties.

Research papers, University of Canterbury Library

Following the 22 February 2011, MW 6.2 earthquake located on a fault beneath the Port Hills of Christchurch, fissuring of up to several hundred metres in length was observed in the loess and loess-colluvium of foot-slope positions in north-facing valleys of the Port Hills. The fissuring was observed in all major valleys, occurred at similar low altitudes, showing a contour-parallel orientation and often accompanied by both lateral compression/extension features and spring formation in the valley floor below. Fissuring locations studied in depth included Bowenvale Valley, Hillsborough Valley, Huntlywood Terrace–Lucas Lane, Bridle Path Road, and Maffeys Road–La Costa Lane. Investigations into loess soil, its properties and mannerisms, as well as international examples of its failure were undertaken, including study of the Loess Plateau of China, the Teton Dam, and palaeo-fissuring on Banks Peninsula. These investigations lead to the conclusion that loess has the propensity to fail, often due to the infiltration of water, the presence of which can lead to its instantaneous disaggregation. Literature study and laboratory analysis of Port Hills loess concluded that is has the ability to be stable in steep, sub-vertical escarpments, and often has a sub-vertically jointed internal structure and has a peak shear strength when dry. Values for cohesion, c (kPa) and the internal friction angle, ϕ (degrees) of Port Hills loess were established. The c values for the 40 Rapaki Road, 3 Glenview Terrace loess samples were 13.4 kPa and 19.7 kPa, respectively. The corresponding ϕ values were thought unusually high, at 42.0° and 43.4°.The analysed loess behaved very plastically, with little or no peak strength visible in the plots as the test went almost directly to residual strength. A geophysics resistivity survey showed an area of low resistivity which likely corresponds to a zone of saturated clayey loess/loess colluvium, indicating a high water table in the area. This is consistent with the appearances of local springs which are located towards the northern end of each distinct section of fissure trace and chemical analysis shows that they are sourced from the Port Hills volcanics. Port Hills fissuring may be sub-divided into three categories, Category A, Category B, and Category C, each characterised by distinctive features of the fissures. Category A includes fissures which display evidence of, spring formation, tunnel-gullying, and lateral spreading-like behaviour or quasi-toppling. These fissures are several metres down-slope of the loess-bedrock interface, and are in valleys containing a loess-colluvium fill. Category B fissures are in wider valleys than those in Category A, and the valleys contain estuarine silty sediments which liquefied during the earthquake. Category C fissures occurred at higher elevations than the fissures in the preceding categories, being almost coincident with bedrock outcropping. It is believed that the mechanism responsible for causing the fissuring is a complex combination of three mechanisms: the trampoline effect, bedrock fracturing, and lateral spreading. These three mechanisms can be applied in varying degrees to each of the fissuring sites in categories A, B, and C, in order to provide explanation for the observations made at each. Toppling failure can describe the soil movement as a consequence of the a three causative mechanisms, and provides insight into the movement of the loess. Intra-loess water coursing and tunnel gullying is thought to have encouraged and exacerbated the fissuring, while not being the driving force per se. Incipient landsliding is considered to be the least likely of the possible fissuring interpretations.

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing an estimated 181 fatalities and severely damaging thousands of residential and commercial buildings. This paper presents a summary of some of the observations made by the NSF-sponsored GEER Team regarding the geotechnical/geologic aspects of this earthquake. The Team focused on documenting the occurrence and severity of liquefaction and lateral spreading, performance of building and bridge foundations, buried pipelines and levees, and significant rockfalls and landslides. Liquefaction was pervasive and caused extensive damage to residential properties, water and wastewater networks, high-rise buildings, and bridges. Entire neighborhoods subsided, resulting in flooding that caused further damage. Additionally, liquefaction and lateral spreading resulted in damage to bridges and to stretches of levees along the Waimakariri and Kaiapoi Rivers. Rockfalls and landslides in the Port Hills damaged several homes and caused several fatalities.

Research papers, University of Canterbury Library

Organisations locate strategically within Business Districts (CBDs) in order to cultivate their image, increase their profile, and improve access to customers, suppliers, and services. While CBDs offer an economic benefit to organisations, they also present a unique set of hazard vulnerabilities and planning challenges for businesses. As of May 2012, the Christchurch CBD has been partially cordoned off for over 14 months. Economic activity within the cordoned CBD, which previously contained 6,000 businesses and over 51,000 workers, has been significantly diminished and organisations have been forced to find new ways of operating. The vulnerabilities and resilience of CBDs not only influences outcomes for CBD organisations, but also the broader interconnected (urban/regional/national) system. A CBD is a hub of economic, social, and built infrastructure within a network of links and nodes. When the hub is disrupted all of the people, objects, and transactions that usually flow into and out of the hub must be redirected elsewhere. In an urban situation this means traffic jams in peripheries of the city, increased prices of commercial property, and capital flight; all of which are currently being faced in Canterbury. This report presents the lessons learned from organisations in CBDs affected by the Canterbury earthquakes. Here we focus on the Christchurch CBD; however, several urban town centres were extensively disrupted by the earthquakes. The statistics and discussion presented in this report are based on the results of an ongoing study conducted by Resilient Organisations (www.resorgs.org.nz). The data was captured using two questionnaire surveys of Canterbury organisations (issued November 2010 and May 2011), interviews with key informants, and in-depth case studies of organisations. Several industry sectors were sampled, and geographic samples of organisations in the Christchurch CBD, Lyttelton, and the Kaiapoi town centre were also collected. Results in this report describing “non-CBD organisations” refer to all organisations outside of the Christchurch CBD, Lyttelton, and Kaiapoi town centres.

Research papers, University of Canterbury Library

For the people of Christchurch and its wider environs of Canterbury in New Zealand, the 4th of September 2010 earthquake and the subsequent aftershocks were daunting. To then experience a more deadly earthquake five months later on the 22nd of February 2011 was, for the majority, overwhelming. A total of 185 people were killed and the earthquake and continuing aftershocks caused widespread damage to properties, especially in the central city and eastern suburbs. A growing body of literature consistently documents the negative impact of experiencing natural disasters on existing psychological disorders. As well, several studies have identified positive coping strategies which can be used in response to adversities, including reliance on spiritual and cultural beliefs as well as developing resilience and social support. The lifetime prevalence of severe mental health disorders such as posttraumatic stress disorder (PTSD) occurring as a result of experiencing natural disasters in the general population is low. However, members of refugee communities who were among those affected by these earthquakes, as well as having a past history of experiencing traumatic events, were likely to have an increased vulnerability. The current study was undertaken to investigate the relevance to Canterbury refugee communities of the recent Canterbury Earthquake Recovery Authority (CERA) draft recovery strategy for Christchurch post-earthquakes. This was accomplished by interviewing key informants who worked closely with refugee communities. These participants were drawn from different agencies in Christchurch including Refugee Resettlement Services, the Canterbury Refugee Council, CERA, and health promotion and primary healthcare organisations, in order to obtain the views of people who have comprehensive knowledge of refugee communities as well as expertise in local mainstream services. The findings from the semi-structured interviews were analysed using qualitative thematic analysis to identify common themes raised by the participants. The key informants described CERA’s draft recovery strategy as a significant document which highlighted the key aspects of recovery post disaster. Many key informants identified concerns regarding the practicality of the draft recovery strategy. For the refugee communities, some of those concerns included the short consultation period for the implementation phase of the draft recovery strategy, and issues surrounding communication and collaboration between refugee agencies involved in the recovery. This study draws attention to the importance of communication and collaboration during recovery, especially in the social reconstruction phase following a disaster, for all citizens but most especially for refugee communities.

Research papers, University of Canterbury Library

In the period between September 2010 and December 2011, Christchurch (New Zealand) and its surroundings were hit by a series of strong earthquakes including six significant events, all generated by local faults in proximity to the city: 4 September 2010 (Mw=7.1), 22 February 2011 (Mw=6.2), 13 June 2011 (Mw=5.3 and Mw=6.0) and 23 December 2011 (M=5.8 and (M=5.9) earthquakes. As shown in Figure 1, the causative faults of the earthquakes were very close to or within the city boundaries thus generating very strong ground motions and causing tremendous damage throughout the city. Christchurch is shown as a lighter colour area, and its Central Business District (CBD) is marked with a white square area in the figure. Note that the sequence of earthquakes started to the west of the city and then propagated to the south, south-east and east of the city through a set of separate but apparently interacting faults. Because of their strength and proximity to the city, the earthquakes caused tremendous physical damage and impacts on the people, natural and built environments of Christchurch. The 22 February 2011 earthquake was particularly devastating. The ground motions generated by this earthquake were intense and in many parts of Christchurch substantially above the ground motions used to design the buildings in Christchurch. The earthquake caused 182 fatalities, collapse of two multi-storey reinforced concrete buildings, collapse or partial collapse of many unreinforced masonry structures including the historic Christchurch Cathedral. The Central Business District (CBD) of Christchurch, which is the central heart of the city just east of Hagley Park, was practically lost with majority of its 3,000 buildings being damaged beyond repair. Widespread liquefaction in the suburbs of Christchurch, as well as rock falls and slope/cliff instabilities in the Port Hills affected tens of thousands of residential buildings and properties, and shattered the lifelines and infrastructure over approximately one third of the city area. The total economic loss caused by the 2010-2011 Christchurch earthquakes is currently estimated to be in the range between 25 and 30 billion NZ dollars (or 15% to 18% of New Zealand’s GDP). After each major earthquake, comprehensive field investigations and inspections were conducted to document the liquefaction-induced land damage, lateral spreading displacements and their impacts on buildings and infrastructure. In addition, the ground motions produced by the earthquakes were recorded by approximately 15 strong motion stations within (close to) the city boundaries providing and impressive wealth of data, records and observations of the performance of ground and various types of structures during this unusual sequence of strong local earthquakes affecting a city. This paper discusses the liquefaction in residential areas and focuses on its impacts on dwellings (residential houses) and potable water system in the Christchurch suburbs. The ground conditions of Christchurch including the depositional history of soils, their composition, age and groundwater regime are first discussed. Detailed liquefaction maps illustrating the extent and severity of liquefaction across Christchurch triggered by the sequence of earthquakes including multiple episodes of severe re-liquefaction are next presented. Characteristic liquefaction-induced damage to residential houses is then described focussing on the performance of typical house foundations in areas affected by liquefaction. Liquefaction impacts on the potable water system of Christchurch is also briefly summarized including correlation between the damage to the system, liquefaction severity, and the performance of different pipe materials. Finally, the characteristics of Christchurch liquefaction and its impacts on built environment are discussed in relation to the liquefaction-induced damage in Japan during the 11 March 2011 Great East Japan Earthquake.