Search

found 35 results

Research papers, University of Canterbury Library

"Lifelines in Earthquakes: Wellington Case Study was the topic of CAE's first major project, which was carried out in 1990/91. Lifelines are those services vital to the running of day-to-day life and include water, gas, electricity, telecommunications and transportation networks. The aim of the project was to assess the vulnerability of these lifelines, identify mitigation measures and raise awareness amongst lifeline managers. Although the project focused on Wellington, the findings are applicable to all urban centres within New Zealand and ongoing study groups have been established in Wellington and Christchurch since the project's completion."

Research papers, University of Canterbury Library

Between September 2010 and February 2012 (a period of 18 months) the Canterbury region of New Zealand has experienced over 10,000 earthquakes (Nicholls, 2012). This report is the first in a series that will describe the impact of the Canterbury earthquake on businesses. This initial report gives a high level overview of the earthquake events and the impacts on the Canterbury economy and businesses. This report is intended to provide background and context for more in-depth analyses to come in future reports.

Research papers, University of Canterbury Library

On 4 September 2010 the Magnitude 7.1 'Darfield' Earthquake marked the beginning of the Canterbury earthquake sequence. The Darfield earthquake produced strong ground shaking throughout the centralCanterbury Plains, affecting rural areas, small towns and the city of Christchurch. The event produced a 29km long surface rupture through intensive farmland, causing localised flooding and liquefaction. The central Canterbury plains were subjected to a sustained period of thousands of aftershocks in the months after the Darfield earthquake. The primary sector is a major component of the in New Zealand economy. Business units are predominantly small family-run farm organisations, though there are increasing levels of corporate farming. The agribusiness sector contributes 20 per cent of real GDP and 47 per cent of total exports for New Zealand. Of the approximately 2,000 farms that are located in the Canterbury Plains, the most common farming sectors in the region are Mixed farming (mostly comprised of sheep and/or beef farming), Dairy farming, and Arable farming (cropping). Many farms on the Canterbury Plains require some form of irrigation and are increasingly capital intensive, reliant on built infrastructure, technology and critical services. Farms are of great significance to their local rural economies, with many rural non-farming organisations dependent on the health of local farming organisations. Despite the economic significance of the sector, there have been few, if any studies analysing how modern intensive farms are affected by earthquakes. The aim of this report is to (1) summarise the impacts the Darfield earthquake had on farming organisations and outline in general terms how farms are vulnerable to the effects of an earthquake; (2) identify what factors helped mitigate earthquake-related impacts. Data for this paper was collected through two surveys of farming and rural non-farming organisations following the earthquake and contextual interviews with affected organisations. In total, 78 organisations participated in the study (Figure 1). Farming organisations represented 72% (N=56) of the sample.

Research papers, University of Canterbury Library

In the aftermath of the 22 February 2011 earthquake, the Natural Hazards Research Platform (NHRP) initiated a series of Short Term Recovery Projects (STRP) aimed at facilitating and supporting the recovery of Christchurch from the earthquake impacts. This report presents the outcomes of STRP 6: Impacts of Liquefaction on Pipe Networks, which focused on the impacts of liquefaction on the potable water and wastewater systems of Christchurch. The project was a collaborative effort of NHRP researchers with expertise in liquefaction, CCC personnel managing and designing the systems and a geotechnical practitioner with experience/expertise in Christchurch soils and seismic geotechnics.

Research papers, University of Canterbury Library

Two projects are documented within this MEM Report: I. The first project examined what was learnt involving the critical infrastructure in the aftermath of natural disasters in the Canterbury region of New Zealand – the most prominent being the series of earthquakes between 2010 and 2011. The project identified several learning gaps, leading to recommendations for further investigations that could add significant value for the lifeline infrastructure community. II. Following the Lifeline Lesson Learnt Project, the Disaster Mitigation Guideline series was initiated with two booklets, one on Emergency Potable Water and a second on Emergency Sanitation. The key message from both projects is that we can and must learn from disasters. The projects described are part of the emergency management, and critical infrastructure learning cycles – presenting knowledge captured by others in a digestible format, enabling the lessons to be reapplied. Without these kinds of projects, there will be fewer opportunities to learn from other’s successes and failures when it comes to preparing for natural disasters.

Research papers, University of Canterbury Library

Organisations locate strategically within Business Districts (CBDs) in order to cultivate their image, increase their profile, and improve access to customers, suppliers, and services. While CBDs offer an economic benefit to organisations, they also present a unique set of hazard vulnerabilities and planning challenges for businesses. As of May 2012, the Christchurch CBD has been partially cordoned off for over 14 months. Economic activity within the cordoned CBD, which previously contained 6,000 businesses and over 51,000 workers, has been significantly diminished and organisations have been forced to find new ways of operating. The vulnerabilities and resilience of CBDs not only influences outcomes for CBD organisations, but also the broader interconnected (urban/regional/national) system. A CBD is a hub of economic, social, and built infrastructure within a network of links and nodes. When the hub is disrupted all of the people, objects, and transactions that usually flow into and out of the hub must be redirected elsewhere. In an urban situation this means traffic jams in peripheries of the city, increased prices of commercial property, and capital flight; all of which are currently being faced in Canterbury. This report presents the lessons learned from organisations in CBDs affected by the Canterbury earthquakes. Here we focus on the Christchurch CBD; however, several urban town centres were extensively disrupted by the earthquakes. The statistics and discussion presented in this report are based on the results of an ongoing study conducted by Resilient Organisations (www.resorgs.org.nz). The data was captured using two questionnaire surveys of Canterbury organisations (issued November 2010 and May 2011), interviews with key informants, and in-depth case studies of organisations. Several industry sectors were sampled, and geographic samples of organisations in the Christchurch CBD, Lyttelton, and the Kaiapoi town centre were also collected. Results in this report describing “non-CBD organisations” refer to all organisations outside of the Christchurch CBD, Lyttelton, and Kaiapoi town centres.

Research papers, University of Canterbury Library

The earthquake sequence has resulted in significant physical and reputational damage to the Canterbury tourism industry. Eighteen months after the earthquakes inbound tourism data is still below pre-earthquake levels, with Canterbury operators reporting that the industry has not bounced back to where it was before September 2010. Outcomes of the earthquakes on business performance highlight there were winners and losers in the aftermath. Recovery of inbound tourism markets is closely tied to the timeframe to rebuild the CBD of Christchurch. Reinstating critical tourism infrastructure will drive future tourism investment, and allow tourism businesses to regenerate and thrive into the future. A blueprint for rebuilding the CBD of Christchurch was released by the Christchurch City Council in July 2012, and has been well received by tourism stakeholders in the region. The challenge now is for city officials to fund the development projects outlined in the blueprint, and to rebuild the CBD as quickly as possible in order to help regenerate the tourism industry in Christchurch, Canterbury and the rest of the South Island

Research papers, University of Canterbury Library

The Master of Engineering Management Project was sponsored by the Canterbury Earthquake Recovery Authority (CERA) and consisted of two phases: The first was an analysis of existing information detailing the effects of hazardous natural events on Canterbury Lifeline Utilities in the past 15 years. The aim of this “Lessons Learned” project was to produce an analysis report that identified key themes from the research, gaps in the existing data and to provide recommendations from these “Lessons Learned.” The Second phase was the development of a practical “Disaster Mitigation Guideline” that outlined lessons in the field of Emergency Sanitation. This research would build upon the first stage and would draw from international reference to develop a guideline that has practical implementation possibilities throughout the world.

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 6 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 6th instalment features the ‘new land’ created by the earthquake uplift of the coastline, recreational uses of beaches in Marlborough, and pāua survey work and hatchery projects with our partners in Kaikōura.

Research papers, University of Canterbury Library

This report to RCP Ltd and University of Canterbury summarises the findings of a 5 month secondment to the CERA Port Hills Land Clearance Team. Improvement strategies were initiated and observed. The Port Hills Land Clearance Programme is the undertaking of the demolition of all built structures from the Crown’s compulsory acquired 714 residential red zoned properties. These properties are zoned red due to an elevated life risk as a result of geotechnical land uncertainty following the 2011 Canterbury Earthquakes.

Research papers, University of Canterbury Library

This report contributes to a collaborative project between the Marlborough District Council (MDC) and University of Canterbury (UC) which aims to help protect and promote the recovery of native dune systems on the Marlborough coast. It is centred around the mapping of dune vegetation and identification of dune protection zones for old-growth seed sources of the native sand-binders spinifex (Spinifex sericeus) and pīngao (Ficinia spiralis). Both are key habitat-formers associated with nationally threatened dune ecosystems, and pīngao is an important weaving resource and Ngāi Tahu taonga species. The primary goal is to protect existing seed sources that are vital for natural regeneration following major disturbances such as the earthquake event. Several additional protection zones are also identified for areas where new dunes are successfully regenerating, including areas being actively restored in the Beach Aid project that is assisting new native dunes to become established where there is available space.

Research papers, University of Canterbury Library

Welcome to the Recover issue 3 newsletter from the Marine Ecology Research Group (MERG) at the University of Canterbury. Recover is designed to keep you updated on our MBIE funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). In this third instalment we are looking into recent paua, whitebait, and … work our team has undertaken.

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 2 from the Marine Ecology Research Group (MERG) at the University of Canterbury. Recover is designed to keep you updated on our MBIE funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This second issue profiles some of the recent work done by our team out in the field!

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 4 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 4th instalment covers recent work on seaweed recovery in the subtidal zone, ecological engineering in Waikoau / Lyell Creek, and a sneak preview of drone survey results!

Research papers, University of Canterbury Library

Christchurch City Council (Council) is undertaking the Land Drainage Recovery Programme in order to assess the effects of the earthquakes on flood risk to Christchurch. In the course of these investigations it has become better understood that floodplain management should be considered in a multi natural hazards context. Council have therefore engaged the Jacobs, Beca, University of Canterbury, and HR Wallingford project team to investigate the multihazards in eastern areas of Christchurch and develop flood management options which also consider other natural hazards in that context (i.e. how other hazards contribute to flooding both through temporal and spatial coincidence). The study has three stages:  Stage 1 Gap Analysis – assessment of information known, identification of gaps and studies required to fill the gaps.  Stage 2 Hazard Studies – a gap filling stage with the studies identified in Stage 1.  Stage 3 Collating, Optioneering and Reporting – development of options to manage flood risk. This present report is to document findings of Stage 1 and recommends the studies that should be completed for Stage 2. It has also been important to consider how Stage 3 would be delivered and the gaps are prioritised to provide for this. The level of information available and hazards to consider is extensive; requiring this report to be made up of five parts each identifying individual gaps. A process of identifying information for individual hazards in Christchurch has been undertaken and documented (Part 1) followed by assessing the spatial co-location (Part 2) and probabilistic presence of multi hazards using available information. Part 3 considers multi hazard presence both as a temporal coincidence (e.g. an earthquake and flood occurring at one time) and as a cascade sequence (e.g. earthquake followed by a flood at some point in the future). Council have already undertaken a number of options studies for managing flood risk and these are documented in Part 4. Finally Part 5 provides the Gap Analysis Summary and Recommendations to Council. The key findings of Stage 1 gap analysis are: - The spatial analysis showed eastern Christchurch has a large number of hazards present with only 20% of the study area not being affected by any of the hazards mapped. Over 20% of the study area is exposed to four or more hazards at the frequencies and data available. - The majority of the Residential Red Zone is strongly exposed to multiple hazards, with 86% of the area being exposed to 4 or more hazards, and 24% being exposed to 6 or more hazards. - A wide number of gaps are present; however, prioritisation needs to consider the level of benefit and risks associated with not undertaking the studies. In light of this 10 studies ranging in scale are recommended to be done for the project team to complete the present scope of Stage 3. - Stage 3 will need to consider a number of engineering options to address hazards and compare with policy options; however, Council have not established a consistent policy on managed retreat that can be applied for equal comparison; without which substantial assumptions are required. We recommend Council undertake a study to define a managed retreat framework as an option for the city. - In undertaking Stage 1 with floodplain management as the focal point in a multi hazards context we have identified that Stage 3 requires consideration of options in the context of economics, implementation and residual risk. Presently the scope of work will provide a level of definition for floodplain options; however, this will not be at equal levels of detail for other hazard management options. Therefore, we recommend Council considers undertaking other studies with those key hazards (e.g. Coastal Hazards) as a focal point and identifies the engineering options to address such hazards. Doing so will provide equal levels of information for Council to make an informed and defendable decision on which options are progressed following Stage 3.

Research papers, University of Canterbury Library

This paper reports on a service-learning public journalism project in which postgraduate journalism students explore ways to engage with and report on diverse communities. Media scholars have argued that news media, and local newspapers in particular, must re-engage with their communities. Likewise, journalism studies scholars have urged educators to give journalism students greater opportunities to reflect on their work by getting out among journalism’s critics, often consumers or citizens concerned about content and the preparation of future journalists. The challenge for journalism educators is to prepare students for working in partnership with communities while also developing their ability to operate reflectively and critically within the expectations of the news media industry and wider society. The aim of this project has been to help students find ways to both listen and lead in a community, and also reflect on the challenges and critiques of community journalism practices. The project began in 2013 with stories about residents’ recovery following the devastating 2011 Canterbury earthquakes, and aimed to create stories that could contribute to community connection and engagement, and thereby resilience and recovery. The idea was inspired by research about post-disaster renewal that indicated that communities with strong social capital and social networks were more resilient and recovered more quickly and strongly. The project’s longer-term aim has been to explore community journalism practices that give greater power to citizens and communities by prioritising listening and processes of engagement. Over several months, students network with a community group to identify subjects with whom they will co-create a story, and then complete a story on which they must seek the feedback of their subject. Community leaders have described the project as a key example of how to do things “with people not to people”, and an outstanding contribution to the community-led component of Canterbury’s recovery. Analysis of student reflections, which are a key part of each year’s project, reveals the process of engaging with communities has helped students to map community dynamics, think more critically about source relationships, editorial choices and objectivity norms, and to develop a perspective on the diverse ways they can go about their journalism in the future. Each year, students partner with different groups and organisations, addressing different themes each time the project runs. For 2016, the programme proposes to develop the project in a new way, by not just exploring a community’s stories but also exploring its media needs and it aims to work with Christchurch’s new migrant Filipino community to develop the groundwork for a community media and/or communication platform, which Filipino community leaders say is a pressing need. For this iteration, journalism students will be set further research tasks aimed at deepening their ‘public listening’: they will conduct a survey of community members’ media use and needs as well as qualitative research interviews. It is hoped that the data collected will strengthen students’ understanding of their own journalism practice, as well as form the basis for work on developing media tools for minority groups who are generally poorly represented in mainstream media. In 2015, the journalism programme surveyed its community partners and held follow-up interviews with 13 of 18 story subjects to elicit further feedback on its news content and thereby deepen understanding of different community viewpoints. The survey and interview data revealed the project affected story subjects in a number of positive and interesting ways. Subjects said they appreciated the way student reporters took their time to build relationships and understand the context of the community groups with which they were involved, and contrasted this with their experience of professional journalists who had held pre-conceived assumptions about stories and/or rushed into interviews. As a direct consequence of the students’ approach, participants said they better trusted the student journalists to portray them accurately and fairly. Most were also encouraged by the positive recognition stories brought and several said the engagement process had helped their personal development, all of which had spin-offs for their community efforts. The presentation night that wraps up each year’s project, where community groups, story subjects and students come together to network and share the final stories, was cited as a significant positive aspect of the project and a great opportunity for community partners to connect with others doing similar work. Community feedback will be sought in future projects to inform and improve successive iterations.

Research papers, University of Canterbury Library

Welcome to the first Recover newsletter from the Marine Ecology Research Group (MERG) at the University of Canterbury. Recover is designed to keep you updated on our MBIE funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Ecosystem Recovery). This first issue provides a summary of some of the big changes we’ve seen. In the next issue we’ll be profiling some of the current research as well as ways you can get involved!

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 5 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 5th instalment covers the question of how much of the coast uplifted how much, recent lab work on seaweed responses to stressors, and more on our drone survey work to quantify earthquake impacts and recovery along 130 km of coastline in the intertidal zone!

Research papers, University of Canterbury Library

There are many things that organisations of any size can do to prepare for a disaster or crisis. Traditionally, the advice given to business has focused on identifying risks, reducing their likely occurrence, and planning in advance how to respond. More recently, there is growing interest in the broader concept of organisational resilience which includes planning for crisis but also considers traits that lead to organisational adaptability and ability to thrive despite adverse circumstances. In this paper we examine the policy frameworks1 within New Zealand that influence the resilience of small and medium sized businesses (SMEs). The first part of the paper focuses on the New Zealand context, including the prevailing political and economic ideologies, the general nature of New Zealand SMEs and the nature of New Zealand’s hazard environment. The paper then goes on to outline the key policy frameworks in place relevant to SMEs and hazards. The final part of the paper examines the way the preexisting policy environment influenced the response of SMEs and Government following the Canterbury earthquakes.

Research papers, University of Canterbury Library

Abstract The original intention for the Partnership Community Worker (PCW) project in 2006 was for it to be an extension of the Pegasus Health General Practice and furthermore to be a bridge between the community and primary healthcare. It was believed that a close working relationship between the Practice Nurse and the PCW would help the target population of Māori, Pacifica and low income people to address and overcome their perceived barriers to healthcare which included: finance, transport, anxiety, cultural issues, communication, or lack of knowledge. Seven years later although the PCW project has been deemed a success in the Canterbury District Health Board annual reports (2013-14) and community and government agencies, including the Christchurch Resettlement Service (2012), many of the Pegasus Health General Practices have not utilised the project to its full extent, hence the need for this research. I was interested in finding out in the first instance if the model had changed and, if so why, and in the second instance if the promotional material currently distributed by Pegasus Health Primary Health Organisation reflected the daily practice of the PCW. A combination of methods were used including: surveys to the Pegasus Health General Practices, interviews with PCWs, interviews with managers of both the PCW host organisations and referring agencies to the PCW project. All the questions asked of all the participants in this research were focussed on their own perception of the role of the PCW. Results showed that the model has changed and although the publications were not reflecting the original intention of the project they did reflect the daily practice of the PCWs who are now struggling to meet much wider community expectations and needs. Key Results: Partnership Community Worker (PCW) interviews: Seventeen PCWs of the 19 employed were interviewed face to face. A number expressed interest in more culturally specific training and some are pursuing qualifications in social work; for many pay parity is an issue. In addition, many felt overwhelmed by the expectations around clients with mental health issues and housing issues now, post-earthquakes. Medical Practice surveys: Surveys were sent to eighty-two Pegasus Health medical practices and of these twenty five were completed. Results showed the full capacity of the PCW role was not clearly understood by all with many believing it was mostly a transport service. Those who did understand the full complexity of the role were very satisfied with the outcomes. PCW Host Community Manager Interviews: Of the ten out of twelve managers interviewed, some wished for more communication with Pegasus Health management because they felt aspects of both the PCW role and their own role as managers had become blurred over time. Referring organisations: Fifteen of the fifty referring community or government organisations participated. The overall satisfaction of the service was high and some acknowledged the continuing need for PCWs to be placed in communities where they were well known and trusted. Moreover results also showed that both the Canterbury earthquakes 2010-2011 and the amalgamation of Partnership Health PHO and Pegasus Health Charitable Limited in 2013 have contributed to the change of the model. Further future research may also be needed to examine the long term effects on the people of Canterbury involved in community work during the 2011-2014 years.  

Research papers, University of Canterbury Library

Following the Canterbury earthquake sequence of 2010-11, a large and contiguous tract of vacated ‘red zoned’ land lies alongside the lower Ōtākaro / Avon River and is known as the Avon-Ōtākaro Red Zone (AORZ). This is the second report in the Ecological Regeneration Options (ERO) project that addresses future land uses in the AORZ. The purpose of this report is to present results from an assessment of restoration opportunities conducted in April 2017. The objectives of the assessment were to identify potential benefits of ecological restoration activities across both land and water systems in the AORZ and characterise the key options for their implementation. The focus of this report is not to provide specific advice on the methods for achieving specific restoration endpoints per se. This will vary at different sites and scales with a large number of combinations possible. Rather, the emphasis is on providing an overview of the many restoration and regeneration options in their totality across the AORZ. An additional objective is to support their adequate assessment in the identification of optimum land uses and adaptive management practices for the AORZ. Participatory processes may play a useful role in assessment and stakeholder engagement by providing opportunities for social learning and the co-creation of new knowledge. We used a facilitated local knowledge based approach that generated a large quantity of reliable and site specific data in a short period of time. By inviting participation from a wide knowledge-holder network inclusivity is improved in comparison to small-group expert panel approaches. Similar approaches could be applied to other information gathering and assessment needs in the regeneration planning process. Findings from this study represent the most comprehensive set of concepts available to date to address the potential benefits of ecological regeneration in the AORZ. This is a core topic for planning to avoid missed opportunities and opportunity costs. The results identify a wide range of activities that may be applied to generate benefits for Christchurch and beyond, all involving aspects of a potential new ecology in the AORZ. These may be combined at a range of scales to create scenarios, quantify benefits, and explore the potential for synergies between different land use options. A particular challenge is acquiring the information needed within relatively short time frames. Early attention to gathering baseline data, addressing technical knowledge gaps, and developing conceptual frameworks to account for the many spatio-temporal aspects are all key activities that will assist in delivering the best outcomes. Methodologies by which these many facets can be pulled together in quantitative and comparative assessments are the focus of the final report in the ERO series.

Research papers, University of Canterbury Library

This is an interim report from the research study performed within the NHRP Research Project “Impacts of soil liquefaction on land, buildings and buried pipe networks: geotechnical evaluation and design, Project 3: Seismic assessment and design of pipe networks in liquefiable soils”. The work presented herein is a continuation of the comprehensive study on the impacts of Christchurch earthquakes on the buried pipe networks presented in Cubrinovski et al. (2011). This report summarises the performance of Christchurch City’s potable water, waste water and road networks through the 2010-2011 Canterbury Earthquake Sequence (CES), and particularly focuses on the potable water network. It combines evidence based on comprehensive and well-documented data on the damage to the water network, detailed observations and interpretation of liquefaction-induced land damage, records and interpretations of ground motion characteristics induced by the Canterbury earthquakes, for a network analysis and pipeline performance evaluation using a GIS platform. The study addresses a range of issues relevant in the assessment of buried networks in areas affected by strong earthquakes and soil liquefaction. It discusses performance of different pipe materials (modern flexible pipelines and older brittle pipelines) including effects of pipe diameters, fittings and pipeline components/details, trench backfill characteristics, and severity of liquefaction. Detailed breakdown of key factors contributing to the damage to buried pipes is given with reference to the above and other relevant parameters. Particular attention is given to the interpretation, analysis and modelling of liquefaction effects on the damage and performance of the buried pipe networks. Clear link between liquefaction severity and damage rate for the pipeline has been observed with an increasing damage rate seen with increasing liquefaction severity. The approach taken here was to correlate the pipeline damage to LRI (Liquefaction Resistance Index, newly developed parameter in Cubrinovski et al., 2011) which represents a direct measure for the soil resistance to liquefaction while accounting for the seismic demand through PGA. Key quality of the adopted approach is that it provides a general methodology that in conjunction with conventional methods for liquefaction evaluation can be applied elsewhere in New Zealand and internationally. Preliminary correlations between pipeline damage (breaks km-1), liquefaction resistance (LRI) and seismic demand (PGA) have been developed for AC pipes, as an example. Such correlations can be directly used in the design and assessment of pipes in seismic areas both in liquefiable and non-liquefiable areas. Preliminary findings on the key factors for the damage to the potable water pipe network and established empirical correlations are presented including an overview of the damage to the waste water and road networks but with substantially less detail. A comprehensive summary of the damage data on the buried pipelines is given in a series of appendices.

Research papers, University of Canterbury Library

Science education research shows that a traditional, stand-and-deliver lecture format is less effective than teaching strategies that are learner-centred and that promote active engagement. The Carl Wieman Science Education Initiative (CWSEI) has used this research to develop resources to improve learning in university science courses. We report on a successful adaptation and implementation of CWSEI in the New Zealand university context. This two-year project at Massey University and the University of Canterbury began by using perception and concept surveys before and after undergraduate science courses to measure students’ attitudes towards science as well as their knowledge. Using these data, and classroom observations of student engagement and corroborating focus groups, the research team worked with lecturers to create interventions to enhance student engagement and learning in those courses. Results show several positive changes related to these interventions and they suggest several recommendations for lecturers and course coordinators. The recommendations include:1. Make learning outcomes clear, both for the lecturer and the students; this helps to cull extraneous material and scaffold student learning. 2. Use interactive activities to improve engagement, develop deeper levels of thinking, and improve learning. 3. Intentionally foster “expert-like thinking” amongst students in the first few semesters of the degree programme. 4. Be flexible because one size does not fit all and contextual events are beyond anyone’s control.In addition to these recommendations, data collected at the Canterbury site during the 2010 and 2011 earthquakes reinforced the understanding that the most carefully designed teaching innovations are subject to contextual conditions beyond the control of academics.

Research papers, University of Canterbury Library

In this paper we outline the process and outcomes of a multi-agency, multi-sector research collaboration, led by the Canterbury Earthquake Research Authority (CERA). The CERA Wellbeing Survey (CWS) is a serial, cross-sectional survey that is to be repeated six-monthly (in April and September) until the end of the CERA Act, in April 2016. The survey gathers self-reported wellbeing data to supplement the monitoring of the social recovery undertaken through CERA's Canterbury Wellbeing Index. Thereby informing a range of relevant agency decision-making, the CWS was also intended to provide the community and other sectors with a broad indication of how the population is tracking in the recovery. The primary objective was to ensure that decision-making was appropriately informed, with the concurrent aim of compiling a robust dataset that is of value to future researchers, and to the wider, global hazard and disaster research endeavor. The paper begins with an outline of both the Canterbury earthquake sequence, and the research context informing this collaborative project, before reporting on the methodology and significant results to date. It concludes with a discussion of both the survey results, and the collaborative process through which it was developed.

Research papers, University of Canterbury Library

Beam-column joints are addressed in the context of current design procedures and performance criteria for reinforced concrete ductile frames subjected to large earthquake motions. Attention is drawn to the significant differences between the pertinent requirements of concrete design codes of New Zealand and the United States for such joints. The difference between codes stimulated researchers and structural engineers of the United States, New Zealand, Japan and China to undertake an international collaborative research project. The major investigators of the project selected issues and set guidelines for co-ordinated testing of joint specimens designed according to the codes of the countries. The tests conducted at the University of Canterbury, New Zealand, are reported. Three full-scale beam-column-slab joint assemblies were designed according to existing code requirements of NZS 3101:1982, representing an interior joint of a one-way frame, an interior joint of a two-way frame, and an exterior joint of a two-way frame. Quasistatic cyclic loading simulating severe earthquake actions was applied. The overall performance of each test assembly was found to be satisfactory in terms of stiffness, strength and ductility. The joint and column remained essentially undamaged while plastic hinges formed in the beams. The weak beam-strong column behaviour sought in the design, desirable in tall ductile frames designed for earthquake resistance, was therefore achieved. Using the laws of statics and test observations, the action and flow of forces from the slabs, beams and column to the joint cores are explored. The effects of bond performance and the seismic shear resistance of the joints, based on some postulated mechanisms, are examined. Implications of the test results on code specifications are discussed and design recomendations are made.

Research papers, University of Canterbury Library

The Canterbury earthquakes of 2010 and 2011 caused significant damage and disruption to the city of Christchurch, New Zealand. A Royal Commission was established to report on the causes of building failure as a result of the earthquakes as well as look at the legal and best-practice requirements for buildings in New Zealand Central Business Districts. The Royal Commission made 189 recommendations on a variety of matters including managing damaged buildings after an earthquake, the adequacy of building codes and standards, and the processes of seismic assessments of existing buildings to determine their earthquake vulnerability. In response the Ministry of Business, Innovation and Employment, the agency responsible for administering building regulation in New Zealand, established a work programme to assist with the Canterbury rebuild and to implement the lessons learned throughout New Zealand. The five primary work streams in the programme are: • Facilitating the Canterbury Rebuild • Structural Performance and Design Standards • Geotechnical and structural guidance • Existing Building Resilience • Post Disaster Building Management This paper provides more detail on each of the work streams. There has been significant collaboration between the New Zealand Government and the research community, technical societies, and engineering consultants, both within New Zealand and internationally, to deliver the programme and improve the resilience of the New Zealand built environment. This has presented major challenges for an extremely busy industry in the aftermath of the Canterbury earthquakes. The paper identifies the items of work that have been completed and the work that is still in progress at the time of writing.

Research papers, University of Canterbury Library

The Canterbury region of New Zealand experienced a sequence of strong earthquakes during 2010-2011. Responses included government acquisition of many thousands of residential properties in the city of Christchurch in areas with severe earthquake effects. A large and contiguous tract of this ‘red zoned’ land lies in close proximity to the Ōtākaro / Avon River and is known as the Avon-Ōtākaro Red Zone (AORZ). The focus of this study was to provide an overview of the floodplain characteristics of the AORZ and review of international experience in ecological restoration of similar river margin and floodplain ecosystems to extract restoration principles and associated learnings. Compared to pre-earthquake ground levels, the dominant trend in the AORZ is subsidence, together with lateral movement especially in the vicinity of waterway. An important consequence of land subsidence in the lower Ōtākaro / Avon River is greater exposure to flooding and the effects of sea level rise. Scenario modelling for sea level rise indicates that much of the AORZ is exposed to inundation within a 100 year planning horizon based on a 1 m sea level rise. As with decisions on built infrastructure, investments in nature-based ‘green infrastructure’ also require a sound business case including attention to risks posed by climate change. Future-proofing of the expected benefits of ecological restoration must therefore be secured by design. Understanding and managing the hydrology and floodplain dynamics are vital to the future of the AORZ. However, these characteristics are shared by other floodplain and river restoration projects worldwide. Identifying successful approaches provides a useful a source of useful information for floodplain planning in the AORZ. This report presents results from a comparative case study of three international examples to identify relevant principles for large-scale floodplain management at coastal lowland sites.