Search

found 3 results

Research papers, University of Canterbury Library

Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km2 ), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.

Research papers, University of Canterbury Library

The Covid-19 pandemic has brought to the foreground the importance of social connectedness for wellbeing, at the individual, community and societal level. Within the context of the local community, pro-connection facilities are fundamental to foster community development, resilience and public health. Through identifying the gap in social connectedness literature for Māori, this has created space for new opportunities and to reflect on what is already occurring in Ōtautahi. It is well documented that Māori experience unequal societal impacts across all health outcomes. Therefore, narrowing the inequities between Māori and non-Māori across a spectrum of dimensions is a priority. Evaluating the #WellconnectedNZ project, which explores the intersections between social connection and wellbeing is one way to trigger these conversations. This was achieved by curating a dissimilar set of community pro-connection facilities and organizing them into a Geographic Information System (GIS). Which firstly involved, the collecting and processing of raw data, followed by spatial analysis through creating maps, this highlighted the alignment between the distribution of places, population and social data. Secondly, statistical analysis focusing on the relationship between deprivation and accessibility. Finally, semi-structured interviews providing perceptions of community experience. This study describes findings following a kaupapa Māori research approach. Results demonstrated that, in general some meshblocks in Ōtautahi benefit from a high level of accessibility to pro-connection facilities; but with an urban-rural gradient (as is expected, further from the central business district (CBD) are less facilities). Additionally, more-deprived meshblocks in the Southern and Eastern suburbs of Christchurch have poorer accessibility, suggesting underlying social and spatial inequalities, likely exacerbated by Covid-19 and the Christchurch earthquakes. In this context, it is timely to (re)consider pro-connection places and their role in the development of social infrastructure for connected communities, in the community facility planning space. ‘We are all interwoven, we just need to make better connections’.

Research papers, University of Canterbury Library

A number of reverse and strike-slip faults are distributed throughout mid-Canterbury, South Island, New Zealand, due to oblique continental collision. There is limited knowledge on fault interaction in the region, despite historical multi-fault earthquakes involving both reverse and strike-slip faults. The surface expression and paleoseismicity of these faults can provide insights into fault interaction and seismic hazards in the region. In this thesis, I studied the Lake Heron and Torlesse faults to better understand the key differences between these two adjacent faults located within different ‘tectonic domains’. Recent activity and surface expression of the Lake Heron fault was mapped and analysed using drone survey, Structure-from-Motion (SfM) derived Digital Surface Model (DSM), aerial image, 5 m-Digital Elevation Model (DEM), luminescence dating technique, and fold modelling. The results show a direct relationship between deformation zone width and the thickness of the gravel deposits in the area. Fold modelling using fault dip, net slip and gravel thickness produces a deformation zone comparable to the field, indicating that the fault geometry is sound and corroborating the results. This result Is consistent with global studies that demonstrate deposit (or soil thickness) correlates to fault deformation zone width, and therefore is important to consider for fault displacement hazard. A geomorphological study on the Torlesse fault was conducted using SfM-DSM, DEM and aerial images Ground Penetrating Radar (GPR) survey, trenching, and radiocarbon and luminescence dating. The results indicate that the Torlesse fault is primarily strike-slip with some dip slip component. In many places, the bedding-parallel Torlesse fault offsets post-glacial deposits, with some evidence of flexural slip faulting due to folding. Absolute dating of offset terraces using radiocarbon dating and slip on fault determined from lateral displacement calculating tool demonstrates the fault has a slip rate of around 0.5 mm/year to 1.0 mm/year. The likelihood of multi-fault rupture in the Torlesse Range has been characterised using paleoseismic trenching, a new structural model, and evaluation of existing paleoseismic data on the Porters Pass fault. Identification of overlapping of paleoseismic events in main Torlesse fault, flexural-slip faults and the Porters Pass fault in the Torlesse Range shows the possibility of distinct or multi-fault rupture on the Torlesse fault. The structural connectivity of the faults in the Torlesse zone forming a ‘flower structure’ supports the potential of multi-fault rupture. Multi-fault rupture modelling carried out in the area shows a high probability of rupture in the Porters Pass fault and Esk fault which also supports the co-rupture probability of faults in the region. This study offers a new understanding of the chronology, slip distribution, rupture characteristics and possible structural and kinematic relationship of Lake Heron fault and Torlesse fault in the South Island, New Zealand.