Search

found 54 results

Research papers, University of Canterbury Library

Overview of SeisFinder SeisFinder is an open-source web service developed by QuakeCoRE and the University of Canterbury, focused on enabling the extraction of output data from computationally intensive earthquake resilience calculations. Currently, SeisFinder allows users to select historical or future events and retrieve ground motion simulation outputs for requested geographical locations. This data can be used as input for other resilience calculations, such as dynamic response history analysis. SeisFinder was developed using Django, a high-level python web framework, and uses a postgreSQL database. Because our large-scale computationally-intensive numerical ground motion simulations produce big data, the actual data is stored in file systems, while the metadata is stored in the database. The basic SeisFinder architecture is shown in Figure 1.

Research papers, University of Canterbury Library

This dissertation addresses several fundamental and applied aspects of ground motion selection for seismic response analyses. In particular, the following topics are addressed: the theory and application of ground motion selection for scenario earthquake ruptures; the consideration of causal parameter bounds in ground motion selection; ground motion selection in the near-fault region where directivity effect is significant; and methodologies for epistemic uncertainty consideration and propagation in the context of ground motion selection and seismic performance assessment. The paragraphs below outline each contribution in more detail. A scenario-based ground motion selection method is presented which considers the joint distribution of multiple intensity measure (IM) types based on the generalised conditional intensity measure (GCIM) methodology (Bradley, 2010b, 2012c). The ground motion selection algorithm is based on generating realisations of the considered IM distributions for a specific rupture scenario and then finding the prospective ground motions which best fit the realisations using an optimal amplitude scaling factor. In addition, using different rupture scenarios and site conditions, two important aspects of the GCIM methodology are scrutinised: (i) different weight vectors for the various IMs considered; and (ii) quantifying the importance of replicate selections for ensembles with different numbers of desired ground motions. As an application of the developed scenario-based ground motion selection method, ground motion ensembles are selected to represent several major earthquake scenarios in New Zealand that pose a significant seismic hazard, namely, Alpine, Hope and Porters Pass ruptures for Christchurch city; and Wellington, Ohariu, and Wairarapa ruptures for Wellington city. A rigorous basis is developed, and sensitivity analyses performed, for the consideration of bounds on causal parameters (e.g., magnitude, source-to-site distance, and site condition) for ground motion selection. The effect of causal parameter bound selection on both the number of available prospective ground motions from an initial empirical as-recorded database, and the statistical properties of IMs of selected ground motions are examined. It is also demonstrated that using causal parameter bounds is not a reliable approach to implicitly account for ground motion duration and cumulative effects when selection is based on only spectral acceleration (SA) ordinates. Specific causal parameter bounding criteria are recommended for general use as a ‘default’ bounding criterion with possible adjustments from the analyst based on problem-specific preferences. An approach is presented to consider the forward directivity effects in seismic hazard analysis, which does not separate the hazard calculations for pulse-like and non-pulse-like ground motions. Also, the ability of ground motion selection methods to appropriately select records containing forward directivity pulse motions in the near-fault region is examined. Particular attention is given to ground motion selection which is explicitly based on ground motion IMs, including SA, duration, and cumulative measures; rather than a focus on implicit parameters (i.e., distance, and pulse or non-pulse classifications) that are conventionally used to heuristically distinguish between the near-fault and far-field records. No ad hoc criteria, in terms of the number of directivity ground motions and their pulse periods, are enforced for selecting pulse-like records. Example applications are presented with different rupture characteristics, source-to-site geometry, and site conditions. It is advocated that the selection of ground motions in the near-fault region based on IM properties alone is preferred to that in which the proportion of pulse-like motions and their pulse periods are specified a priori as strict criteria for ground motion selection. Three methods are presented to propagate the effect of seismic hazard and ground motion selection epistemic uncertainties to seismic performance metrics. These methods differ in their level of rigor considered to propagate the epistemic uncertainty in the conditional distribution of IMs utilised in ground motion selection, selected ground motion ensembles, and the number of nonlinear response history analyses performed to obtain the distribution of engineering demand parameters. These methods are compared for an example site where it is observed that, for seismic demand levels below the collapse limit, epistemic uncertainty in ground motion selection is a smaller uncertainty contributor relative to the uncertainty in the seismic hazard itself. In contrast, uncertainty in ground motion selection process increases the uncertainty in the seismic demand hazard for near-collapse demand levels.

Research papers, University of Canterbury Library

Capacity design and hierarchy of strength philosophies at the base of modern seismic codes allow inelastic response in case of severe earthquakes and thus, in most traditional systems, damage develops at well-defined locations of reinforced concrete (RC) structures, known as plastic hinges. The 2010 and 2011 Christchurch earthquakes have demonstrated that this philosophy worked as expected. Plastic hinges formed in beams, in coupling beams and at the base of columns and walls. Structures were damaged permanently, but did not collapse. The 2010 and 2011 Christchurch earthquakes also highlighted a critical issue: the reparability of damaged buildings. No methodologies or techniques were available to estimate the level of subsequent earthquakes that RC buildings could still sustain before collapse. No repair techniques capable of restoring the initial condition of buildings were known. Finally, the cost-effectiveness of an eventual repair intervention, when compared with a new building, was unknown. These aspects, added to nuances of New Zealand building owners’ insurance coverage, encouraged the demolition of many buildings. Moreover, there was a perceived strong demand from government and industry to develop techniques for assessing damage to steel reinforcement bars embedded in cracked structural concrete elements. The most common questions were: “Have the steel bars been damaged in correspondence to the concrete cracks?”, “How much plastic deformation have the steel bars undergone?”, and “What is the residual strain capacity of the damaged bars?” Minimally invasive techniques capable of quantifying the level and extent of plastic deformation and residual strain capacity are not yet available. Although some studies had been recently conducted, a validated method is yet to be widely accepted. In this thesis, a least-invasive method for the damage-assessment of steel reinforcement is developed. Based on the information obtained from hardness testing and a single tensile test, it is possible to estimate the mechanical properties of earthquake-damaged rebars. The reduction in the low-cycle fatigue life due to strain ageing is also quantified. The proposed damage assessment methodology is based on empirical relationships between hardness and strain and residual strain capacity. If damage is suspected from in situ measurements, visual inspection or computer analysis, a bar may be removed and more accurate hardness measurements can be obtained using the lab-based Vickers hardness methodology. The Vickers hardness profile of damaged bars is then compared with calibration curves (Vickers hardness versus strain and residual strain capacity) previously developed for similar steel reinforcement bars extracted from undamaged locations. Experimental tests demonstrated that the time- and temperature-dependent strain-ageing phenomenon causes changes in the mechanical properties of plastically deformed steels. In particular, yield strength and hardness increases, whereas ductility decreases. The changes in mechanical properties are quantified and their implications on the hardness method are highlighted. Low-cycle fatigue (LCF) failures of steel reinforcing bars have been observed in laboratory testing and post-earthquake damage inspections. Often, failure might not occur during a first seismic event. However, damage is accumulated and the remaining fatigue life is reduced. Failure might therefore occur in a subsequent seismic event. Although numerous studies exist on the LCF behaviour of steel rebars, no studies had been conducted on the strain-ageing effects on the remaining fatigue life. In this thesis, the reduction in fatigue life due to this phenomenon is determined through a number of experimental tests.

Research papers, University of Canterbury Library

This report presents the simplified seismic assessment of a case study reinforced concrete (RC) building following the newly developed and refined NZSEE/MBIE guidelines on seismic assessment (NZSEE/MBIE, semi-final draft 26 October 2016). After an overview of the step-by-step ‘diagnostic’ process, including an holistic and qualitative description of the expected vulnerabilities and of the assessment strategy/methodology, focus is given, whilst not limited, to the implementation of a Detailed Seismic Assessment (DSA) (NZSEE/MBIE, 2016c). The DSA is intended to provide a more reliable and consistent outcome than what can be provided by an initial seismic assessment (ISA). In fact, while the Initial Seismic Assessment (ISA), of which the Initial Evaluation Procedure is only a part of, is the more natural and still recommended first step in the overall assessment process, it is mostly intended to be a coarse evaluation involving as few resources as reasonably possible. It is thus expected that an ISA will be followed by a Detailed Seismic Assessment (DSA) not only where the threshold of 33%NBS is not achieved but also where important decisions are intended that are reliant on the seismic status of the building. The use of %NBS (% New Building Standard) as a capacity/demand ratio to describe the result of the seismic assessment at all levels of assessment procedure (ISA through to DSA) is deliberate by the NZSEE/MBIE guidelines (Part A) (NZSEE/MBIE 2016a). The rating for the building needs only be based on the lowest level of assessment that is warranted for the particular circumstances. Discussion on how the %NBS rating is to be determined can be found in Section A3.3 (NZSEE/MBIE 2016a), and, more specifically, in Part B for the ISA (NZSEE/MBIE 2016b) and Part C for the DSA (NZSEE/MBIE 2016c). As per other international approaches, the DSA can be based on several analysis procedures to assess the structural behaviour (linear, nonlinear, static or dynamic, force or displacement-based). The significantly revamped NZSEE 2016 Seismic Assessment Guidelines strongly recommend the use of an analytical (basically ‘by hand’) method, referred to the Simple Lateral Mechanism Analysis (SLaMA) as a first phase of any other numerically-based analysis method. Significant effort has thus been dedicated to provide within the NZSEE 2016 guidelines (NZSEE/MBIE 2016c) a step-by-step description of the procedure, either in general terms (Chapter 2) or with specific reference to Reinforced Concrete Buildings (Chapter 5). More specifically, extract from the guidelines, NZSEE “recommend using the Simple Lateral Mechanism Analysis (SLaMA) procedure as a first step in any assessment. While SLaMA is essentially an analysis technique, it enables assessors to investigate (and present in a simple form) the potential contribution and interaction of a number of structural elements and their likely effect on the building’s global capacity. In some cases, the results of a SLaMA will only be indicative. However, it is expected that its use should help assessors achieve a more reliable outcome than if they only carried out a detailed analysis, especially if that analysis is limited to the elastic range For complex structural systems, a 3D dynamic analysis may be necessary to supplement the simplified nonlinear Simple Lateral Mechanism Analysis (SLaMA).” This report presents the development of a full design example for the the implementation of the SLaMA method on a case study buildings and a validation/comparison with a non-linear static (pushover) analysis. The step-by-step-procedure, summarized in Figure 1, will be herein demonstrated from a component level (beams, columns, wall elements) to a subassembly level (hierarchy of strength in a beam-column joint) and to a system level (frame, C-Wall) assuming initially a 2D behaviour of the key structural system, and then incorporating a by-hand 3D behaviour (torsional effects).

Research papers, University of Canterbury Library

Following the Canterbury earthquake sequence of 2010-11, a large and contiguous tract of vacated ‘red zoned’ land lies alongside the lower Ōtākaro / Avon River and is known as the Avon-Ōtākaro Red Zone (AORZ). This is the second report in the Ecological Regeneration Options (ERO) project that addresses future land uses in the AORZ. The purpose of this report is to present results from an assessment of restoration opportunities conducted in April 2017. The objectives of the assessment were to identify potential benefits of ecological restoration activities across both land and water systems in the AORZ and characterise the key options for their implementation. The focus of this report is not to provide specific advice on the methods for achieving specific restoration endpoints per se. This will vary at different sites and scales with a large number of combinations possible. Rather, the emphasis is on providing an overview of the many restoration and regeneration options in their totality across the AORZ. An additional objective is to support their adequate assessment in the identification of optimum land uses and adaptive management practices for the AORZ. Participatory processes may play a useful role in assessment and stakeholder engagement by providing opportunities for social learning and the co-creation of new knowledge. We used a facilitated local knowledge based approach that generated a large quantity of reliable and site specific data in a short period of time. By inviting participation from a wide knowledge-holder network inclusivity is improved in comparison to small-group expert panel approaches. Similar approaches could be applied to other information gathering and assessment needs in the regeneration planning process. Findings from this study represent the most comprehensive set of concepts available to date to address the potential benefits of ecological regeneration in the AORZ. This is a core topic for planning to avoid missed opportunities and opportunity costs. The results identify a wide range of activities that may be applied to generate benefits for Christchurch and beyond, all involving aspects of a potential new ecology in the AORZ. These may be combined at a range of scales to create scenarios, quantify benefits, and explore the potential for synergies between different land use options. A particular challenge is acquiring the information needed within relatively short time frames. Early attention to gathering baseline data, addressing technical knowledge gaps, and developing conceptual frameworks to account for the many spatio-temporal aspects are all key activities that will assist in delivering the best outcomes. Methodologies by which these many facets can be pulled together in quantitative and comparative assessments are the focus of the final report in the ERO series.

Research papers, University of Canterbury Library

The latest two great earthquake sequences; 2010- 2011 Canterbury Earthquake and 2016 Kaikoura Earthquake, necessitate a better understanding of the New Zealand seismic hazard condition for new building design and detailed assessment of existing buildings. It is important to note, however, that the New Zealand seismic hazard map in NZS 1170.5.2004 is generalised in effort to cover all of New Zealand and limited to a earthquake database prior to 2001. This is “common” that site-specific studies typically provide spectral accelerations different to those shown on the national map (Z values in NZS 1170.5:2004); and sometimes even lower. Moreover, Section 5.2 of Module 1 of the Earthquake Geotechnical Engineering Practice series provide the guidelines to perform site- specific studies.

Research papers, University of Canterbury Library

Worldwide turbidity is a huge concern for the health of aquatic ecosystems. Human activities on the land such as construction, deforestation, agriculture, and mining all have impacts on the amount of particulate solids that enter the world’s waterways. These particulate solids can pose a number of risks to aquatic life, but primary among them is the turbidity that they create in the water column. The way suspended solids interact with light creates cloudiness in the water which interferes with the vision, and visually mediated behaviours of aquatic organisms, particularly fish. The Avon-Heathcote estuary of Christchurch, New Zealand, is one such body of water that is subject to tremendous variation in turbidity, no doubt exacerbated by the destruction of Christchurch in the 2010 and 2011 earthquakes, as well as the subsequent ongoing rebuild. The yellow eyed mullet, Aldrichetta Forsteri, is one species that is common with the estuary, and uses it as a habitat for breeding. Though very common throughout New Zealand, and even a part of the catch of commercial fisheries, the yellow eyed mullet is a largely unstudied organism, with virtually no published scientific enquiry based on the species. The present work assesses how several behaviours of the yellow eyed mullet are effected by acute turbidity at 10, 50, 90, 130 and 170 NTU, finding that: 1) The optomotor response of mullet to 2.5 mm stripes drops to insignificant levels between 10 and 50 NTU, 2) The swimming activity of the yellow eyed mullet is highest at 10 NTU and drops to a significantly lower level at higher turbidities, 3) The grouping behaviour of small groups of yellow eyed mullet are unchanged by increasing turbidity levels, 4) that yellow eyed mullet do not exhibit significantly different behavioural response to a simulated predator at any of the tested turbidities, and 5) that yellow eyed mullet to do significantly alter their oxygen consumption during exposure to the turbidities in an increasing series. The results presented in these studies indicate that turbidites above 50 NTU pose a significant risk to the lifestyle of the yellow eyed mullet, potentially impacting their ability to perceive their surroundings, feed, school, and avoid predation. Future work has a lot of ground to cover to more precisely determine the relationship between yellow eyed mullet behaviour and physiology, and the turbidity of their environment. In particular, future work should focus more closely on the turbidities between 10 and 50 NTU, as well as looking to field work to see what the predominant predators of the mullet are, and specifically whether turbidity increases or decreases the risk of mullet being subject to avian predation. There is also considerable scope for studies on the effects of chronic turbidity upon mullet, which will add understand to the predicament of escalating turbidity and its effects upon this common and yet mysterious native fish.

Research papers, University of Canterbury Library

SeisFinder is an open-source web service developed by QuakeCoRE and the University of Canterbury, focused on enabling the extraction of output data from computationally intensive earthquake resilience calculations. Currently, SeisFinder allows users to select historical or future events and retrieve ground motion simulation outputs for requested geographical locations. This data can be used as input for other resilience calculations, such as dynamic response history analysis. SeisFinder was developed using Django, a high-level python web framework, and uses a postgreSQL database. Because our large-scale computationally-intensive numerical ground motion simulations produce big data, the actual data is stored in file systems, while the metadata is stored in the database.

Research papers, University of Canterbury Library

While some scholarship on refugee youth has focussed on leaving a place that is typically considered ‘home,’ there has been little attention to what ‘home’ means to them and how this is negotiated in the country of (re)settlement. This is particularly the case for girls and women. New Zealand research on refugee settlement has largely focussed on the economic integration of refugees. Although this research is essential, it runs the risk of overlooking the socio-cultural aspects of the resettlement experiences and renders partial our understanding of how particular generations and ethnic groups develop a sense of belonging to their adopted homeland. In order to address these research gaps, this thesis explores the experiences of 12 Afghan women, aged 19-29 years, of refugee background who relocated to Christchurch, New Zealand, during their childhood and early teenage years. This study employed semi-structured, one-to-one, in-depth interviews and photo-elicitation to encourage talk about participants’ experiences of leaving Afghanistan, often living in countries of protracted displacement (Iran and/or Pakistan) and making- and being-at-home in New Zealand. In this thesis, I explore the ways in which they frame Afghanistan, and the ways in which their experiences in Iran and Pakistan disrupt the dichotomisation of belonging in terms of ‘here’ (ancestral land) and ‘there’ (country of residence). Furthermore, I use affect theorising to analyse the participants’ expressions of resettlement and home in New Zealand. Feeling at home is as much about negotiating cultural and gendered identities in Western secular societies as it is about belonging to a particular community. Through their experiences of ‘living in two worlds’, the participants are able to strategically challenge cultural expectations without undermining their reputations as Muslims and as Afghan women. The participants discussed their emotional responses to double-displacement: one as a result of war and the other as a result of 2011 Canterbury earthquakes. Therefore, I suggest that for young Afghan women, Afghanistan was among several markers of home in a long embodied journey of (re)settlement.

Research papers, University of Canterbury Library

In September 2010 and February 2011, the Canterbury region experienced devastating earthquakes with an estimated economic cost of over NZ$40 billion (Parker and Steenkamp, 2012; Timar et al., 2014; Potter et al., 2015). The insurance market played an important role in rebuilding the Canterbury region after the earthquakes. Homeowners, insurance and reinsurance markets and New Zealand government agencies faced a difficult task to manage the rebuild process. From an empirical and theoretic research viewpoint, the Christchurch disaster calls for an assessment of how the insurance market deals with such disasters in the future. Previous studies have investigated market responses to losses in global catastrophes by focusing on the insurance supply-side. This study investigates both demand-side and supply-side insurance market responses to the Christchurch earthquakes. Despite the fact that New Zealand is prone to seismic activities, there are scant previous studies in the area of earthquake insurance. This study does offer a unique opportunity to examine and document the New Zealand insurance market response to catastrophe risk, providing results critical for understanding market responses after major loss events in general. A review of previous studies shows higher premiums suppress demand, but how higher premiums and a higher probability of risk affect demand is still largely unknown. According to previous studies, the supply of disaster coverage is curtailed unless the market is subsidised, however, there is still unsettled discussion on why demand decreases with time from the previous disaster even when the supply of coverage is subsidised by the government. Natural disaster risks pose a set of challenges for insurance market players because of substantial ambiguity associated with the probability of such events occurring and high spatial correlation of catastrophe losses. Private insurance market inefficiencies due to high premiums and spatially concentrated risks calls for government intervention in the provision of natural disaster insurance to avert situations of noninsurance and underinsurance. Political economy considerations make it more likely for government support to be called for if many people are uninsured than if few people are uninsured. However, emergency assistance for property owners after catastrophe events can encourage most property owners to not buy insurance against natural disaster and develop adverse selection behaviour, generating larger future risks for homeowners and governments. On the demand-side, this study has developed an intertemporal model to examine how demand for insurance changes post-catastrophe, and how to model it theoretically. In this intertemporal model, insurance can be sought in two sequential periods of time, and at the second period, it is known whether or not a loss event happened in period one. The results show that period one demand for insurance increases relative to the standard single period model when the second period is taken into consideration, period two insurance demand is higher post-loss, higher than both the period one demand and the period two demand without a period one loss. To investigate policyholders experience from the demand-side perspective, a total of 1600 survey questionnaires were administered, and responses from 254 participants received representing a 16 percent response rate. Survey data was gathered from four institutions in Canterbury and is probably not representative of the entire population. The results of the survey show that the change from full replacement value policy to nominated replacement value policy is a key determinant of the direction of change in the level of insurance coverage after the earthquakes. The earthquakes also highlighted the plight of those who were underinsured, prompting policyholders to update their insurance coverage to reflect the estimated cost of re-building their property. The survey has added further evidence to the existing literature, such as those who have had a recent experience with disaster loss report increased risk perception if a similar event happens in future with females reporting a higher risk perception than males. Of the demographic variables, only gender has a relationship with changes in household cover. On the supply-side, this study has built a risk-based pricing model suitable to generate a competitive premium rate for natural disaster insurance cover. Using illustrative data from the Christchurch Red-zone suburbs, the model generates competitive premium rates for catastrophe risk. When the proposed model incorporates the new RMS high-definition New Zealand Earthquake Model, for example, insurers can find the model useful to identify losses at a granular level so as to calculate the competitive premium. This study observes that the key to the success of the New Zealand dual insurance system despite the high prevalence of catastrophe losses are; firstly the EQC’s flat-rate pricing structure keeps private insurance premiums affordable and very high nationwide homeowner take-up rates of natural disaster insurance. Secondly, private insurers and the EQC have an elaborate reinsurance arrangement in place. By efficiently transferring risk to the reinsurer, the cost of writing primary insurance is considerably reduced ultimately expanding primary insurance capacity and supply of insurance coverage.

Research papers, University of Canterbury Library

A 3D high-resolution model of the geologic structure and associated seismic velocities in the Canterbury, New Zealand region is developed utilising data from depthconverted seismic reflection lines, petroleum and water well logs, cone penetration tests, and implicitly guided by existing contour maps and geologic cross sections in data sparse subregions. The model, developed using geostatistical Kriging, explicitly represents the significant and regionally recognisable geologic surfaces that mark the boundaries between geologic units with distinct lithology and age. The model is examined in the form of both geologic surface elevation contour maps as well as vertical cross sections of shear wave velocity, with the most prominent features being the Banks Peninsula Miocene-Pliocene volcanic edifice, and the Pegasus and Rakaia late Mesozoic-Neogene sedimentary basins. The adequacy of the modelled geologic surfaces is assessed through a residual analysis of point constraints used in the Kriging and qualitative comparisons with previous geologic models of subsets of the region. Seismic velocities for the lithological units between the geologic surfaces have also been derived, thus providing the necessary information for a Canterbury velocity model (CantVM) for use in physics-based seismic wave propagation. The developed model also has application for the determination of depths to specified shear wave velocities for use in empirical ground motion modelling, which is explicitly discussed via an example.

Research papers, University of Canterbury Library

The Canterbury region of New Zealand experienced a sequence of strong earthquakes during 2010-2011. Responses included government acquisition of many thousands of residential properties in the city of Christchurch in areas with severe earthquake effects. A large and contiguous tract of this ‘red zoned’ land lies in close proximity to the Ōtākaro / Avon River and is known as the Avon-Ōtākaro Red Zone (AORZ). The focus of this study was to provide an overview of the floodplain characteristics of the AORZ and review of international experience in ecological restoration of similar river margin and floodplain ecosystems to extract restoration principles and associated learnings. Compared to pre-earthquake ground levels, the dominant trend in the AORZ is subsidence, together with lateral movement especially in the vicinity of waterway. An important consequence of land subsidence in the lower Ōtākaro / Avon River is greater exposure to flooding and the effects of sea level rise. Scenario modelling for sea level rise indicates that much of the AORZ is exposed to inundation within a 100 year planning horizon based on a 1 m sea level rise. As with decisions on built infrastructure, investments in nature-based ‘green infrastructure’ also require a sound business case including attention to risks posed by climate change. Future-proofing of the expected benefits of ecological restoration must therefore be secured by design. Understanding and managing the hydrology and floodplain dynamics are vital to the future of the AORZ. However, these characteristics are shared by other floodplain and river restoration projects worldwide. Identifying successful approaches provides a useful a source of useful information for floodplain planning in the AORZ. This report presents results from a comparative case study of three international examples to identify relevant principles for large-scale floodplain management at coastal lowland sites.

Research papers, University of Canterbury Library

Surface rupture and slip from the Mw 7.8 2016 Kaikōura Earthquake have been mapped in the region between the Leader and Charwell rivers using field mapping and LiDAR data. The eastern Humps, north Leader and Conway-Charwell faults ruptured the ground surface in the study area. The E-NE striking ‘The Humps’ Fault runs along the base of the Mt Stewart range front, appears to dip steeply NW and intersects the NNW-NNE Leader Fault which itself terminates northwards at the NE striking Conway-Charwell Fault. The eastern Humps Fault is up to the NW and accommodates oblique slip with reverse and right lateral displacement. Net slip on ‘The Humps’ Fault is ≤4 m and produced ≤4 m uplift of the Mt Stewart range during the earthquake. The Leader Fault strikes NNW-NNE with dips ranging from ~10° west to 80° east and accommodated ≤4 m net slip comprising left-lateral and up-to-the-west vertical displacement. Like the Humps west of the study area, surface-rupture of the Leader Fault occurred on multiple strands. The complexity of rupture on the Leader Fault is in part due to the occurrence of bedding-parallel slip within the Cretaceous-Cenozoic sequence. Although the Mt Stewart range front is bounded by ‘The Humps’ Fault, in the study area neither this fault nor the Leader Fault were known to have been active before the earthquake. Fieldwork and trenching investigations are ongoing to characterise the geometry, kinematics and paleoseismic history of the mapped active faults.

Research papers, University of Canterbury Library

Existing unreinforced masonry (URM) buildings are often composed of traditional construction techniques, with poor connections between walls and diaphragms that results in poor performance when subjected to seismic actions. In these cases the application of the common equivalent static procedure is not applicable because it is not possible to assure “box like” behaviour of the structure. In such conditions the ultimate strength of the structure relies on the behaviour of the macro-elements that compose the deformation mechanisms of the whole structure. These macroelements are a single or combination of structural elements of the structure which are bonded one to each other. The Canterbury earthquake sequence was taken as a reference to estimate the most commonly occurring collapse mechanisms found in New Zealand URM buildings in order to define the most appropriate macroelements.

Research papers, University of Canterbury Library

This thesis seeks to examine how the integration of play, small toys specifically, and the use of solution-focused brief therapy techniques can affect the outcomes for primary school aged children undergoing counselling. The setting is a counselling agency in Christchurch, New Zealand. A qualitative research approach is used and the data analysed using a narrative inquiry approach. The context of this study is the counselling service of an agency where young children, adolescents and their families are helped and supported through a variety of life issues. The counselling the participants are offered uses a combination of a solution-focused and play therapy where the purpose is to encourage clients to find exceptions to their presenting problems and identify their preferred future. The aim of this study is to help the children navigate their problem through a better understanding of and the gaining of personal skills and strengths. Participants were invited to be part of this study through the agency waiting list. The four included presented with a variety of reasons for coming to counselling yet these proved similar to that which the agency has been routinely presented with in the aftermath of the Canterbury earthquakes from 2011 to present day. Each participant had the consent of their parents or caregivers to engage in this project. The participants themselves separately agreed to engage in a solution- focused counselling process where the counsellor also integrated the use of small toys as part of the course. Counselling sessions were audiotaped, aspects photographed and analysed with a specific focus on client engagement. Four key themes emerged as the participants explored their personal narrative. Firstly, the “I’m OK” theme depicted in their first scaling activity, secondly a recognition that things could indeed be better and they needed help. Thirdly, a realisation of their own strengths and skills and finally that the future was an optimistic place to look forward to. These themes are described and explained through descriptions of the participant’s stories as well as self-reflection by the researcher. Transcriptions of sessions are included as are excerpts from the research journal and photographs of the use of the small toys by the children.

Research papers, University of Canterbury Library

Geological research in the immediate aftermath of the 2016 Kaikōura Earthquake, New Zealand, was necessary due to the importance and perishability of field data. It also reflects a real desire on the part of researchers to contribute not only to immediate scientific understanding but also to the societal recovery effort by enhancing knowledge of the event for the benefit of affected communities, civil defence organizations and regional and national decision makers. This commitment to outreach and engagement is consistent with the recent IAPG statement of Geoethics. More immediately, it was informed by experience of the 2010-2011 Canterbury Earthquake sequence. After that earlier disaster, intense interactions between researchers and various response agencies as well as local communities informed the development and dissemination of a set of ethical guidelines for researchers immediately following the Mw7.8 14 November 2016 Kaikōura Earthquake. In this presentation, I argue that ethical engagement of this kind is the key to gathering high quality research data immediately after the event. Creating trusting and mutually respectful, mutually beneficial relationships is also vital to ongoing engagement to facilitate further “in depth” research in collaboration with communities.

Research papers, University of Canterbury Library

The focus of the study presented herein is an assessment of the relative efficacy of recent Cone Penetration Test (CPT) and small strain shear wave velocity (Vs) based variants of the simplified procedure. Towards this end Receiver Operating Characteristic (ROC) analyses were performed on the CPT- and Vs-based procedures using the field case history databases from which the respective procedures were developed. The ROC analyses show that Factors of Safety (FS) against liquefaction computed using the most recent Vs-based simplified procedure is better able to separate the “liquefaction” from the “no liquefaction” case histories in the Vs liquefaction database than the CPT-based procedure is able to separate the “liquefaction” from the “no liquefaction” case histories in the CPT liquefaction database. However, this finding somewhat contradicts the assessed predictive capabilities of the CPT- and Vs-based procedures as quantified using select, high quality liquefaction case histories from the 20102011 Canterbury, New Zealand, Earthquake Sequence (CES), wherein the CPT-based procedure was found to yield more accurate predictions. The dichotomy of these findings may result from the fact that different liquefaction field case history databases were used in the respective ROC analyses for Vs and CPT, while the same case histories were used to evaluate both the CPT- and Vs-based procedures.

Research papers, University of Canterbury Library

Voluntary turnover has been the subject of scholarly inquiry for more than 100 years and much is understood about the drivers of turnover, and the decision-making processes involved. To date most models of voluntary turnover have assumed a rational and sequential decision process, initiated primarily by dissatisfaction with the job and the perceived availability of alternatives. Operating within a strong predictive research agenda, countless studies have sought to validate, extend and refine these traditional models through the addition of distal antecedents, mediators, moderators, and proximal antecedents of turnover. The net result of this research is a large body of empirical support for a somewhat modest relationship between job dissatisfaction, perceived alternatives, turnover intentions, job search behaviour and actual turnover. Far less scholarly attention has been directed at understanding shock-induced turnover that is not necessarily derived from dissatisfaction. Moreover, almost no consideration has been given to understanding how a significant and commonly experienced extra-organisational shock, such as natural disaster, might impact turnover decision making. Additionally, the dynamic and cumulative impacts of multiple shocks on turnover decision making have to date not been examined by turnover researchers. In addressing these gaps this thesis presents a leaver-centric theory of employee turnover decision making that is grounded in the post-disaster context. Data for the study were collected from in-depth interviews with 31 leavers in four large organisations in Christchurch, New Zealand; an area that experienced a major natural disaster in the form of the Canterbury earthquake sequence. This context provided a unique setting in which to study turnover as the primary shock was followed by a series of smaller shocks, resulting in a period of sustained disruption to the pre-shock status quo. Grounded theory methods are used to develop a typology of leaving which describes four distinct patterns of turnover decision making that follow a significant extra-organisational shock. The proposed typology not only addresses the heterogeneous and complex nature of turnover decision making, but also provides a more nuanced explanation of the turnover process explicating how the choice of decision path followed is influenced by four contextual factors which emerged from the data: (1) pre-shock motivational state; (2) decision difficulty; (3) experienced shock magnitude; and (4) the availability of resources. The research findings address several shortcomings in the extant literature on employee turnover, and offer practical recommendations for managers seeking to retain employees in a post-disaster setting.

Research papers, University of Canterbury Library

The south Leader Fault (SLF) is a newly documented active structure that ruptured the surface during the Mw 7.8 Kaikoura earthquake. The Leader Fault is a NNE trending oblique left lateral thrust that links the predominantly right lateral ‘The Humps’ and Conway-Charwell faults. The present research uses LiDAR at 0.5 m resolution and field mapping to determine the factors controlling the surface geometries and kinematics of the south Leader Fault ruptures at the ground surface. The SLF zone is up to 2km wide and comprises a series of echelon NE-striking thrusts linked by near-vertical N-S striking faults. The thrusts are upthrown to the west by up to 1 m and dip 35-45°. Thrust slip surfaces are parallel with Cretaceous-Cenozoic bedding and may reflect flexural slip folding. By contrast, the northerly striking faults dip steeply (65° west- 85° east), and accommodate up to 3m of oblique left lateral displacement at the ground surface and displace Cenozoic bedding. Some of the SLF has been mapped in bedrock, although none were known to be active prior to the earthquake or have a strong topographic expression. The complexity of fault rupture and the width of the fault zone appears to reflect the occurrence of faulting and folding at the ground surface during the earthquake.

Research papers, University of Canterbury Library

Principal contractors can achieve better financial performance in civil construction projects by increasing the proportion of works delivered by subcontractors. However, anecdotally the use of subcontractors is thought to be make principal contractors less competitive due to compounding profit margins. This study found that projects with a higher proportion of subcontracted work exhibit better financial results than projects with less work delivered by subcontractors. This study uses the Christchurch Infrastructure Alliance (known as the Stronger Christchurch Infrastructure Rebuild Team, SCIRT) as a case study to observe why principal contracting firms engage subcontractors and the effect subcontracting has on the overall performance of a construction project. Five top tier civil contracting firms (known as ‘delivery teams’) participated in the alliance. Each team was responsible for the delivery of individual projects. A sample of 334 individual SCIRT projects were analysed, and key delivery team staff were surveyed, to investigate the effect subcontractor engagement has on performance. Between the five delivery teams there were clear differences in how much work was delivered via subcontracts. The extent of this subcontractor engagement had a significant effect on the relative performance of the principal contractor. A positive correlation between subcontractor engagement and overall financial performance is observed, and a negative correlation is observed between subcontractor engagement and non-financial performance. Although the causes of these relationships appear complex, the primary reason appears to be that subcontracting fosters increased productivity by cascading financial performance incentives closer to the physical construction task. To maximise competitiveness and financial performance, principal contractors must embrace the use of subcontractors and develop efficient systems of managing subcontracted work.

Research papers, University of Canterbury Library

This is an ethnographic case study, tracking the course of arguments about the future of a city’s central iconic building, damaged following a major earthquake sequence. The thesis plots this as a social drama and examines the central discourses of the controversy. The focus of the drama is the Anglican neo-Gothic Christ Church Cathedral, which stands in the central square of Christchurch, New Zealand. A series of major earthquakes in 2010/2011 devastated much of the inner city, destroying many heritage-listed buildings. The Cathedral was severely damaged and was declared by Government officials in 2011 to be a dangerous building, which needed to be demolished. The owners are the Church Property Trustees, chaired by Bishop Victoria Matthews, a Canadian appointed in 2008. In March 2012 Matthews announced that the Cathedral, because of safety and economic factors, would be deconstructed. Important artefacts were to be salvaged and a new Cathedral built, incorporating the old and new. This decision provoked a major controversy, led by those who claimed that the building could and should be restored. Discourses of history and heritage, memory, place and identity, ownership, economics and power are all identified, along with the various actors, because of their significance. However, the thesis is primarily concerned with the differing meanings given to the Cathedral. The major argument centres on the symbolic interaction between material objects and human subjects and the various ways these are interpreted. At the end of the research period, December 2015, the Christ Church Cathedral stands as a deteriorating wreck, inhabited by pigeons and rats and shielded by protective, colourfully decorated wooden fences. The decision about its future remains unresolved at the time of writing.

Research papers, University of Canterbury Library

This dissertation addresses a diverse range of topics in the area of physics-based ground motion simulation with particular focus on the Canterbury, New Zealand region. The objectives achieved provide the means to perform hybrid broadband ground motion simulation and subsequently validates the simulation methodology employed. In particu- lar, the following topics are addressed: the development of a 3D seismic velocity model of the Canterbury region for broadband ground motion simulation; the development of a 3D geologic model of the interbedded Quaternary formations to provide insight on observed ground motions; and the investigation of systematic effects through ground motion sim- ulation of small-to-moderate magnitude earthquakes. The paragraphs below outline each contribution in more detail. As a means to perform hybrid broadband ground motion simulation, a 3D model of the geologic structure and associated seismic velocities in the Canterbury region is devel- oped utilising data from depth-converted seismic reflection lines, petroleum and water well logs, cone penetration tests, and implicitly guided by existing contour maps and geologic cross sections in data sparse subregions. The model explicitly characterises five significant and regionally recognisable geologic surfaces that mark the boundaries between geologic units with distinct lithology and age, including the Banks Peninsula volcanics, which are noted to strongly influence seismic wave propagation. The Basement surface represents the base of the Canterbury sedimentary basin, where a large impedance contrast exists re- sulting in basin-generated waves. Seismic velocities for the lithological units between the geologic surfaces are derived from well logs, seismic reflection surveys, root mean square stacking velocities, empirical correlations, and benchmarked against a regional crustal model, thus providing the necessary information for a Canterbury velocity model for use in broadband seismic wave propagation. A 3D high-resolution model of the Quaternary geologic stratigraphic sequence in the Canterbury region is also developed utilising datasets of 527 high-quality water well logs, and 377 near-surface cone penetration test records. The model, developed using geostatistical Kriging, represents the complex interbedded regional Quaternary geology by characterising the boundaries between significant interbedded geologic formations as 3D surfaces including explicit modelling of the formation unconformities resulting from the Banks Peninsula volcanics. The stratigraphic layering present can result in complex wave propagation. The most prevalent trend observed in the surfaces was the downward dip from inland to the eastern coastline as a result of the dominant fluvial depositional environment of the terrestrial gravel formations. The developed model provides a benefi- cial contribution towards developing a comprehensive understanding of recorded ground motions in the region and also providing the necessary information for future site char- acterisation and site response analyses. To highlight the practicality of the model, an example illustrating the role of the model in constraining surface wave analysis-based shear wave velocity profiling is illustrated along with the calculation of transfer functions to quantify the effect of the interbedded geology on wave propagation. Lastly, an investigation of systematic biases in the (Graves and Pitarka, 2010, 2015) ground motion simulation methodology and the specific inputs used for the Canterbury region is presented considering 144 small-to-moderate magnitude earthquakes. In the simulation of these earthquakes, the 3D Canterbury Velocity Model, developed as a part of this dissertation, is used for the low-frequency simulation, and a regional 1D velocity model for the high-frequency simulation. Representative results for individual earthquake sources are first presented to highlight the characteristics of the small-to-moderate mag- nitude earthquake simulations through waveforms, intensity measure scaling with source- to-site distance, and spectral bias of the individual events. Subsequently, a residual de- composition is performed to examine the between- and within-event residuals between observed data, and simulated and empirical predictions. By decomposing the residuals into between- and within-event residuals, the biases in source, path and site effects, and their causes, can be inferred. The residuals are comprehensively examined considering their aggregated characteristics, dependence on predictor variables, spatial distribution, and site-specific effects. The results of the simulation are also benchmarked against empir- ical ground motion models, where their similarities manifest from common components in their prediction. Ultimately, suggestions to improve the predictive capability of the simulations are presented as a result of the analysis.

Research papers, University of Canterbury Library

The term resilience‘’is increasingly being used in a multitude of contexts. Seemingly the latest buzz‘’word, it can mean many things to many people, in many different situations. In a natural hazard context, the terms sustainable planning‘’, and resilience‘planning are now’being used, often interchangeably. This poster provides an overview of resilience and sustainability within a land use planning and natural hazard context, and discusses how they are interrelated in the situation of the earthquake impacted city of Christchurch, New Zealand.

Research papers, University of Canterbury Library

Christchurch City Council (Council) is undertaking the Land Drainage Recovery Programme in order to assess the effects of the earthquakes on flood risk to Christchurch. In the course of these investigations it has become better understood that floodplain management should be considered in a multi natural hazards context. Council have therefore engaged the Jacobs, Beca, University of Canterbury, and HR Wallingford project team to investigate the multihazards in eastern areas of Christchurch and develop flood management options which also consider other natural hazards in that context (i.e. how other hazards contribute to flooding both through temporal and spatial coincidence). The study has three stages:  Stage 1 Gap Analysis – assessment of information known, identification of gaps and studies required to fill the gaps.  Stage 2 Hazard Studies – a gap filling stage with the studies identified in Stage 1.  Stage 3 Collating, Optioneering and Reporting – development of options to manage flood risk. This present report is to document findings of Stage 1 and recommends the studies that should be completed for Stage 2. It has also been important to consider how Stage 3 would be delivered and the gaps are prioritised to provide for this. The level of information available and hazards to consider is extensive; requiring this report to be made up of five parts each identifying individual gaps. A process of identifying information for individual hazards in Christchurch has been undertaken and documented (Part 1) followed by assessing the spatial co-location (Part 2) and probabilistic presence of multi hazards using available information. Part 3 considers multi hazard presence both as a temporal coincidence (e.g. an earthquake and flood occurring at one time) and as a cascade sequence (e.g. earthquake followed by a flood at some point in the future). Council have already undertaken a number of options studies for managing flood risk and these are documented in Part 4. Finally Part 5 provides the Gap Analysis Summary and Recommendations to Council. The key findings of Stage 1 gap analysis are: - The spatial analysis showed eastern Christchurch has a large number of hazards present with only 20% of the study area not being affected by any of the hazards mapped. Over 20% of the study area is exposed to four or more hazards at the frequencies and data available. - The majority of the Residential Red Zone is strongly exposed to multiple hazards, with 86% of the area being exposed to 4 or more hazards, and 24% being exposed to 6 or more hazards. - A wide number of gaps are present; however, prioritisation needs to consider the level of benefit and risks associated with not undertaking the studies. In light of this 10 studies ranging in scale are recommended to be done for the project team to complete the present scope of Stage 3. - Stage 3 will need to consider a number of engineering options to address hazards and compare with policy options; however, Council have not established a consistent policy on managed retreat that can be applied for equal comparison; without which substantial assumptions are required. We recommend Council undertake a study to define a managed retreat framework as an option for the city. - In undertaking Stage 1 with floodplain management as the focal point in a multi hazards context we have identified that Stage 3 requires consideration of options in the context of economics, implementation and residual risk. Presently the scope of work will provide a level of definition for floodplain options; however, this will not be at equal levels of detail for other hazard management options. Therefore, we recommend Council considers undertaking other studies with those key hazards (e.g. Coastal Hazards) as a focal point and identifies the engineering options to address such hazards. Doing so will provide equal levels of information for Council to make an informed and defendable decision on which options are progressed following Stage 3.

Research papers, University of Canterbury Library

Many buildings with relatively low damage from the 2010-2011 Canterbury were deemed uneconomic to repair and were replaced [1,2]. Factors that affected commercial building owners’ decisions to replace rather than repair, included capital availability, uncertainty with regards to regional recovery, local market conditions and ability to generate cash flow, and repair delays due to limited property access (cordon). This poster provides a framework for modeling decision-making in a case where repair is feasible but replacement might offer greater economic value – a situation not currently modeled in engineering risk analysis.

Research papers, University of Canterbury Library

Unreinforced masonry churches in New Zealand, similarly to everywhere else in the word have proven to be highly vulnerable to earthquakes, because of their particular construction features. The Canterbury (New Zealand) earthquake sequence, 2010-2011 caused an invaluable loss of local architectural heritage and of churches, as regrettably, some of them were demolished instead of being repaired. It is critical for New Zealand to advance the data collection, research and understanding pertaining to the seismic performance and protection of church buildings, with the aim to:

Research papers, University of Canterbury Library

Between 2010 and 2011, Canterbury experienced a series of four large earthquake events with associated aftershocks which caused widespread damage to residential and commercial infrastructure. Fine grained and uncompacted alluvial soils, typical to the Canterbury outwash plains, were exposed to high peak ground acceleration (PGA) during these events. This rapid increase in PGA induced cyclic strain softening and liquefaction in the saturated, near surface alluvial soils. Extensive research into understanding the response of soils in Canterbury to dynamic loading has since occurred. The Earthquake Commission (EQC), the Ministry of Business and Employment (MBIE), and the Christchurch City Council (CCC) have quantified the potential hazards associated with future seismic events. Theses bodies have tested numerous ground improvement design methods, and subsequently are at the forefront of the Canterbury recovery and rebuild process. Deep Soil Mixing (DSM) has been proven as a viable ground improvement foundation method used to enhance in situ soils by increasing stiffness and positively altering in situ soil characteristics. However, current industry practice for confirming the effectiveness of the DSM method involves specific laboratory and absolute soil test methods associated with the mixed column element itself. Currently, the response of the soil around the columns to DSM installation is poorly understood. This research aims to understand and quantify the effects of DSM columns on near surface alluvial soils between the DSM columns though the implementation of standardised empirical soil test methods. These soil strength properties and ground improvement changes have been investigated using shear wave velocity (Vs), soil behaviour and density response methods. The results of the three different empirical tests indicated a consistent improvement within the ground around the DSM columns in sandier soils. By contrast, cohesive silty soils portrayed less of a consistent response to DSM, although still recorded increases. Generally, within the tests completed 50 mm from the column edge, the soil response indicated a deterioration to DSM. This is likely to be a result of the destruction of the soil fabric as the stress and strain of DSM is applied to the un‐mixed in situ soils. The results suggest that during the installation of DSM columns, a positive ground effect occurs in a similar way to other methods of ground improvement. However, further research, including additional testing following this empirical method, laboratory testing and finite 2D and 3D modelling, would be useful to quantify, in detail, how in situ soils respond and how practitioners should consider these test results in their designs. This thesis begins to evaluate how alluvial soils tend to respond to DSM. Conducting more testing on the research site, on other sites in Christchurch, and around the world, would provide a more complete data set to confirm the results of this research and enable further evaluation. Completing this additional research could help geotechnical DSM practitioners to use standardised empirical test methods to measure and confirm ground improvement rather than using existing test methods in future DSM projects. Further, demonstrating the effectiveness of empirical test methods in a DSM context is likely to enable more cost effective and efficient testing of DSM columns in future geotechnical projects.

Research papers, University of Canterbury Library

This article examines the representation of Christchurch, New Zealand, student radio station RDU in the exhibition Alternative Radio at the Canterbury Museum in 2016. With the intention of ‘making visible what is invisible’ about radio broadcasting, the exhibition articulated RDU as a point of interconnection between the technical elements of broadcasting, the social and musical culture of station staff and volunteers, and the broader local and national music scenes. This paper is grounded in observations of the exhibitions and associated public programmes, and interviews with the key participants in the exhibition including the museum's exhibition designer and staff from RDU, who acted as independent practitioners in collaboration with the museum. Alternative Radio also addressed the aftermath of the major earthquake of 22 February 2011, when RDU moved into a customised horse truck after losing its broadcast studio. The exhibition came about because of the cultural resonance of the post-quake story, but also emphasised the long history of the station before that event, and located this small student radio station in the broader heritage discourse of the Canterbury museum, activating the historical, cultural, and personal memories of the station's participants and audiences.

Research papers, University of Canterbury Library

© 2017 The Royal Society of New Zealand. This paper discusses simulated ground motion intensity, and its underlying modelling assumptions, for great earthquakes on the Alpine Fault. The simulations utilise the latest understanding of wave propagation physics, kinematic earthquake rupture descriptions and the three-dimensional nature of the Earth's crust in the South Island of New Zealand. The effect of hypocentre location is explicitly examined, which is found to lead to significant differences in ground motion intensities (quantified in the form of peak ground velocity, PGV) over the northern half and southwest of the South Island. Comparison with previously adopted empirical ground motion models also illustrates that the simulations, which explicitly model rupture directivity and basin-generated surface waves, lead to notably larger PGV amplitudes than the empirical predictions in the northern half of the South Island and Canterbury. The simulations performed in this paper have been adopted, as one possible ground motion prediction, in the ‘Project AF8’ Civil Defence Emergency Management exercise scenario. The similarity of the modelled ground motion features with those observed in recent worldwide earthquakes as well as similar simulations in other regions, and the notably higher simulated amplitudes than those from empirical predictions, may warrant a re-examination of regional impact assessments for major Alpine Fault earthquakes.

Research papers, University of Canterbury Library

This study examines the performance of nonlinear total-stress wave-propagation site response analysis for modelling site effects in physics-based ground motion simulations of the 2010-2011 Canterbury, New Zealand earthquake sequence. This approach allows for explicit modeling of 3-dimensional ground motion phenomena at the regional scale, as well as detailed site effects and soil nonlinearity at the local scale. The approach is compared to a more commonly used empirical VS30 (30 m time-averaged shear wave velocity)-based method for computing site amplification as proposed by Graves and Pitarka (2010, 2015).