We present the initial findings from a study of adaptive resilience of lifelines organisations providing essential infrastructure services, in Christchurch, New Zealand following the earthquakes of 2010-2011. Qualitative empirical data was collected from 200 individuals in 11 organisations. Analysis using a grounded theory method identified four major factors that aid organisational response, recovery and renewal following major disruptive events. Our data suggest that quality of top and middle-level leadership, quality of external linkages, level of internal collaboration, ability to learn from experience, and staff well-being and engagement influence adaptive resilience. Our data also suggest that adaptive resilience is a process or capacity, not an outcome and that it is contextual. Post-disaster capacity/resources and post-disaster environment influence the nature of adaptive resilience.
“much of what we know about leadership is today redundant because it is literally designed for a different operating model, a different context, a different time” (Pascale, Sternin, & Sternin, p. 4). This thesis describes a project that was designed with a focus on exploring ways to enhance leadership capacity in non-government organisations operating in Christchurch, New Zealand. It included 20 CEOs, directors and managers from organisations that cover a range of settings, including education, recreation, and residential and community therapeutic support; all working with adolescents. The project involved the creation of a peer-supported professional learning community that operated for 14 months; the design and facilitation of which was informed by the Appreciative Inquiry principles of positive focus and collaboration. At the completion of the research project in February 2010, the leaders decided to continue their collective processes as a self-managing and sustaining professional network that has grown and in 2014 is still flourishing under the title LYNGO (Leaders of Youth focussed NGOs). Two compelling findings emerged from this research project. The first of these relates to efficacy of a complexity thinking framework to inform the actions of these leaders. The leaders in this project described the complexity thinking framework as the most relevant, resonant and dynamic approach that they encountered throughout the research project. As such this thesis explores this complexity thinking informed leadership in detail as the leaders participating in this project believed it offers an opportune alternative to more traditional forms of positional leadership and organisational approaches. This exploration is more than simply a rationale for complexity thinking but an iterative in-depth exploration of ‘complexity leadership in action’ which in Chapter 6 elaborates on detailed leadership tools and frameworks for creating the conditions for self-organisation and emergence. The second compelling finding relates to efficacy of Appreciative Inquiry as an emergent research and development process for leadership learning. In particular the adoption of two key principles; positive focus and inclusivity were beneficial in guiding the responsive leadership learning process that resulted in a professional learning community that exhibited high engagement and sustainability. Additionally, the findings suggest that complexity thinking not only acts as a contemporary framework for adaptive leadership of organisations as stated above; but that complexity thinking has much to offer as a framework for understanding leadership development processes through the application of Appreciative Inquiry (AI)-based principles. A consideration of the components associated with complexity thinking has promise for innovation and creativity in the development of leaders and also in the creation of networks of learning. This thesis concludes by suggesting that leaders focus on creating hybrid organisations, ones which leverage the strengths (and minimise the limitations) of self-organising complexity-informed organisational processes, while at the same time retaining many of the strengths of more traditional organisational management structures. This approach is applied anecdotally to the place where this study was situated: the post-earthquake recovery of Christchurch, New Zealand.
Following a disaster, an organisation’s ability to recover is influenced by its internal capacities, but also by the people, organisations, and places to which it is connected. Current approaches to organisational resilience tend to focus predominantly on an organization's internal capacities and do not adequately consider the place-based contexts and networks in which it is embedded. This thesis explores how organisations’ connections may both hinder and enable organisational resilience. Organisations in the Canterbury region of New Zealand experienced significant and repeated disruptions as a result of two major earthquakes and thousands of aftershocks throughout 2010 and 2011. This thesis draws upon 32 case studies of organisations located in three severely damaged town centres in Canterbury to assess the influence that organisations’ place-based connections and relational networks had on their post-earthquake trajectories. The research has four objectives: 1) to examine the ways organisations connected to their local contexts both before and after the earthquakes, 2) to explore the characteristics of the formal and informal networks organisations used to aid their response and recovery, 3) to identify the ways organisations’ connections to their local contexts and support networks influenced their ability to recover following the earthquakes, and finally, 4) to develop approaches to assess resilience that consider these extra-organisational connections. The thesis contests the fiction that organisations recover and adapt independently from their contexts following disasters. Although organisations have a set of internal capacities that enable their post-disaster recovery, they are embedded within external structures that constrain and enable their adaptive options following a disaster. An approach which considers organisations’ contexts and networks as potential sources of organisational resilience has both conceptual and practical value. Refining our understanding of the influence of extra-organisational connections can improve our ability to explain variability in organisational outcomes following disasters and foster new ways to develop and manage organisational resilience.
The magnitude 6.2 Christchurch earthquake struck the city of Christchurch at 12:51pm on February 22, 2011. The earthquake caused 186 fatalities, a large number of injuries, and resulted in widespread damage to the built environment, including significant disruption to lifeline networks and health care facilities. Critical facilities, such as public and private hospitals, government, non-government and private emergency services, physicians’ offices, clinics and others were severely impacted by this seismic event. Despite these challenges many systems were able to adapt and cope. This thesis presents the physical and functional impact of the Christchurch earthquake on the regional public healthcare system by analysing how it adapted to respond to the emergency and continued to provide health services. Firstly, it assesses the seismic performance of the facilities, mechanical and medical equipment, building contents, internal services and back-up resources. Secondly, it investigates the reduction of functionality for clinical and non-clinical services, induced by the structural and non-structural damage. Thirdly it assesses the impact on single facilities and the redundancy of the health system as a whole following damage to the road, power, water, and wastewater networks. Finally, it assesses the healthcare network's ability to operate under reduced and surged conditions. The effectiveness of a variety of seismic vulnerability preparedness and reduction methods are critically reviewed by comparing the observed performances with the predicted outcomes of the seismic vulnerability and disaster preparedness models. Original methodology is proposed in the thesis which was generated by adapting and building on existing methods. The methodology can be used to predict the geographical distribution of functional loss, the residual capacity and the patient transfer travel time for hospital networks following earthquakes. The methodology is used to define the factors which contributed to the overall resilence of the Canterbury hospital network and the areas which decreased the resilence. The results show that the factors which contributed to the resilence, as well as the factors which caused damage and functionality loss were difficult to foresee and plan for. The non-structural damage to utilities and suspended ceilings was far more disruptive to the provision of healthcare than the minor structural damage to buildings. The physical damage to the healthcare network reduced the capacity, which has further strained a health care system already under pressure. Providing the already high rate of occupancy prior to the Christchurch earthquake the Canterbury healthcare network has still provided adequate healthcare to the community.
Coastal margins are exposed to rising sea levels that present challenging circumstances for natural resource management. This study investigates a rare example of tectonic displacement caused by earthquakes that generated rapid sea-level change in a tidal lagoon system typical of many worldwide. This thesis begins by evaluating the coastal squeeze effects caused by interactions between relative sea-level (RSL) rise and the built environment of Christchurch, New Zealand, and also examples of release from similar effects in areas of uplift where land reclamations were already present. Quantification of area gains and losses demonstrated the importance of natural lagoon expansion into areas of suitable elevation under conditions of RSL rise and showed that they may be necessary to offset coastal squeeze losses experienced elsewhere. Implications of these spatial effects include the need to provide accommodation space for natural ecosystems under RSL rise, yet other land-uses are likely to be present in the areas required. Consequently, the resilience of these environments depends on facilitating transitions between human land-uses either proactively or in response to disaster events. Principles illustrated by co-seismic sea-level change are generally applicable to climate change adaptation due to the similarity of inundation effects. Furthermore, they highlight the potential role of non-climatic factors in determining the overall trajectory of change. Chapter 2 quantifies impacts on riparian wetland ecosystems over an eight year period post- quake. Coastal wetlands were overwhelmed by RSL rise and recovery trajectories were surprisingly slow. Four risk factors were identified from the observed changes: 1) the encroachment of anthropogenic land-uses, 2) connectivity losses between areas of suitable elevation, 3) the disproportionate effect of larger wetland vulnerabilities, and 4) the need to protect new areas to address the future movement of ecosystems. Chapter 3 evaluates the unique context of shoreline management on a barrier sandspit under sea-level rise. A linked scenario approach was used to evaluate changes on the open coast and estuarine shorelines simultaneously and consider combined effects. The results show dune loss from a third of the study area using a sea-level rise scenario of 1 m over 100 years and with continuation of current land-uses. Increased exposure to natural hazards and accompanying demand for seawalls is a likely consequence unless natural alternatives can be progressed. In contrast, an example of managed retreat following earthquake-induced subsidence of the backshore presents a new opportunity to restart saltmarsh accretion processes seaward of coastal defences with the potential to reverse decades of degradation and build sea-level rise resilience. Considering both shorelines simultaneously highlights the existence of pinch-points from opposing forces that result in small land volumes above the tidal range. Societal adaptation is delicately poised between the paradigms of resisting or accommodating nature and challenged by the long perimeter and confined nature of the sandspit feature. The remaining chapters address the potential for salinity effects caused by tidal prism changes with a focus on the conservation of īnanga (Galaxias maculatus), a culturally important fish that supports New Zealand‘s whitebait fishery. Methodologies were developed to test the hypothesis that RSL changes would drive a shift in the distribution of spawning sites with implications for their management. Chapter 4 describes a new practical methodology for quantifying the total productivity and spatiotemporal variability of spawning sites at catchment scale. Chapter 5 describes the novel use of artificial habitats as a detection tools to help overcome field survey limitations in degraded environments where egg mortality can be high. The results showed that RSL changes resulted in major shifts in spawning locations and these were associated with new patterns of vulnerability due to the continuation of pre-disturbance land-uses. Unexpected findings includes an improved understanding of the spatial relationship between salinity and spawning habitat, and identification of an invasive plant species as important spawning habitat, both with practical management implications. To conclude, the design of legal protection mechanisms was evaluated in relation to the observed habitat shifts and with a focus on two new planning initiatives that identified relatively large protected areas (PAs) in the lower river corridors. Although the larger PAs were better able to accommodate the observed habitat shifts inefficiencies were also apparent due to spatial disparities between PA boundaries and the values requiring protection. To reduce unnecessary trade-offs with other land-uses, PAs of sufficient size to cover the observable spatiotemporal variability and coupled with adaptive capacity to address future change may offer a high effectiveness from a network of smaller PAs. The latter may be informed by both monitoring and modelling of future shifts and these are expected to include upstream habitat migration driven by the identified salinity relationships and eustatic sea-level rise. The thesis concludes with a summary of the knowledge gained from this research that can assist the development of a new paradigm of environmental sustainability incorporating conservation and climate change adaptation. Several promising directions for future research identified within this project are also discussed.