Search

found 6 results

Research papers, University of Canterbury Library

The paper presents preliminary findings from comprehensive research studies on the liquefaction-induced damage to buildings and infrastructure in Christchurch during the 2010-2011 Canterbury earthquakes. It identifies key factors and mechanisms of damage to road bridges, shallow foundations of CBD buildings and buried pipelines, and highlights the implications of the findings for the seismic analysis and design of these structures.

Research papers, University of Canterbury Library

This paper develops representative ground motion ensembles for several major earthquake scenarios in New Zealand. Cases considered include representative ground motions for the occurrence of Alpine, Hope, and Porters Pass earthquakes in Christchurch, and the occurrence of Wellington, Wairarapa, and Ohariu, fault ruptures in Wellington. Challenges in the development of ground motion ensembles for subduction zone earthquakes are also highlighted. The ground motions are selected based on the generalized conditional intensity measure (GCIM) approach, ensuring that the ground motion ensembles represent both the mean, and distribution of ground motion intensity which such scenarios could impose. These scenario-based ground motion sets can be used to complement ground motions which are often selected in conjunction with probabilistic seismic hazard analysis, in order to understand the performance of structures for the question “what if this fault ruptures?”

Research papers, University of Canterbury Library

Following the 2010-2011 earthquakes in Canterbury, New Zealand, the University of Canterbury (UC) was faced with the need to respond to major challenges in its teaching and learning environment. With the recognition of education as a key component to the recovery of the Canterbury region, UC developed a plan for the transformation and renewal of the campus. Central to this renewal is human capital – graduates who are distinctly resilient and broadly skilled, owing in part to their living and rebuilding through a disaster. Six desired graduate attributes have been articulated through this process: knowledge and skills of a recognized subject, critical thinking skills, the ability to interpret information from a range of sources, the ability to self-direct learning, cultural competence, and the recognition of global connections through social, ethical, and environmental values. All of these attributes may readily be identified in undergraduate geoscience field education and graduate field-based studies, and this is particularly important to highlight in a climate where the logistical and financial requirements of fieldwork are becoming a barrier to its inclusion in undergraduate curricula. Fieldwork develops discipline-specific knowledge and skills and fosters independent and critical thought. It encourages students to recognize and elaborate upon relevant information, plan ways to solve complicated problems, execute and re-evaluate these plans. These decisions are largely made by the learners, who often direct their own field experience. The latter two key graduate attributes, cultural competence and global recognition of socio-environmental values, have been explicitly addressed in field education elsewhere and there is potential to do so within the New Zealand context. These concepts are inherent to the sense of place of geoscience undergraduates and are particularly important when the field experience is viewed through the lens of landscape heritage. This work highlights the need to understand how geoscience students interact with field places, with unique implications for their cultural and socio-environmental awareness as global citizens, as well as the influence that field pedagogy has on these factors.

Research papers, University of Canterbury Library

Case study analysis of the 2010-2011 Canterbury Earthquake Sequence (CES), which particularly impacted Christchurch City, New Zealand, has highlighted the value of practical, standardised and coordinated post-earthquake geotechnical response guidelines for earthquake-induced landslides in urban areas. The 22nd February 2011 earthquake, the second largest magnitude event in the CES, initiated a series of rockfall, cliff collapse and loess failures around the Port Hills which severely impacted the south-eastern part of Christchurch. The extensive slope failure induced by the 22nd February 200 earthquake was unprecedented; and ground motions experienced significantly exceeded the probabilistic seismic hazard model for Canterbury. Earthquake-induced landslides initiated by the 22nd February 2011 earthquake posed risk to life safety, and caused widespread damage to dwellings and critical infrastructure. In the immediate aftermath of the 22nd February 2011 earthquake, the geotechnical community responded by deploying into the Port Hills to conduct assessment of slope failure hazards and life safety risk. Coordination within the voluntary geotechnical response group evolved rapidly within the first week post-earthquake. The lack of pre-event planning to guide coordinated geotechnical response hindered the execution of timely and transparent management of life safety risk from coseismic landslides in the initial week after the earthquake. Semi-structured interviews were conducted with municipal, management and operational organisations involved in the geotechnical response during the CES. Analysis of interview dialogue highlighted the temporal evolution of priorities and tasks during emergency response to coseismic slope failure, which was further developed into a phased conceptual model to inform future geotechnical response. Review of geotechnical responses to selected historical earthquakes (Northridge, 1994; Chi-Chi, 1999; Wenchuan, 2008) has enabled comparison between international practice and local response strategies, and has emphasised the value of pre-earthquake preparation, indicating the importance of integration of geotechnical response within national emergency management plans. Furthermore, analysis of the CES and international earthquakes has informed pragmatic recommendations for future response to coseismic slope failure. Recommendations for future response to earthquake-induced landslides presented in this thesis include: the integration of post-earthquake geotechnical response with national Civil Defence and Emergency Management; pre-earthquake development of an adaptive management structure and standard slope assessment format for geotechnical response; and emergency management training for geotechnical professionals. Post-earthquake response recommendations include the development of geographic sectors within the area impacted by coseismic slope failure, and the development of a GIS database for analysis and management of data collected during ground reconnaissance. Recommendations provided in this thesis aim to inform development of national guidelines for geotechnical response to earthquake-induced landslides in New Zealand, and prompt debate concerning international best practice.

Research papers, University of Canterbury Library

Generalized conditional intensity measure (GCIM) method is extended to ground motion selection for scenario ruptures. Using different rupture scenarios and site conditions, various aspects of the GCIM methodology are scrutinized, including: (i) implementation of different weight vectors and the composition of the IM vector; (ii) quantifying the importance of replicate selections for different number of desired ground motions; and (iii) the effect of considering bounds on the implicit causal parameters of the prospective ground motions. Using the extended methodology, representative ground motion ensembles for several major earthquake scenarios in New Zealand are developed. Cases considered include representative ground motions for the occurrence of Alpine, Hope, and Porters Pass earthquakes in Christchurch city, and the occurrence of Wellington, Wairarapa, and Ohariu fault ruptures in Wellington city. Challenges in the development of ground motion ensembles for subduction zone earthquakes are also highlighted. The selected scenario-based ground motion sets can be used to complement ground motions which are often selected in conjunction with probabilistic seismic hazard analysis, in order to understand the performance of structures for the question “what if this fault ruptures?”

Research papers, University of Canterbury Library

Generalized conditional intensity measure (GCIM) method is extended to ground motion selection for scenario ruptures. Using different rupture scenarios and site conditions, various aspects of the GCIM methodology are scrutinized, including: (i) implementation of different weight vectors and the composition of the IM vector; (ii) quantifying the importance of replicate selections for different number of desired ground motions; and (iii) the effect of considering bounds on the implicit causal parameters of the prospective ground motions. Using the extended methodology, representative ground motion ensembles for several major earthquake scenarios in New Zealand are developed. Cases considered include representative ground motions for the occurrence of Alpine, Hope, and Porters Pass earthquakes in Christchurch city, and the occurrence of Wellington, Wairarapa, and Ohariu fault ruptures in Wellington city. Challenges in the development of ground motion ensembles for subduction zone earthquakes are also highlighted. The selected scenario-based ground motion sets can be used to complement ground motions which are often selected in conjunction with probabilistic seismic hazard analysis, in order to understand the performance of structures for the question “what if this fault ruptures?”