Search

found 4 results

Research papers, University of Canterbury Library

Based on the recent developments on alternative jointed ductile dry connections for concrete multistorey buildings, the paper aims to extend and propose similar innovative seismic connections for laminated veneer lumber (LVL) timber buildings. The dry connections herein proposed are characterised by a sort of rocking occurring at the section interface of the structural elements when an earthquake occurs; unbonded post-tensioned techniques and dissipative devices respectively provide self-centring and dissipation capacities. The paper illustrates some experimental investigations of an extensive campaign, still undergoing at the University of Canterbury Christchurch, NZ) are herein presented and critically discussed. In particular, results of cyclic quasi-static testing on exterior beam-column subassemblies and wall-to-foundation systems are herein presented; preliminary results of pseudo-dynamic testing on wall-to-foundation specimens are also illustrated. The research investigations confirmed the enhanced seismic performance of these systems/connections; three key aspects , as the no-damageability in the structural elements, typical “flag-shape” cyclic behaviour (with self-centring and dissipation capacity), negligible residual deformations, i.e. limited costs of repair, joined with low mass, flexibility of design and rapidity of construction LVL timber, all create the potential for an increased use in low-rise multistorey buildings.

Research papers, University of Canterbury Library

Describes an extensive experimental program at the University of Canterbury, for the development of new structural systems and connections for multi-storey laminated veneer lumber (LVL) timber buildings in earthquake-prone areas. The proposed innovative ductile timber connections are conceptually similar to recent seismic solutions successfully developed for precast concrete multi- storey buildings. The paper gives an overview of the research program, and the results of quasi-static cyclic tests on frame subassemblies, including exterior beam-column joints and cantilever columns, as well as pseudo-dynamic tests on cantilever columns. The experimental results showed significant dissipation of hysteretic energy, good self-centering capacity and no appreciable damage of the structural elements, confirming the expected enhanced performance of the proposed structural systems.

Research papers, University of Canterbury Library

This paper describes part of an extensive experimental programme in progress at the University of Canterbury to develop Laminated Veneer Lumber (LVL) structural systems and connections for multistorey timber buildings in earthquake-prone areas. The higher mechanical properties of LVL, when compared to sawn timber, in addition to its low mass, flexibility of design and rapidity of construction, create the potential for increased use of LVL in multi-storey buildings. The development of these innovative ductile connections in LVL, proposed here for frame systems, have been based on the successful implementation of jointed ductile connections for precast concrete systems, started in the early 1990s with the PRESSS Program at the University of California, San Diego, further developed in Italy and currently under further refinement at the University of Canterbury. This paper investigates the seismic behaviour of the so-called “hybrid” connection, characterised by the combination of unbonded post-tensioned tendons and either external or internal energy dissipaters passing through the critical contact surface between the structural elements. Experimental results on hybrid exterior beam-to-column and column-to-foundation subassemblies under cyclic quasi-static unidirectional loading are presented. The proposed innovative solutions exhibit a very satisfactory seismic performance characterised by an appreciable energy dissipation capacity (provided by the dissipaters) combined with self-centring properties (provided by the unbonded tendons) and negligible damage of the LVL structural elements.

Research papers, University of Canterbury Library

A seismic financial risk analysis of typical New Zealand reinforced concrete buildings constructed with topped precast concrete hollow-core units is performed on the basis of experimental research undertaken at the University of Canterbury over the last five years. An extensive study that examines seismic demands on a variety of multi-storey RC buildings is described and supplemented by the experimental results to determine the inter-storey drift capacities of the buildings. Results of a full-scale precast concrete super-assemblage constructed and tested in the laboratory in two stages are used. The first stage investigates existing construction and demonstrates major shortcomings in construction practice that would lead to very poor seismic performance. The second stage examines the performance of the details provided by Amendment No. 3 to the New Zealand Concrete Design Code NZS 3101:1995. This paper uses a probabilistic financial risk assessment framework to estimate the expected annual loss (EAL) from previously developed fragility curves of RC buildings with precast hollow core floors connected to the frames according to the pre-2004 standard and the two connection details recommended in the 2004 amendment. Risks posed by different levels of damage and by earthquakes of different frequencies are examined. The structural performance and financial implications of the three different connection details are compared. The study shows that the improved connection details recommended in the 2004 amendment give a significant economic payback in terms of drastically reduced financial risk, which is also representative of smaller maintenance cost and cheaper insurance premiums.