Search

found 55 results

Research papers, University of Canterbury Library

The Mw 7.1 Darfield earthquake generated a ~30 km long surface rupture on the Greendale Fault and significant surface deformation related to related blind faults on a previously unrecognized fault system beneath the Canterbury Plains. This earthquake provided the opportunity for research into the patterns and mechanisms of co-seismic and post-seismic crustal deformation. In this thesis I use multiple across-fault EDM surveys, logic trees, surface investigations and deformation feature mapping, seismic reflection surveying, and survey mark (cadastral) re-occupation using GPS to quantify surface displacements at a variety of temporal and spatial scales. My field mapping investigations identified shaking and crustal displacement-induced surface deformation features south and southwest of Christchurch and in the vicinity of the projected surface traces of the Hororata Blind and Charing Cross Faults. The data are consistent with the high peak ground accelerations and broad surface warping due to underlying reverse faulting on the Hororata Blind Fault and Charing Cross Fault. I measured varying amounts of post-seismic displacement at four of five locations that crossed the Greendale Fault. None of the data showed evidence for localized dextral creep on the Greendale Fault surface trace, consistent with other studies showing only minimal regional post-seismic deformation. Instead, the post-seismic deformation field suggests an apparent westward translation of northern parts of the across-fault surveys relative to the southern parts of the surveys that I attribute to post-mainshock creep on blind thrusts and/or other unidentified structures. The seismic surveys identified a deformation zone in the gravels that we attribute to the Hororata Blind Fault but the Charing Cross fault was not able to be identified on the survey. Cadastral re-surveys indicate a deformation field consistent with previously published geodetic data. We use this deformation with regional strain rates to estimate earthquake recurrence intervals of ~7000 to > 14,000 yrs on the Hororata Blind and Charing Cross Faults.

Research papers, University of Canterbury Library

The Avon-Heathcote Estuary, located in Christchurch, New Zealand, experienced coseismic deformation as a result of the February 22nd 2011 Christchurch Earthquake. The deformation is reflected as subsidence in the northern area and uplift in the southern area of the Estuary, in addition to sand volcanoes which forced up sediment throughout the floor of the Estuary altering estuary bed height and tidal flow. The first part of the research involved quantifying the change in the modern benthic foraminifera distribution as a result of the coseismic deformation caused by the February 22nd 2011 earthquake. By analysing the taxa present immediately post deformation and then the taxa present 2 years post deformation a comparison of the benthic foraminifera distribution can be made of the pre and post deformation. Both the northern and the southern areas of the Estuary were sampled to establish whether foraminifera faunas migrated landward or seaward as a result of subsidence and uplift experienced in different areas. There was no statistical change in overall species distribution in the two year time period since the coseismic deformation occurred, however, there were some noticeable changes in foraminifera distribution at BSNS-Z3 showing a landward migration of taxa. The changes that were predicted to occur as a result of the deformation of the Estuary are taking longer than expected to show up in the foraminiferal record and a longer time period is needed to establish these changes. The second stage involved establishing the modern distribution of foraminifera at Settlers Reserve in the southern area of the Avon-Heathcote Estuary by detailed sampling along a 160 m transect. Foraminifera are sensitive to environmental parameters, tidal height, grainsize, pH and salinity were recorded to evaluate the effect these parameters have on distribution. Bray-Curtis two-way cluster analysis was primarily used to assess the distribution pattern of foraminifera. The modern foraminifera distribution is comparable to that of the modern day New Zealand brackish-water benthic foraminifera distribution and includes species not yet found in other studies of the Avon-Heathcote Estuary. Differences in sampling techniques and the restricted intertidal marshland area where the transect samples were collected account for some of the differences seen between this model and past foraminifera studies. xiii The final stage involved sampling a 2.20 m core collected from Settlers Reserve and using the modern foraminiferal distribution to establish a foraminiferal history of Settlers Reserve. As foraminifera are sensitive to tidal height they may record past coseismic deformation events and the core was used to ascertain whether record of past coseismic deformation is preserved in Settlers Reserve sediments. Sampling the core for foraminifera, grainsize, trace metals and carbon material helped to build a story of estuary development. Using the modern foraminiferal distribution and the tidal height information collected, a down core model of past tidal heights was established to determine past rates of change. Foraminifera are not well preserved throughout the core, however, a sudden relative rise in sea level is recorded between 0.25 m and 0.85 m. Using trace metal and isotope analysis to develop an age profile, this sea level rise is interpreted to record coseismic subsidence associated with a palaeoseismic event in the early 1900’s. Overall, although the Avon-Heathcote Estuary experienced clear coseismic deformation as a result of the 22nd of February 2011 earthquake, modern changes in foraminiferal distribution cannot yet be tracked, however, past seismic deformation is identified in a core. The modern transect describes the foraminifera distribution which identifies species that have not been identified in the Avon-Heathcote Estuary before. This thesis enhances the current knowledge of the Avon-Heathcote Estuary and is a baseline for future studies.

Research papers, University of Canterbury Library

In the period between September 2010 and December 2011, Christchurch was shaken by a series of strong earthquakes including the MW7.1 4 September 2010, Mw 6.2 22 February 2011, MW6.2 13 June 2011 and MW6.0 23 December 2011 earthquakes. These earthquakes produced very strong ground motions throughout the city and surrounding areas that resulted in soil liquefaction and lateral spreading causing substantial damage to buildings, infrastructure and the community. The stopbank network along the Kaiapoi and Avon River suffered extensive damage with repairs projected to take several years to complete. This presented an opportunity to undertake a case-study on a regional scale of the effects of liquefaction on a stopbank system. Ultimately, this information can be used to determine simple performance-based concepts that can be applied in practice to improve the resilience of river protection works. The research presented in this thesis draws from data collected following the 4th September 2010 and 22nd February 2011 earthquakes. The stopbank damage is categorised into seven key deformation modes that were interpreted from aerial photographs, consultant reports, damage photographs and site visits. Each deformation mode provides an assessment of the observed mechanism of failure behind liquefaction-induced stopbank damage and the factors that influence a particular style of deformation. The deformation modes have been used to create a severity classification for the whole stopbank system, being ‘no or low damage’ and ‘major or severe damage’, in order to discriminate the indicators and factors that contribute to ‘major to severe damage’ from the factors that contribute to all levels of damage a number of calculated, land damage, stopbank damage and geomorphological parameters were analysed and compared at 178 locations along the Kaiapoi and Avon River stopbank systems. A critical liquefiable layer was present at every location with relatively consistent geotechnical parameters (cone resistance (qc), soil behaviour type (Ic) and Factor of Safety (FoS)) across the study site. In 95% of the cases the critical layer occurred within two times the Height of the Free Face (HFF,). A statistical analysis of the geotechnical factors relating to the critical layer was undertaken in order to find correlations between specific deformation modes and geotechnical factors. It was found that each individual deformation mode involves a complex interplay of factors that are difficult to represent through correlative analysis. There was, however, sufficient data to derive the key factors that have affected the severity of deformation. It was concluded that stopbank damage is directly related to the presence of liquefaction in the ground materials beneath the stopbanks, but is not critical in determining the type or severity of damage, instead it is merely the triggering mechanism. Once liquefaction is triggered it is the gravity-induced deformation that causes the damage rather than the shaking duration. Lateral spreading and specifically the depositional setting was found to be the key aspect in determining the severity and type of deformation along the stopbank system. The presence or absence of abandoned or old river channels and point bar deposits was found to significantly influence the severity and type of deformation. A review of digital elevation models and old maps along the Kaiapoi River found that all of the ‘major to severe’ damage observed occurred within or directly adjacent to an abandoned river channel. Whilst a review of the geomorphology along the Avon River showed that every location within a point bar deposit suffered some form of damage, due to the depositional environment creating a deposit highly susceptible to liquefaction.

Research papers, University of Canterbury Library

This paper provides a photographic tour of the ground-surface rupture features of the Greendale Fault, formed during the 4th September 2010 Darfield Earthquake. The fault, previously unknown, produced at least 29.5 km of strike-slip surface deformation of right-lateral (dextral) sense. Deformation, spread over a zone between 30 and 300 m wide, consisted mostly of horizontal flexure with subsidiary discrete shears, the latter only prominent where overall displacement across the zone exceeded about 1.5 m. A remarkable feature of this event was its location in an intensively farmed landscape, where a multitude of straight markers, such as fences, roads and ditches, allowed precise measurements of offsets, and permitted well-defined limits to be placed on the length and widths of the surface rupture deformation.

Research papers, University of Canterbury Library

Surface rupture of the previously unrecognised Greendale Fault extended west-east for ~30 km across alluvial plains west of Christchurch, New Zealand, during the Mw 7.1 Darfield (Canterbury) earthquake of September 2010. Surface rupture displacement was predominantly dextral strike-slip, averaging ~2.5 m, with maxima of ~5 m. Vertical displacement was generally less than 0.75 m. The surface rupture deformation zone ranged in width from ~30 to 300 m, and comprised discrete shears, localised bulges and, primarily, horizontal dextral flexure. About a dozen buildings, mainly single-storey houses and farm sheds, were affected by surface rupture, but none collapsed, largely because most of the buildings were relatively flexible and resilient timber-framed structures and also because deformation was distributed over a relatively wide zone. There were, however, notable differences in the respective performances of the buildings. Houses with only lightly-reinforced concrete slab foundations suffered moderate to severe structural and non-structural damage. Three other buildings performed more favourably: one had a robust concrete slab foundation, another had a shallow-seated pile foundation that isolated ground deformation from the superstructure, and the third had a structural system that enabled the house to tilt and rotate as a rigid body. Roads, power lines, underground pipes, and fences were also deformed by surface fault rupture and suffered damage commensurate with the type of feature, its orientation to the fault, and the amount, sense and width of surface rupture deformation.

Research papers, University of Canterbury Library

Oblique-convergent plate collision between the Pacific and Australian plates across the South Island has resulted in shallow, upper crustal earthquake activity and ground surface deformation. In particular the Porters Pass - Amberley Fault Zone displays a complex hybrid zone of anastomosing dextral strike-slip and thrust/reverse faulting which includes the thrust/reverse Lees Valley Fault Zone and associated basin deformation. There is a knowledge gap with respect to the paleoseismicity of many of the faults in this region including the Lees Valley Fault Zone. This study aimed to investigate the earthquake history of the fault at a selected location and the structural and geomorphic development of the Lees Valley Fault Zone and eastern rangefront. This was investigated through extensive structural and geomorphic mapping, GPS field surveying, vertical aerial photo interpretation, analysis of Digital Elevation Models, paleoseismic trenching and optically stimulated luminescence dating. This thesis used a published model for tectonic geomorphology development of mountain rangefronts to understand the development of Lees Valley. Rangefront geomorphology is investigated through analysis of features such as rangefront sinuosity and faceted spurs and indicates the recently active and episodic nature of the uplifted rangefront. Analysis of fault discontinuity, fault splays, distribution of displacement, fault deformation zone and limited exposure of bedrock provided insight into the complex structure of the fault zone. These observations revealed preserved, earlier rangefronts, abandoned and uplifted within the eastern ranges, indicating a basinward shift in focus of faulting and an imbricate thrust wedge development propagating into the footwall of the fault zone and along the eastern ranges of Lees Valley. Fault scarp deformation analysis indicated multiple events have produced the deformation present preserved by the active fault trace in the northern valley. Vertical deformation along this scarp varied with a maximum of 11.5 m and an average of 5 m. Field mapping revealed fan surfaces of various ages have been offset and deformed, likely during the Holocene, based on expected relative surface ages. Geomorphic and structural mapping highlighted the effect of cross-cutting and inherited structures on the Lees Valley Fault, resulting in a step-over development in the centre of the eastern range-bounding trace. Paleoseismic trenching provided evidence of at least two earthquakes, which were constrained to post 21.6 ± 2.3 ka by optically stimulated luminescence dating. Single event displacements (1.48 ± 0.08 m), surface rupture earthquake magnitudes (Mw 6.7 ± 0.1, with potential to produce ≥ 7.0), and a minimum recurrence interval (3.6 ± 0.3 ka) indicated the Lees Valley Fault is an active structure capable of producing significant earthquake events. Results from this study indicate that the Lees Valley Fault Zone accommodates an important component of the Porters Pass - Amberley Fault Zone deformation and confirms the fault as a source of potentially damaging, peak ground accelerations in the Canterbury region. Remnants of previous rangefronts indicate a thrust wedge development of the Lees Valley Fault Zone and associated ranges that can potentially be used as a model of development for other thrust-fault bounded basins.

Research papers, University of Canterbury Library

Severe liquefaction was repeatedly observed during the 2010 - 2011 C hristchurch earthquake s , particularly affecting deposits of fine sands and silty sands of recent fluvial or estuarine origin. The effects of liquefaction included major sliding of soil tow ard water bodies ( i.e. lateral spreading ) rang ing from centimetres to several metres. In this paper, a series of undrained cyclic torsional shear tests were conducted to evaluate the liquefaction and extremely large deformation properties of Christchurch b oiled sand . In these tests, the simple shear conditions were reproduced in order to apply realistic stress conditions that soil s experience in the field during horizontal seismic shaking. Several hollow cylindrical medium dense specimens ( D r = 50%) were pr epared by pluviation method, isotropically consolidated at an effective stress of 100 kPa and then cyclically sheared under undrained conditions up to 10 0% double amplitude shear strain (γ DA ) . The cyclic strength at different levels of γ DA of 7.5%, 15%, 3 0 % and 6 0%, development of extremely large post - liquefaction deformation and shear strain locali s ation properties were assessed from the analysis of the effective stress paths and stress - strain responses . To reveal possible distinctiveness, the cyclic undra ined behaviour of CHCH boiled sand was compared with that of Toyoura sand previously examined under similar testing conditions

Research papers, University of Canterbury Library

Bulk rock strength is greatly dependent on fracture density, so that reductions in rock strength associated with faulting and fracturing should be reflected by reduced shear coupling and hence S-wave velocity. This study is carried out along the Canterbury rangefront and in Otago. Both lie within the broader plate boundary deformation zone in the South Island of New Zealand. Therefore built structures are often, , located in areas where there are undetected or poorly defined faults with associated rock strength reduction. Where structures are sited near to, or across, such faults or fault-zones, they may sustain both shaking and ground deformation damage during an earthquake. Within this zone, management of seismic hazards needs to be based on accurate identification of the potential fault damage zone including the likely width of off-plane deformation. Lateral S-wave velocity variability provides one method of imaging and locating damage zones and off-plane deformation. This research demonstrates the utility of Multi-Channel Analysis of Surface Waves (MASW) to aid land-use planning in such fault-prone settings. Fundamentally, MASW uses surface wave dispersive characteristics to model a near surface profile of S-wave velocity variability as a proxy for bulk rock strength. The technique can aid fault-zone planning not only by locating and defining the extent of fault-zones, but also by defining within-zone variability that is readily correlated with measurable rock properties applicable to both foundation design and the distribution of surface deformation. The calibration sites presented here have well defined field relationships and known fault-zone exposure close to potential MASW survey sites. They were selected to represent a range of progressively softer lithologies from intact and fractured Torlesse Group basement hard rock (Dalethorpe) through softer Tertiary cover sediments (Boby’s Creek) and Quaternary gravels. This facilitated initial calibration of fracture intensity at a high-velocity-contrast site followed by exploration of the limits of shear zone resolution at lower velocity contrasts. Site models were constructed in AutoCAD in order to demonstrate spatial correlations between S-wave velocity and fault zone features. Site geology was incorporated in the models, along with geomorphology, river profiles, scanline locations and crosshole velocity measurement locations. Spatial data were recorded using a total-station survey. The interpreted MASW survey results are presented as two dimensional snapshot cross-sections of the three dimensional calibration-site models. These show strong correlations between MASW survey velocities and site geology, geomorphology, fluvial profiles and geotechnical parameters and observations. Correlations are particularly pronounced where high velocity contrasts exist, whilst weaker correlations are demonstrated in softer lithologies. Geomorphic correlations suggest that off-plane deformation can be imaged and interpreted in the presence of suitable topographic survey data. A promising new approach to in situ and laboratory soft-rock material and mass characterisation is also presented using a Ramset nail gun. Geotechnical investigations typically involve outcrop and laboratory scale determination of rock mass and material properties such as fracture density and unconfined compressive strength (UCS). This multi-scale approach is espoused by this study, with geotechnical and S-wave velocity data presented at multiple scales, from survey scale sonic velocity measurements, through outcrop scale scanline and crosshole sonic velocity measurements to laboratory scale property determination and sonic velocity measurements. S-wave velocities invariably increased with decreasing scale. These scaling relationships and strategies for dealing with them are investigated and presented. Finally, the MASW technique is applied to a concealed fault on the Taieri Ridge in Macraes Flat, Central Otago. Here, high velocity Otago Schist is faulted against low velocity sheared Tertiary and Quaternary sediments. This site highlights the structural sensitivity of the technique by apparently constraining the location of the principal fault, which had been ambiguous after standard processing of the seismic reflection data. Processing of the Taieri Ridge dataset has further led to the proposal of a novel surface wave imaging technique termed Swept Frequency Imaging (SFI). This inchoate technique apparently images the detailed structure of the fault-zone, and is in agreement with the conventionally-determined fault location and an existing partial trench. Overall, the results are promising and are expected to be supported by further trenching in the near future.

Research papers, University of Canterbury Library

Structures of the Lowry Peaks Range - Waikari Valley district are complex. The majority comprise three members of a predominantly WSW -ENE striking major northwards-directed, leading edge imbricate thrust system, with associated angular, asymmetric fault-propagation folds. This system forms anomalously within a large NESW trending belt of structures characterising the entire east coast of north Canterbury, both onshore and offshore and terminates westwards against N-S striking, east facing fold-fault zone. The objectives of this study address the origin, geometry and kinematics of the interaction between these diversely trending systems. Stratigraphy and small-scale structures denote three periods of deformation, namely: i) Middle Cretaceous deformation of the basement rocks, ii) weak Middle Oligocene deformation associated with the inception of the plate boundary through the South Island, and iii) major Pliocene - Recent deformation that formed the majority of the above-mentioned structures. Stress tensor analyses within competent basement and limestone cover rocks suggest two sets of sub-horizontal compression, NE-SW and NW-SE, the former likely to relate to a localised earlier period of deformation, now overprinted by the latter. NW-SE oriented sub-horizontal compression correlates well with results from other parts of north Canterbury. The result of NW-SE compression on the W-E to WSW-ENE striking structures is a large component of oblique motion, which is manifest in four ways: i) movement on two, differently oriented splays rather than a single fault strand, ii) the development of a sinuous trace for a number of the major folds, whereby the ends are oriented normal to the compression direction, the centres parallel to the strike of the faults, iii) the development of a number of cross-folds, striking NNE-SSW and iv) the apparently recent development of a strike-slip component on at least one of the major thrust faults. The origin of the W-E, or WSW-ENE striking structures may be reactivation of Late Cretaceous faults, stratigraphic evidence for the existence of a "structural high" (the Hurunui High) over the majority of the area in the Late Cretaceous to Early Eocene times suggests the formation of a W-E trending horst structure, with a corresponding asymmetric graben to the south. The junction of WSW-ENE trending structures with N-S trending structures to the west centres on an alluvial-filled depression, Waikari Flat, into which the structures of the WSW-ENE trending imbricate thrust system plunge, locally curling to the SW at their ends to link with N-S trending structures to the south. Roof thrusting on two orientations, W-E and N-S, towards to SE is currently occurring above these structures. Currently the area is not highly seismically active, although a magnitude ~6.4 Ms earthquake in historic times has been recorded. The effects of tectonics on the drainage of the area does suggest that the majority of the systems, are still potentially active, albeit moving at a comparatively slow rate. The majority of the recent motion appears to be concentrated on the roof-thrusting occurring in Waikari Flat, and uplift along the Lowry Peaks Fault System. Increasing amounts of secondary movement on back-thrusts and cross fractures is also implied for western ends of the major imbricate thrust system. In contrast, the southern-most fault system appears to be largely sustaining dextral strike-slip motion, with some local folding in central portions.

Research papers, University of Canterbury Library

The structure and geomorphology of active orogens evolves on time scales ranging from a single earthquake to millions of years of tectonic deformation. Analysis of crustal deformation using new and established remote sensing techniques, and integration of these data with field mapping, geochronology and the sedimentary record, create new opportunities to understand orogenic evolution over these timescales. Timor Leste (East Timor) lies on the northern collisional boundary between continental crust from the Australian Plate and the Banda volcanic arc. GPS studies have indicated that the island of Timor is actively shortening. Field mapping and fault kinematic analysis of an emergent Pliocene marine sequence identifies gentle folding, overprinted by a predominance of NW-SE oriented dextral-normal faults and NE-SW oriented sinistral-normal faults that collectively bound large (5-20km2) bedrock massifs throughout the island. These fault systems intersect at non-Andersonian conjugate angles of approximately 120° and accommodate an estimated 20 km of orogen-parallel extension. Folding of Pliocene rocks in Timor may represent an early episode of contraction but the overall pattern of deformation is one of lateral crustal extrusion sub-parallel to the Banda Arc. Stratigraphic relationships suggest that extrusion began prior to 5.5 Ma, during and after initial uplift of the orogen. Sedimentological, geochemical and Nd isotope data indicate that the island of Timor was emergent and shedding terrigenous sediment into carbonate basins prior to 4.5 Ma. Synorogenic tectonic and sedimentary phases initiated almost synchronously across much of Timor Leste and <2 Myr before similar events in West Timor. An increase in plate coupling along this obliquely converging boundary, due to subduction of an outlying continental plateau at the Banda Trench, is proposed as a mechanism for uplift that accounts for orogen-parallel extension and early uplift of Timor Leste. Rapid bathymetric changes around Timor are likely to have played an important role in evolution of the Indonesian Seaway. The 2010 Mw 7.1 Darfield (Canterbury) earthquake in New Zealand was complex, involving multiple faults with strike-slip, reverse and normal displacements. Multi-temporal cadastral surveying and airborne light detection and ranging (LiDAR) surveys allowed surface deformation at the junction of three faults to be analyzed in this study in unprecedented detail. A nested, localized restraining stepover with contractional bulging was identified in an area with the overall fault structure of a releasing bend, highlighting the surface complexities that may develop in fault interaction zones during a single earthquake sequence. The earthquake also caused river avulsion and flooding in this area. Geomorphic investigations of these rivers prior to the earthquake identify plausible precursory patterns, including channel migration and narrowing. Comparison of the pre and post-earthquake geomorphology of the fault rupture also suggests that a subtle scarp or groove was present along much of the trace prior to the Darfield earthquake. Hydrogeology and well logs support a hypothesis of extended slip history and suggests that that the Selwyn River fan may be infilling a graben that has accumulated late Quaternary vertical slip of <30 m. Investigating fault behavior, geomorphic and sedimentary responses over a multitude of time-scales and at different study sites provides insights into fault interactions and orogenesis during single earthquakes and over millions of years of plate boundary deformation.

Research papers, University of Canterbury Library

Among the deformation features produced in Christchurch by the September 4th Darfield Earthquake were numerous and widespread “sand volcanoes”. Most of these structures occurred in urban settings and “erupted” through a hardened surface of concrete or tarseal, or soil. Sand volcanoes were also widespread in the Avon‐ Heathcote Estuary and offered an excellent opportunity to readily examine shallow subsurface profiles and as such the potential appearance of such structures in the rock record.

Research papers, University of Canterbury Library

Asset management in power systems is exercised to improve network reliability to provide confidence and security for customers and asset owners. While there are well-established reliability metrics that are used to measure and manage business-as-usual disruptions, an increasing appreciation of the consequences of low-probability high-impact events means that resilience is increasingly being factored into asset management in order to provide robustness and redundancy to components and wider networks. This is particularly important for electricity systems, given that a range of other infrastructure lifelines depend upon their operation. The 2010-2011 Canterbury Earthquake Sequence provides valuable insights into electricity system criticality and resilience in the face of severe earthquake impacts. While above-ground assets are relatively easy to monitor and repair, underground assets such as cables emplaced across wide areas in the distribution network are difficult to monitor, identify faults on, and repair. This study has characterised in detail the impacts to buried electricity cables in Christchurch resulting from seismically-induced ground deformation caused primarily by liquefaction and lateral spread. Primary modes of failure include cable bending, stretching, insulation damage, joint braking and, being pulled off other equipment such as substation connections. Performance and repair data have been compiled into a detailed geospatial database, which in combination with spatial models of peak ground acceleration, peak ground velocity and ground deformation, will be used to establish rigorous relationships between seismicity and performance. These metrics will be used to inform asset owners of network performance in future earthquakes, further assess component criticality, and provide resilience metrics.

Research papers, University of Canterbury Library

Currently there is a worldwide renaissance in timber building design. At the University of Canterbury, new structural systems for commercial multistorey timber buildings have been under development since 2005. These systems incorporate large timber sections connected by high strength post-tensioning tendons, and timber-concrete composite floor systems, and aim to compete with existing structural systems in terms of cost, constructability, operational and seismic performance. The development of post-tensioned timber systems has created a need for improved lateral force design approaches for timber buildings. Current code provisions for seismic design are based on the strength of the structure, and do not adequately account for its deformation. Because timber buildings are often governed by deflection, rather than strength, this can lead to the exceedence of design displacement limitations imposed by New Zealand codes. Therefore, accurate modeling approaches which define both the strength and deformation of post-tensioned timber buildings are required. Furthermore, experimental testing is required to verify the accuracy of these models. This thesis focuses on the development and experimental verification of modeling approaches for the lateral force design of post-tensioned timber frame and wall buildings. The experimentation consisted of uni-direcitonal and bi-directional quasi-static earthquake simulation on a two-thirds scale, two-storey post-tensioned timber frame and wall building with timber-concrete composite floors. The building was subjected to lateral drifts of up to 3% and demonstrated excellent seismic performance, exhibiting little damage. The building was instrumented and analyzed, providing data for the calibration of analytical and numerical models. Analytical and numerical models were developed for frame, wall and floor systems that account for significant deformation components. The models predicted the strength of the structural systems for a given design performance level. The static responses predicted by the models were compared with both experimental data and finite element models to evaluate their accuracy. The frame, wall and floor models were then incorporated into an existing lateral force design procedure known as displacement-based design and used to design several frame and wall structural systems. Predictions of key engineering demand parameters, such as displacement, drift, interstorey shear, interstorey moment and floor accelerations, were compared with the results of dynamic time-history analysis. It was concluded that the numerical and analytical models, presented in this thesis, are a sound basis for determining the lateral response of post-tensioned timber buildings. However, future research is required to further verify and improve these prediction models.

Research papers, University of Canterbury Library

Existing unreinforced masonry (URM) buildings are often composed of traditional construction techniques, with poor connections between walls and diaphragms that results in poor performance when subjected to seismic actions. In these cases the application of the common equivalent static procedure is not applicable because it is not possible to assure “box like” behaviour of the structure. In such conditions the ultimate strength of the structure relies on the behaviour of the macro-elements that compose the deformation mechanisms of the whole structure. These macroelements are a single or combination of structural elements of the structure which are bonded one to each other. The Canterbury earthquake sequence was taken as a reference to estimate the most commonly occurring collapse mechanisms found in New Zealand URM buildings in order to define the most appropriate macroelements.

Research papers, University of Canterbury Library

A number of reverse and strike-slip faults are distributed throughout mid-Canterbury, South Island, New Zealand, due to oblique continental collision. There is limited knowledge on fault interaction in the region, despite historical multi-fault earthquakes involving both reverse and strike-slip faults. The surface expression and paleoseismicity of these faults can provide insights into fault interaction and seismic hazards in the region. In this thesis, I studied the Lake Heron and Torlesse faults to better understand the key differences between these two adjacent faults located within different ‘tectonic domains’. Recent activity and surface expression of the Lake Heron fault was mapped and analysed using drone survey, Structure-from-Motion (SfM) derived Digital Surface Model (DSM), aerial image, 5 m-Digital Elevation Model (DEM), luminescence dating technique, and fold modelling. The results show a direct relationship between deformation zone width and the thickness of the gravel deposits in the area. Fold modelling using fault dip, net slip and gravel thickness produces a deformation zone comparable to the field, indicating that the fault geometry is sound and corroborating the results. This result Is consistent with global studies that demonstrate deposit (or soil thickness) correlates to fault deformation zone width, and therefore is important to consider for fault displacement hazard. A geomorphological study on the Torlesse fault was conducted using SfM-DSM, DEM and aerial images Ground Penetrating Radar (GPR) survey, trenching, and radiocarbon and luminescence dating. The results indicate that the Torlesse fault is primarily strike-slip with some dip slip component. In many places, the bedding-parallel Torlesse fault offsets post-glacial deposits, with some evidence of flexural slip faulting due to folding. Absolute dating of offset terraces using radiocarbon dating and slip on fault determined from lateral displacement calculating tool demonstrates the fault has a slip rate of around 0.5 mm/year to 1.0 mm/year. The likelihood of multi-fault rupture in the Torlesse Range has been characterised using paleoseismic trenching, a new structural model, and evaluation of existing paleoseismic data on the Porters Pass fault. Identification of overlapping of paleoseismic events in main Torlesse fault, flexural-slip faults and the Porters Pass fault in the Torlesse Range shows the possibility of distinct or multi-fault rupture on the Torlesse fault. The structural connectivity of the faults in the Torlesse zone forming a ‘flower structure’ supports the potential of multi-fault rupture. Multi-fault rupture modelling carried out in the area shows a high probability of rupture in the Porters Pass fault and Esk fault which also supports the co-rupture probability of faults in the region. This study offers a new understanding of the chronology, slip distribution, rupture characteristics and possible structural and kinematic relationship of Lake Heron fault and Torlesse fault in the South Island, New Zealand.

Research papers, University of Canterbury Library

We present preliminary observations on three waters impacts from the Mw7.8 14th November 2016 Kaikōura Earthquake on wider metropolitan Wellington, urban and rural Marlborough, and in Kaikōura township. Three waters systems in these areas experienced widespread and significant transient ground deformation in response to seismic shaking, with localised permanent ground deformation via liquefaction and lateral spreading. In Wellington, potable water quality was impacted temporarily by increased turbidity, and significant water losses occurred due to damaged pipes at the port. The Seaview and Porirua wastewater treatment plants sustained damage to clarifier tanks from water seiching, and increased water infiltration to the wastewater system occurred. Most failure modes in urban Marlborough were similar to the 2010-2011 Canterbury Earthquake Sequence; however some rural water tanks experienced rotational and translational movements, highlighting importance of flexible pipe connections. In Kaikōura, damage to reservoirs and pipes led to loss of water supply and compromised firefighting capability. Wastewater damage led to environmental contamination, and necessitated restrictions on greywater entry into the system to minimise flows. Damage to these systems necessitated the importation of tankered and bottled water, boil water notices and chlorination of the system, and importation of portaloos and chemical toilets. Stormwater infrastructure such as road drainage channels was also damaged, which could compromise condition of underlying road materials. Good operational asset management practices (current and accurate information, renewals, appreciation of criticality, good system knowledge and practical contingency plans) helped improve system resilience, and having robust emergency management centres and accurate Geographic Information System data allowed effective response coordination. Minimal damage to the wider built environment facilitated system inspections. Note Future research will include detailed geospatial assessments of seismic demand on these systems and attendant modes of failure, levels of service restoration, and collaborative development of resilience measures.

Research papers, University of Canterbury Library

Recent advances in timber design at the University of Canterbury have led to new structural systems that are appropriate for a wide range of building types, including multi-storey commercial office structures. These buildings are competitive with more traditional construction materials in terms of cost, sustainability and structural performance. This paper provides seismic design recommendations and analytical modelling approaches, appropriate for the seismic design of post-tensioned coupled timber wall systems. The models are based on existing seismic design theory for precast post-tensioned concrete, modified to more accurately account for elastic deformation of the timber wall systems and the influence of the floor system. Experimental test data from a two storey post-tensioned timber building, designed, constructed and tested at the University of Canterbury is used to validate the analytical models.

Research papers, University of Canterbury Library

essential systems upon which the well-being and functioning of societies depend. They deliver a service or a good to the population using a network, a combination of spatially-distributed links and nodes. As they are interconnected, network elements’ functionality is also interdependent. In case of a failure of one component, many others could be momentarily brought out-of-service. Further problems arise for buried infrastructure when it comes to buried infrastructure in earthquake and liquefaction-prone areas for the following reasons: • Technically more demanding inspections than those required for surface horizontal infrastructure • Infrastructure subject to both permanent ground displacement and transient ground deformation • Increase in network maintenance costs (i.e. deterioration due to ageing material and seismic hazard) These challenges suggest careful studies on network resilience will yield significant benefits. For these reasons, the potable water network of Christchurch city (Figure 1) has been selected for its well-characterized topology and its extensive repair dataset.

Research papers, University of Canterbury Library

This poster presents preliminary results of ongoing experimental campaigns at the Universities of Auckland and Canterbury, aiming at investigating the seismic residual capacity of damaged reinforced concrete plastic hinges, as well as the effectiveness of epoxy injection techniques for restoring their stiffness, energy dissipation, and deformation capacity characteristics. This work is part of wider research project which started in 2012 at the University of Canterbury entitled “Residual Capacity and Repairing Options for Reinforced Concrete Buildings”, funded by the Natural Hazards Research Platform (NHRP). This research project aims at gaining a better understanding and providing the main end-users and stakeholders (practitioner engineers, owners, local and government authorities, insurers, and regulatory agencies) with comprehensive evidence-based information and practical guidelines to assess the residual capacity of damaged reinforced concrete buildings, as well as to evaluate the feasibility of repairing and thus support their delicate decision-making process of repair vs. demolition or replacement.

Research papers, University of Canterbury Library

The Eastern Humps and Leader faults, situated in the Mount Stewart Range in North Canterbury, are two of the ≥17 faults which ruptured during the 2016 MW7.8 Kaikōura Earthquake. The earthquake produced complex, intersecting ground ruptures of these faults and the co-seismic uplift of the Mount Stewart Range. This thesis aims to determine how these two faults accommodated deformation during the 2016 earthquake and how they interact with each other and with pre-existing geological structures. In addition, it aims to establish the most likely subsurface geometry of the fault complex across the Mount Stewart Range, and to investigate the paleoseismic history of the Leader Fault. The Eastern Humps Fault strikes ~240° and dips 80° to 60° to the northwest and accommodated right- lateral – reverse-slip, with up to 4 m horizontal and 2 m vertical displacement in the 2016 earthquake. The strike of the Leader Fault varies from ~155 to ~300°, and dips ~30 to ~80° to the west/northwest, and mainly accommodated left-lateral – reverse-slip of up to 3.5 m horizontal and 3.5 m vertical slip in the 2016 earthquake. On both the Eastern Humps and Leader faults the slip is variable along strike, with areas of low total displacement and areas where horizontal and vertical displacement are negatively correlated. Fault traces with low total displacement reflect the presence of off-fault (distributed) displacement which is not being captured with field measurements. The negative correlation of horizontal and vertical displacement likely indicates a degree of slip partitioning during the 2016 earthquake on both the Eastern Humps and Leader faults. The Eastern Humps and Leader faults have a complex, interdependent relationship with the local bedrock geology. The Humps Fault appears to be a primary driver of ongoing folding and deformation of the local Mendip Syncline and folding of the Mount Stewart Range, which probably began prior to, or synchronous with, initial rupture of The Humps Fault. The Leader Fault appears to use existing lithological weaknesses in the Cretaceous-Cenozoic bedrock stratigraphy to rupture to the surface. This largely accounts for the strong variability on the strike and dip of the Leader Fault, as the geometry of the surface ruptures tend to reflect the strike and dip of the geological strata which it is rupturing through. The Leader Fault may also accommodate some degree of flexural slip in the Cenozoic cover sequence of the Mendip Syncline, contributing to the ongoing growth of the fold. The similarity between topography and uplift profiles from the 2016 earthquake suggest that growth of the Mount Stewart Range has been primarily driven by multiple (>500) discrete earthquakes that rupture The Humps and Leader faults. The spatial distribution of surface displacements across the Mount Stewart Range is more symmetrical than would be expected if uplift is driven primarily by The Humps and Leader faults alone. Elastic dislocation forward models were used to model potential sub-surface geometries and the resulting patterns of deformation compared to photogrammetry-derived surface displacements. Results show a slight preference for models with a steeply southeast-dipping blind fault, coincident with a zone of seismicity at depth, as a ‘backthrust’ to The Humps and Leader faults. This inferred Mount Stewart Fault accommodated contractional strain during the 2016 earthquake and contributes to the ongoing uplift of the Mount Stewart Range with a component of folding. Right-lateral and reverse shear stress change on the Hope Fault was also modelled using Coulomb 3.3 software to examine whether slip on The Humps and Leader faults could transfer enough stress onto the Hope Fault to trigger through-going rupture. Results indicate that during the 2016 earthquake right-lateral shear and reverse stress only increased on the Hope Fault in small areas to the west of the Leader Fault, and similar ruptures would be unlikely to trigger eastward propagating rupture unless the Hope Fault was close to failure prior to the earthquake. Paleoseismic trenches were excavated on the Leader Fault at four locations from 2018 to 2020, revealing near surface (< 4m depth) contractional deformation of Holocene stratigraphy. Three of the trench locations uncovered clear evidence for rupture of the Leader Fault prior to 2016, with fault displacement of near surface stratigraphy being greater than displacement recorded during the 2016 earthquake. Radiocarbon dating of in-situ organic material from two trenches indicate a date of the penultimate earthquake on the Leader Fault within the past 1000 years. This date is consistent with The Humps and Leader faults having ruptured simultaneously in the past, and with multi-fault ruptures involving The Humps, Leader, Hundalee and Stone Jug faults having occurred prior to the 2016 Kaikōura earthquake. Overall, the results contribute to an improved understanding of the Kaikōura earthquake and highlight the importance of detailed structural and paleoseismic investigations in determining controls on earthquake ‘complexity’.

Research papers, University of Canterbury Library

Oblique convergence of the Pacific and Australian Plates is accommodated in the northern South Island by the Marlborough Fault System. The Hope Fault is the southern of four major dextral strike-slip faults of this system. Hanmer Basin is a probable segment boundary between the Hope River and Conway segments of the Hope Fault. The Conway segment is transpressional and shows increasing structural complexity near the segment boundary at Hanmer Basin, with multiple Late Quaternary traces, and fault-parallel folding in response to across-fault shortening. Between Hossack Station and Hanmer Basin a crush zone in excess of one kilometre wide is exposed in incised streams and rivers. The crush zone has an asymmetrical geometry about the active trace of the Hope Fault, being only 100-300 metres wide south of the fault, and more than 500 metres wide north of the fault. The most intense deformation of Torlesse bedrock occurs at the south side of the fault zone, indicating that strain is accommodated against the fault footwall. North of the fault deformation is less intense, but occurs over a wider area. The wide fault zone at Hossack Station may reflect divergence of the Hanmer Fault, a major splay of the Hope Fault. At Hossack Station, the Hope Fault has accommodated at least 260 metres of dextral displacement during the Holocene. Dating of abandoned stream channels, offset by the Hope Fault, indicated a Late Holocene dextral slip-rate of 18±8 mm-¹ for the west end of the Conway segment. Using empirical formulae and inferred fault parameters, the expected magnitude of an earthquake generated by the Conway segment is M6.9 to M7.4; for an exceedence probability of 10%, the magnitude is M7.7 to M7.9. Effects associated with coseismic rupture of the Conway segment include shaking of up to MMIX along the ruptured fault and at Hanmer Basin. Uplift at the east end of Hanmer Basin, in conjunction with subsidence at the southwest margin of the basin, is resulting in the development of onlapping stratigraphy. Seismic reflection profiles support this theory. Possible along-fault migration of the basin is inferred to be a consequence of non-parallelism of the master faults.

Research papers, University of Canterbury Library

A major lesson from the 2011 Christchurch earthquake was the apparent lack of ductility of some lightly reinforced concrete (RC) wall structures. In particular, the structural behaviour of the critical wall in the Gallery Apartments building demonstrated that the inelastic deformation capacity of a structure, as well as potentially brittle failure of the reinforcement, is dependent on the level of bond deterioration between reinforcement and surrounding concrete that occurs under seismic loading. This paper presents the findings of an experimental study on bond behaviour between deformed reinforcing bars and the surrounding concrete. Bond strength and relative bond slip was evaluated using 75 pull-out tests under monotonic and cyclic loading. Variations of the experiments include the loading rate, loading history, concrete strength (25 to 70 MPa), concrete age, cover thickness, bar diameter (16 and 20 mm), embedded length, and the position of the embedded bond region within the specimen (deep within or close to free surface). Select test results are presented with inferred implications for RC structures.

Research papers, University of Canterbury Library

Deformational properties of soil, in terms of modulus and damping, exert a great influence on seismic response of soil sites. However, these properties for sands containing some portion of fines particles have not been systematically addressed. In addition, simultaneous modelling of the modulus and damping behaviour of soils during cyclic loading is desirable. This study presents an experimental and computational investigation into the deformational properties of sands containing fines content in the context of site response analysis. The experimental investigation is carried on sandy soils sourced from Christchurch, New Zealand using a dynamic triaxial apparatus while the computational aspect is based on the framework of total-stress one-dimensional (1D) cyclic behaviour of soil. The experimental investigation focused on a systematic study on the deformational behaviour of sand with different amounts of fines content (particle diameter ≤ 75µm) under drained conditions. The silty sands were prepared by mixing clean sand with three different percentages of fines content. A series of bender element tests at small-strain range and stress-controlled dynamic triaxial tests at medium to high-strain ranges were conducted on samples of clean sand and silty sand. This allowed measurements of linear and nonlinear deformational properties of the same specimen for a wide strain range. The testing program was designed to quantify the effects of void ratio and fines content on the low-strain stiffness of the silty sand as well as on the nonlinear stress-strain relationship and corresponding shear modulus and damping properties as a function of cyclic shear strains. Shear wave velocity, Vs, and maximum shear modulus, Gmax, of silty sand was shown to be significantly smaller than the respective values for clean sands measured at the same void ratio, e, or same relative density, Dr. However, the test results showed that the difference in the level of nonlinearity between clean sand and silty sands was small. For loose samples prepared at an identical relative density, the behaviour of clean sand was slightly less nonlinear as compared to sandy soils with higher fines content. This difference in the nonlinear behaviour of clean sand and sandy soils was negligible for dense soils. Furthermore, no systematic influence of fines content on the material damping curve was observed for sands with fines content FC = 0 to 30%. In order to normalize the effects of fines on moduli of sands, equivalent granular void ratio, e*, was employed. This was done through quantifying the participation of fines content in the force transfer chain of the sand matrix. As such, a unified framework for modelling of the variability of shear wave velocity, Vs, (or shear modulus, Gmax) with void ratio was achieved for clean sands and sands with fines, irrespective of their fines content. Furthermore, modelling of the cyclic stress-strain behaviour based on this experimental program was investigated. The modelling effort focused on developing a simple constitutive model which simultaneously models the soil modulus and damping relationships with shear strains observed in laboratory tests. The backbone curve of the cyclic model was adopted based on a modified version of Kondner and Zelasko (MKZ) hyperbolic function, with a curvature coefficient, a. In order to simulate the hysteretic cycles, the conventional Masing rules (Pyke 1979) were revised. The parameter n, in the Masing’s criteria was assumed to be a function of material damping, h, measured in the laboratory. As such the modulus and damping produced by the numerical model could match the stress-strain behaviour observed in the laboratory over the course of this study. It was shown that the Masing parameter n, is strain-dependent and generally takes values of n ≤ 2. The model was then verified through element test simulations under different cyclic loadings. It was shown that the model could accurately simulate the modulus and the damping simultaneously. The model was then incorporated within the OpenSees computational platform and was used to scrutinize the effects of damping on one-dimensional seismic site response analysis. For this purpose, several strong motion stations which recorded the Canterbury earthquake sequence were selected. The soil profiles were modelled as semi-infinite horizontally layered deposits overlying a uniform half-space subjected to vertically propagating shear waves. The advantages and limitations of the nonlinear model in terms of simulating soil nonlinearity and associated material damping were further scrutinized. It was shown that generally, the conventional Masing criteria unconservatively may underestimate some response parameters such as spectral accelerations. This was shown to be due to larger hysteretic damping modelled by using conventional Masing criteria. In addition, maximum shear strains within the soil profiles were also computed smaller in comparison to the values calculated by the proposed model. Further analyses were performed to study the simulation of backbone curve beyond the strain ranges addressed in the experimental phase of this study. A key issue that was identified was that relying only on the modulus reduction curves to simulate the stress-strain behaviour of soil may not capture the actual soil strength at larger strains. Hence, strength properties of the soil layer should also be incorporated to accurately simulate the backbone curve.

Research papers, University of Canterbury Library

Research following the 2010-2011 Canterbury earthquakes investigated the minimum vertical reinforcement required in RC walls to generate well distributed cracking in the plastic hinge region. However, the influence of the loading sequence and rate has not been fully addressed. The new minimum vertical reinforcement limits in NZS 3101:2006 (Amendment 3) include consideration of the material strengths under dynamic load rates, but these provisions have not been validated at a member or system level. A series of tests were conducted on RC prisms to investigate the effect of loading rate and sequence on the local behaviour of RC members. Fifteen axially loaded RC prisms with the designs representing the end region of RC walls were tested under various loading rates to cover the range of pseudo-static and earthquake loading scenarios. These tests will provide substantial data for understanding the local behaviour of RC members, including hysteretic load-deformation behaviour, crack patterns, failure mode, steel strain, strain rate and ductility. Recommendations will be made regarding the effect of loading rate and reinforcement content on the cracking behaviour and ductility of RC members.

Research papers, University of Canterbury Library

An as-built reinforced concrete (RC) frame building designed and constructed according to pre-1970s code design construction practice has been recently tested on the shake table at the University of Canterbury. The specimen, 1/2.5 scaled version of the original prototype, consists of two 3-storey 2-bay asymmetric frames in parallel, one interior and one exterior, jointed together by transverse beams and floor slabs. Following the benchmark test, a retrofit intervention has been proposed to rehabilitate the tested specimen. In this paper, detailed information on the assessment and design of the seismic retrofit procedure using GFRP (glass fibre reinforced polymer) materials is given for the whole frame. Hierarchy of strength and sequence of events (damage mechanisms) in the panel zone region are evaluated using a moment-axial load (M-N) interaction performance domain, according to a performance-based retrofit philosophy. Specific limit states or design objectives are targeted with attention given to both strength and deformation limits. In addition, an innovative retrofit solution using FRP anchor dowels for the corner beam-column joints with slabs is proposed. Finally, in order to provide a practical tool for engineering practice, the retrofit procedure is provided in a step-by step flowchart fashion.

Research papers, University of Canterbury Library

Based on the recent developments on alternative jointed ductile dry connections for concrete multistorey buildings, the paper aims to extend and propose similar innovative seismic connections for laminated veneer lumber (LVL) timber buildings. The dry connections herein proposed are characterised by a sort of rocking occurring at the section interface of the structural elements when an earthquake occurs; unbonded post-tensioned techniques and dissipative devices respectively provide self-centring and dissipation capacities. The paper illustrates some experimental investigations of an extensive campaign, still undergoing at the University of Canterbury Christchurch, NZ) are herein presented and critically discussed. In particular, results of cyclic quasi-static testing on exterior beam-column subassemblies and wall-to-foundation systems are herein presented; preliminary results of pseudo-dynamic testing on wall-to-foundation specimens are also illustrated. The research investigations confirmed the enhanced seismic performance of these systems/connections; three key aspects , as the no-damageability in the structural elements, typical “flag-shape” cyclic behaviour (with self-centring and dissipation capacity), negligible residual deformations, i.e. limited costs of repair, joined with low mass, flexibility of design and rapidity of construction LVL timber, all create the potential for an increased use in low-rise multistorey buildings.

Research papers, University of Canterbury Library

Structural members made of laminated veneer lumber (LVL) in combination with unbonded post-tensioning have recently been proposed, which makes it possible to design moment-resisting frames with longer spans for multi-storey timber buildings. It has been shown that prefabricated and prestressed timber structures can be designed to have excellent seismic resistance, with enhanced re-centring and energy dissipation characteristics. The post-tensioning provides re-centring capacity while energy is dissipated through yielding of mild steel dissipating devices. This paper summarizes an experimental investigation into the seismic response of LVL columns to bi-directional seismic loading, performed as part of a research programme on timber structures at the University of Canterbury. The experimental investigation includes testing under both quasi-static cyclic and pseudo-dynamic protocols. The results show excellent seismic performance, characterized by negligible damage of the structural members and small residual deformations, even under the combined effect of loading in two directions. Energy is dissipated mostly through yielding of external dissipators connecting the column and the foundation, which can be easily removed and replaced after an earthquake. Since post-tensioning can be economically performed on site, the system can be easily implemented in multi-storey timber buildings

Research papers, University of Canterbury Library

Capacity design and hierarchy of strength philosophies at the base of modern seismic codes allow inelastic response in case of severe earthquakes and thus, in most traditional systems, damage develops at well-defined locations of reinforced concrete (RC) structures, known as plastic hinges. The 2010 and 2011 Christchurch earthquakes have demonstrated that this philosophy worked as expected. Plastic hinges formed in beams, in coupling beams and at the base of columns and walls. Structures were damaged permanently, but did not collapse. The 2010 and 2011 Christchurch earthquakes also highlighted a critical issue: the reparability of damaged buildings. No methodologies or techniques were available to estimate the level of subsequent earthquakes that RC buildings could still sustain before collapse. No repair techniques capable of restoring the initial condition of buildings were known. Finally, the cost-effectiveness of an eventual repair intervention, when compared with a new building, was unknown. These aspects, added to nuances of New Zealand building owners’ insurance coverage, encouraged the demolition of many buildings. Moreover, there was a perceived strong demand from government and industry to develop techniques for assessing damage to steel reinforcement bars embedded in cracked structural concrete elements. The most common questions were: “Have the steel bars been damaged in correspondence to the concrete cracks?”, “How much plastic deformation have the steel bars undergone?”, and “What is the residual strain capacity of the damaged bars?” Minimally invasive techniques capable of quantifying the level and extent of plastic deformation and residual strain capacity are not yet available. Although some studies had been recently conducted, a validated method is yet to be widely accepted. In this thesis, a least-invasive method for the damage-assessment of steel reinforcement is developed. Based on the information obtained from hardness testing and a single tensile test, it is possible to estimate the mechanical properties of earthquake-damaged rebars. The reduction in the low-cycle fatigue life due to strain ageing is also quantified. The proposed damage assessment methodology is based on empirical relationships between hardness and strain and residual strain capacity. If damage is suspected from in situ measurements, visual inspection or computer analysis, a bar may be removed and more accurate hardness measurements can be obtained using the lab-based Vickers hardness methodology. The Vickers hardness profile of damaged bars is then compared with calibration curves (Vickers hardness versus strain and residual strain capacity) previously developed for similar steel reinforcement bars extracted from undamaged locations. Experimental tests demonstrated that the time- and temperature-dependent strain-ageing phenomenon causes changes in the mechanical properties of plastically deformed steels. In particular, yield strength and hardness increases, whereas ductility decreases. The changes in mechanical properties are quantified and their implications on the hardness method are highlighted. Low-cycle fatigue (LCF) failures of steel reinforcing bars have been observed in laboratory testing and post-earthquake damage inspections. Often, failure might not occur during a first seismic event. However, damage is accumulated and the remaining fatigue life is reduced. Failure might therefore occur in a subsequent seismic event. Although numerous studies exist on the LCF behaviour of steel rebars, no studies had been conducted on the strain-ageing effects on the remaining fatigue life. In this thesis, the reduction in fatigue life due to this phenomenon is determined through a number of experimental tests.

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.