Researchers have begun to explore the opportunity presented by blue-green infrastructure(a subset of nature-based solutions that provide blue and green space in urban infrastructure)as a response to the pressures of climate change. The 2010/2011 Canterbury earthquake sequence created a unique landscape within which there is opportunity to experiment with and invest in new solutions to climate change adaptation in urban centres. Constructed wetlands are an example of blue-green infrastructure that can potentially support resilience in urban communities. This research explores interactions between communities and constructed wetlands to understand how this may influence perceptions of community resilience. The regeneration of the Ōtākaro Avon River Corridor (OARC) provides a space to investigate these relationships. Seven stakeholders from the community, industry, and academia, each with experience in blue-green infrastructure in the OARC, participated in a series of semi-structured interviews. Each participant was given the opportunity to reflect on their perspectives of community, community resilience, and constructed wetlands and their interconnections. Interview questions aligned with the overarching research objectives to (1) understand perceptions around the role of wetlands in urban communities, (2) develop a definition for community resilience in the context of the Ōtākaro Avon community, and (3) reflect on how wetlands can contribute to (or detract from) community resilience. This study found that constructed wetlands can facilitate learning about the challenges and solutions needed to adapt to climate change. From the perspective of the community representatives, community resilience is linked to social capital. Strong social networks and a relationship with nature were emphasised as core components of a community’s ability to adapt to disruption. Constructed wetlands are therefore recognised as potentially contributing to community resilience by providing spaces for people to engage with each other and nature. Investment in constructed wetlands can support a wider response to climate change impacts. This research was undertaken with the support of the Ōtākaro Living Laboratory Trust, who are invested in the future of the OARC. The outcomes of this study suggest that there is an opportunity to use wetland spaces to establish programmes that explore the perceptions of constructed wetlands from a broader community definition, at each stage of the wetland life cycle, and at wider scales(e.g., at a city scale or beyond).
This study analyses the success and limitations of the recovery process following the 2010–11 earthquake sequence in Christchurch, New Zealand. Data were obtained from in-depth interviews with 32 relocated households in Christchurch, and from a review of recovery policies implemented by the government. A top-down approach to disaster recovery was evident, with the creation of multiple government agencies and processes that made grassroots input into decision-making difficult. Although insurance proceeds enabled the repair and rebuilding of many dwellings, the complexity and adversarial nature of the claim procedures also impaired recovery. Householders’ perceptions of recovery reflected key aspects of their post-earthquake experiences (e.g. the housing offer they received, and the negotiations involved), and the outcomes of their relocation (including the value of the new home, their subjective well-being, and lifestyle after relocation). Protracted insurance negotiations, unfair offers and hardships in post-earthquake life were major challenges to recovery. Less-thanfavourable recovery experiences also transformed patterns of trust in local communities, as relocated householders came to doubt both the government and private insurance companies’ ability to successfully manage a disaster. At the same time, many relocated households expressed trust in their neighbours and communities. This study illuminates how government policies influence disaster recovery while also suggesting a need to reconsider centralised, top-down approaches to managing recovery.
Though rare and unpredictable, earthquakes can and do cause catastrophic destruction when they impact unprepared and vulnerable communities. Extensive damage and failure of vulnerable buildings is a key factor which contributes to seismic-related disasters, making the proactive management of these buildings a necessity to reduce the risk of future disasters arising. The devastating Canterbury earthquakes of 2010 and 2011 brought the urgency of this issue to national importance in New Zealand. The national earthquake-prone building framework came into effect in 2017, obligating authorities to identify existing buildings with the greatest risk of collapse in strong earthquakes and for building owners to strengthen or demolish these buildings within a designated period of time. Though this framework is unique to New Zealand, the challenge of managing the seismic risk of such buildings is common amongst all seismically-active countries. Therefore, looking outward to examine how other jurisdictions legally manage this challenge is useful for reflecting on the approaches taken in New Zealand and understand potential lessons which could be adopted. This research compares the legal framework used to reduce the seismic risk of existing buildings in New Zealand with that of the similarly earthquake-prone countries of Japan and Italy. These legal frameworks are examined with a particular focus on the proactive goal of reducing risk and improving resilience, as is the goal of the international Sendai Framework for Disaster Risk Reduction 2015-2030. The Sendai Framework, which each of the case study countries have committed to and thus have obligations under, forms the legal basis of the need for states to reduce disaster risk in their jurisdictions. In particular, the states’ legal frameworks for existing building risk reduction are examined in the context of the Sendai priorities of understanding disaster risk, strengthening disaster risk governance, and investing in resilience. While this research illustrates that the case study countries have each adopted more proactive risk reduction frameworks in recent years in anticipation of future earthquakes, the frameworks currently focus on a very narrow range of existing buildings and thus are not currently sufficient for promoting the long-term resilience of building stocks. In order to improve resilience, it is argued, legal frameworks need to include a broader range of buildings subject to seismic risk reduction obligations and also to broaden the focus on long-term monitoring of potential risk to buildings.