In the aftermath of the 2010-2011 Canterbury Earthquake Sequence (CES), the location of Christchurch-City on the coast of the Canterbury Region (New Zealand) has proven crucial in determining the types of- and chains of hazards that impact the city. Very rapidly, the land subsidence of up to 1 m (vertical), and the modifications of city’s waterways – bank sliding, longitudinal profile change, sedimentation and erosion, engineered stop-banks… - turned rainfall and high-tides into unprecedented floods, which spread across the eastern side of the city. Within this context, this contribution presents two modeling results of potential floods: (1) results of flood models and (2) the effects of further subsidence-linked flooding – indeed if another similar earthquake was to strike the city, what could be the scenarios of further subsidence and then flooding. The present research uses the pre- and post-CES LiDAR datasets, which have been used as the boundary layer for the modeling. On top of simple bathtub model of inundation, the river flood model was conducted using the 2-D hydrodynamic code NAYS-2D developed at the University of Hokkaido (Japan), using a depth-averaged resolution of the hydrodynamic equations. The results have shown that the area the most at risk of flooding are the recent Holocene sedimentary deposits, and especially the swamplands near the sea and in the proximity of waterways. As the CES drove horizontal and vertical displacement of the land-surface, the surface hydrology of the city has been deeply modified, increasing flood risks. However, it seems that scientists and managers haven’t fully learned from the CES, and no research has been looking at the potential future subsidence in further worsening subsidence-related floods. Consequently, the term “coastal quake”, coined by D. Hart is highly topical, and most especially because most of our modern cities and mega-cities are built on estuarine Holocene sediments.
Prior to the devastating 2010 and 2011 earthquakes in Christchurch, New Zealand, the University of Canterbury (UC) was renowned for its graduates’ academic preparation and its staff’s research outputs. The town/gown relationship was aloof and strained due to UC’s move from the CBD in the 1970s and students being seen as troublemakers. Despite its vision of people prepared to make a difference, the University’s students and staff were not seen as making a difference in the local community or as being engaged citizens.
This changed when over 9,000 UC students mobilized themselves into the Student Volunteer Army to provide immediate relief across Christchurch following the four major quakes of 2010 and 2011. Suddenly, UC students were seen as saviors, not miscreants and a focus on citizenship education as part of the University’s strategic direction began to take shape.
Based on qualitative and quantitative research conducted at UC over the past four years, this interactive presentation will highlight the findings, conclusions, and implications of how the University has been transformed into a recognized, international leader in citizenship education. By integrating students’ community service into their academic studies, the University has changed its persona while students have gained academically, civically, and personally.
The New Zealand city of Christchurch suffered a series of devastating earthquakes in 2010-11 that changed the urban landscape forever. A new rebuilt city is now underway, largely based on the expressed wishes of the populace to see Christchurch return to being a more people-oriented, cycle-friendly city that it was known for in decades past. Currently 7% of commuters cycle to work, supported by a 200km network of mostly conventional on-road painted cycle lanes and off-road shared paths. The new "Major Cycleways" plan aims to develop approximately 100km of high-quality cycling routes throughout the city in 5-7 years. The target audience is an unaccompanied 10-year-old cycling, which requires more separated cycleways and low-volume/speed "neighbourhood greenways" to meet this standard. This presentation summarises the steps undertaken to date to start delivering this network. Various pieces of research have helped to identify the types of infrastructure preferred by those currently not regularly cycling, as well as helping to assess the merits of different route choices. Conceptual cycleway guidelines have now been translated into detailed design principles for the different types of infrastructure being planned. While much of this work is based on successful designs from overseas, including professional advice from Dutch practitioners, an interesting challenge has been to adapt these designs as required to suit local road environments and road user expectations. The first parts of the new network are being rolled out now, with the hope that this will produce an attractive and resilient network for the future population that leads to cycling being a major part of the local way of life.
None
As the future of the world’s oil reserves becomes progressively more uncertain, it is becoming increasingly important that steps are taken to ensure that there are viable, attractive alternatives to travel by private motor vehicle. As with many of New Zealand’s major urban centres, Christchurch is still exceptionally reliant on private motor vehicles; although a significant proportion of the population indicate that they would like to cycle more, cycling is still an underutilised mode of transport. Following a series of fatal earthquakes that struck the city in 2010 and 2011, there has been the need to significantly redevelop much of the city’s horizontal infrastructure – subsequently providing the perfect platform for significant changes to be made to the road network. Many of the key planning frameworks governing the rebuild process have identified the need to improve Christchurch’s cycling facilities in order to boost cycling numbers and cyclist safety. The importance of considering future growth and travel patterns when planning for transport infrastructure has been highlighted extensively throughout literature. Accordingly, this study sought to identify areas where future cycle infrastructure development would be advantageous based on a number of population and employment projections, and likely future travel patterns throughout the city. Through the use of extensive GIS analysis, future population growth, employment and travel patterns for Christchurch city were examined in order to attain an understanding of where the current proposed major cycleways network could be improved, or extended. A range of data and network analysis were used to derive likely travel patterns throughout Christchurch in 2041. Trips were derived twice, once with a focus on simply finding the shortest route between each origin and destination, and then again with a focus on cyclist safety and areas where cyclists were unlikely to travel. It was found that although the proposed major cycleways network represents a significant step towards improving the cycling environment in Christchurch, there are areas of the city that will not be well serviced by the current proposed network in 2041. These include a number of key residential growth areas such as Halswell, Belfast and Prestons, along with a number of noteworthy key travel zones, particularly in areas close to the central city and key employment areas. Using network analysis, areas where improvements or extensions to the proposed network would be most beneficial were identified, and a number of potential extensions in a variety of areas throughout the city were added to the network of cycle ways. Although it has been found that filling small gaps in the network can have considerable positive outcomes, results from the prioritisation analysis suggested that initially in Christchurch demand is likely to be for more substantial extensions to the proposed major cycleways network.
A Transitional Imaginary: Space, Network and Memory in Christchurch is the outcome and the record of a particular event: the coming together of eight artists and writers in Ōtautahi Christchurch in November 2015, with the ambitious aim to write a book collaboratively over five days. The collaborative process followed the generative ‘book sprint’ method founded by our facilitator for the event, Adam Hyde, who has long been immersed in digital practices in Aotearoa. A book sprint prioritises the collective voice of the participants and reflects the ideas and understandings that are produced at the time in which the book was written, in a plurality of perspectives. Over one hundred books have been completed using the sprint methodology, covering subjects from software documentation to reflections on collaboration and fiction. We chose to approach writing about Ōtautahi Christchurch through this collaborative process in order to reflect the complexity of the post-quake city and the multiple paths to understanding it. The city has itself been a space of intensive collaboration in the post-disaster period. A Transitional Imaginary is a raw and immediate record, as much felt expression as argued thesis. In many ways the process of writing had the character of endurance performance art. The process worked by honouring the different backgrounds of the participants, allowing that dialogue and intensity could be generative of different forms of text, creating a knowledge that eschews a position of authority, working instead to activate whatever anecdotes, opinions, resources and experiences are brought into discussion. This method enables a dynamic of voices that merge here, separate there and interrupt elsewhere again. As in the contested process of rebuilding and reimagining Christchurch itself, the dissonance and counterpoint of writing reflects the form of conversation itself. This book incorporates conflict, agreement and the activation of new ideas through cross-fertilisation to produce a new reading of the city and its transition. The transitional has been given a specific meaning in Christchurch. It is a product of local theorising that encompasses the need for new modes of action in a city that has been substantially demolished (Bennett & Parker, 2012). Transitional projects, such as those created by Gap Filler, take advantage of the physical and social spaces created by the earthquake through activating these as propositions for new ways of being in the city. The transitional is in motion, looking towards the future. A Transitional Imaginary explores the transitional as a way of thinking and how we understand the city through art practices, including the digital and in writing.
The Canterbury earthquakes of 2010-2012 have been generation shaping. People living and working in and around the city during this time have had their lives and social landscapes changed forever. The earthquake response, recovery and rebuild efforts have highlighted unheralded social strengths and vulnerabilities within individuals, organisations, communities and country writ large. It is imperative that the social sciences stand up to be counted amongst the myriad of academic research, commentary and analysis.
Local independent radio stations in Christchurch, New Zealand, had their operations severely disrupted by major earthquakes in September 2010 and February 2011. This article examines the experiences of three radio stations that were shut out of their central city premises by the cordon drawn around the city after the 22 February quake. One of the stations continued broadcasting automatically, while the others were unable to fully get back on air for several weeks afterwards. All of the stations had to manage access to workspaces, the emotional needs of staff and volunteers, the technical ability to broadcast, and the need to adapt content appropriately when back on air. For the locally based radio managers decisions had to be made about the future of the stations in a time of significant emotional, physical, and geological upheaval. The article explores how these radio stations were disrupted by the earthquake, and how they returned to air through new combinations and interconnections of people, workspace, technology, content and transmission.
On 22 February 2011, the second day of the first semester, a devastating magnitude 6.2 earthquake struck the city of Christchurch forcing the campus of the University of Canterbury to close for several weeks. Here, we report on the sudden curriculum and assessment overhaul that needed to be implemented using two large, first-year introductory courses as case studies. We discuss the reasoning and justifications behind these changes, as well as the logistics of this process. We draw conclusions based on student feedback and assessments and formulate lessons learnt.
Access to clean and safe drinking water is a fundamental human requirement. However, in many areas of the world natural water sources have been impacted by a variety of biological and chemical contaminants. The ingestion of these contaminants may cause acute or chronic health problems. To prevent such illnesses, many technologies have been developed to treat, disinfect and supply safe drinking water quality. However, despite these advancements, water supply distribution systems can adversely affect the drinking water quality before it is delivered to consumers. The primary aim of this research was to investigate the effect that water distribution systems may have on household drinking water quality in Christchurch, New Zealand and Addis Ababa, Ethiopia. Water samples were collected from the source water and household taps in both cities. The samples were then tested for various physical, chemical and biological water quality parameters. The data collected was also used to determine if water samples complied with national drinking water quality standards in both countries. Independent samples t-test statistical analyses were also performed to determine if water quality measured in the samples collected from the source and household taps was significantly different. Water quality did not vary considerably between the source and tap water samples collected in Christchurch City. No bacteria were detected in any sample. However, the pH and total iron concentrations measured in source and tap water samples were found to be significantly different. The lower pH values measured in tap water samples suggests that corrosion may be taking place in the distribution system. No water samples transgressed the Drinking Water Standards for New Zealand (DWSNZ) MAVs. Monitoring data collected by the Christchurch City Council (CCC) was also used for comparison. A number of pH, turbidity and total iron concentration measurements collected by the CCC in 2011 were found to exceed the guideline values. This is likely due to structural damage to the source wells and pump-stations that occurred during the 2011 earthquake events. Overall, it was concluded that the distribution system does not adversely affect the quality of Christchurch City’s household drinking water. The water quality measured in samples collected from the source (LTP) and household taps in Addis Ababa was found to vary considerably. The water collected from the source complied with the Ethiopian (WHO) drinking water quality standards. However, tap water samples were often found to have degraded water quality for the physical and chemical parameters tested. This was especially the case after supply interruption and reinstatement events. Bacteria were also often detected in household tap water samples. The results from this study indicate that water supply disruptions may result in degraded water quality. This may be due to a drop in pipeline pressure and the intrusion of contaminants through the leaky and cross-connected pipes in the distribution network. This adversely affects the drinking water quality in Addis Ababa.
Using greater Christchurch as a case study, this research seeks to understand the key drivers of residential choice of families with children who live in recently developed, low-density greenfield subdivisions. In particular, the research examines the role that transport-related implications play in families’ choice of residence and location. It also explores the lived experience of the quotidian travel of these households, and the intrinsic value of their time in the car. While the research is situated in one particular location, it is designed to gain an understanding of urban processes and residents’ experiences of these as applicable to broader settings. Concerns about the pernicious environmental, fiscal, and wellbeing effects of sprawling urban form have been growing over the past few decades, inciting many cities including Christchurch to start shifting planning policies to try and achieve greater intensification and a denser development pattern. The 2010/2011 Christchurch earthquake sequence and its destruction of thousands of homes however created huge pressure for housing development, the bulk of which is now occurring on greenfield sites on the peripheries of Christchurch City and its neighbouring towns. Drawing on the insights provided by a wide body of both qualitative and quantitative literature on residential choice, transport and urban form, and mobilities literature as a basis, this research is interested in the attraction of these growing neighbourhoods to families, and puts the focus firmly on the attitudes, values, motivations, decisions, and lived experience of those who live in the growing suburbs of Christchurch.
This study explores the impact post-earthquake images from Christchurch, New Zealand inserted into a task requiring sustained attention or vigilance have on performance, selfreports of task-focus, and cerebra activity using functional near-infrared spectroscopy (fNIRS). The images represent the current state of Christchurch; a city struggling to recover from devastating earthquakes that peaked in February, 2011, killing 185 people, injuring hundreds more and causing widespread and massive damage to infrastructure, land and building in the region. Crowdsourcing was used to gather a series of positive and negative photos from greater Christchurch to be employed in the subsequent experiment. Seventy-one Christchurch resident participants (51 women, 20 men) then took part in a vigilance task with the sourced images embedded to assess possible cognitive disruptions. Participants were randomly assigned to one of three conditions: embedded positive pictures, embedded negative pictures, or embedded scrambled image controls. Task performance was assessed with signal detection theory metrics of sensitivity A’ and β’’. Individuals viewing the positive images, relating to progress, rebuild, or aesthetic aspects within the city, were overall more conservative or less willing to respond than those in the other conditions. In addition, positive condition individuals reported lower task focus, when compared to those in the control condition. However, indicators of cerebral activity (fNIRS) did not differ significantly between the experimental groups. These results combined, suggest that mind wandering events may be being generated when exposed to positive post-earthquake images. This finding fits with recent research which indicates that mind-wandering or day dreaming tends to be positive and future oriented. While positive recovery images may initiate internal thoughts, this could actually prove problematic in contexts in which external attention is required. While the actual environment, of course, needs to recover, support agencies may want to be careful with employing positive recovery imagery in contexts where people actually should be paying attention to something else, like operating a vehicle or machinery.
The aim of this study is to explore the main contributors and obstacles to employee learning in the context of an alliance using the framework of a complex embedded multiple-case study. The two participant alliance partner organisations (APOs) are natural competitors that have joined to respond to urgent community needs of the city of Christchurch following the major earthquakes in September 2010 and February 2011. At the moment of the in-depth interviews, it had been about four years since those events occurred. There are continuous, unexpected circumstances that still require attention. However, the alliance has an expiry date, thus reinforcing the uncertain work environment. The main enablers found were participative, collaborative learning encouraged by leaders who embraced the alliance’s “learning organisational culture”. Employees generated innovations mostly in social interaction with others, while taking on responsibility for their learning by learning from mistakes. The main obstacle found is competition, as inhibitor of collaboratively sharing their knowledge out of fear of losing their competitiveness.
This article reports on research conducted in Christchurch, New Zealand, after the 22 February 2011 earthquake. This quake and thousands of subsequent aftershocks have left the city of Christchurch with serious infrastructure damage to roads, sewage supply, housing and commercial buildings. The emergence of a vibrant art and craft movement in the Christchurch region post earthquake has been an unexpected aspect of the recovery process. The article begins with a review of the literature on traditional responses to disaster recovery illustrating how more contemporary approaches are community-focused. We review the links between crafting and well-being, and report on qualitative research conducted with five focus groups and nine individuals who have contributed to this movement in Christchurch. The findings illustrate the role crafting has played post earthquake, in terms of processing key elements of the disaster for healing and recovery, creating opportunities for social support; giving to others; generating learning and meaning making and developing a vision for the future. The data analysis is underpinned by theory related to post-traumatic growth and ecological concerns. The role of social work in promoting low-cost initiatives such as craft groups to foster social resilience and aid in the recovery from disaster trauma is explored. This discussion considers why such approaches are rare in social work.
The Townsend Observatory is located in the Arts Centre of Christchurch, in what used to be Canterbury College (now University of Canterbury). The Townsend telescope itself is a historic 6-inch Cooke refractor built in 1864 for early Christchurch colonist, Mr James Townsend, and gifted by him to Christchurch College in 1891. At the same time, the Canterbury Astronomical Society handed over its funds to the College to help erect an observatory. The College used this, and money it had set aside for a medical school, to build a biological laboratory with an attached observatory tower, which was completed in 1896. The Biology Building and Observatory Tower was the last major design by architect Benjamin Mountfort. Mr Walter Kitson was appointed custodian of the telescope and regular public open nights commenced. and continued until 2010, with the telescope being operated by students of the Department of Physics and Astronomy, University of Canterbury. The Observatory Tower was badly damaged in the 4 September 2010 earthquake and collapsed in the 22 February 2011 earthquake. The telescope was badly damaged by the collapse, but, amazingly, the optics were found entirely intact. The Department of Physics and Astronomy plans to restore the Townsend Telescope so that it can be returned to a replica Observatory Tower in its central city home, enabling the people of Christchurch, and visitors, to enjoy views of the night sky through this beautiful and historic telescope once again.
The Avon River and the Avon-Heathcote Estuary/Ihutai are features of the urban environment of Christchurch City and are popular for recreational and tourist activities. These include punting, rowing, organized yachting, water skiing, shoreline walking, bird watching, recreational fishing and aesthetic appreciation. The Canterbury earthquakes of 2010 and 2011 significantly affected the estuarine and river environments, affecting both the valued urban recreation resources and infrastructure. The aim of the research is to evaluate recreational opportunities using a questionnaire, assess levels of public participation in recreation between winter 2014 and summer 2014-2015 and evaluate the quality of recreational resources. The objective is to determine the main factors influencing recreational uses before and after the February 2011 earthquake and to identify future options for promoting recreational activities. Resource evaluation includes water quality, wildlife values, habitats, riparian strip and the availability of facilities and infrastructure. High levels of recreational participation usually occurred at locations that provided many facilities along with their suitability for family activities, scenic beauty, relaxation, amenities and their proximity to residences. Some locations included more land-based activities, while some included more water-based activities. There were greater opportunities for recreation in summer compared to winter. Activities that were negatively affected by the earthquake such as rowing, kayaking and sailing have resumed. But activities at some places may be limited due to the lack of proper tracks, jetty, public toilets and other facilities and infrastructure. Also, some locations had high levels of bacterial pollution, excessive growth of aquatic plants and a low number of amenity values. These problems need to be solved to facilitate recreational uses. In recovering from the earthquake, the enhancement of recreation in the river and the Estuary will lead to a better quality of life and the improved well-being and psychological health of Christchurch residents. It was concluded that the Avon River and the Avon-Heathcote Estuary/Ihutai continue to provide various opportunities of recreation for users.
With origins in the South Bronx area of New York in the early 1970s, hip-hop culture is now produced and consumed globally. While hip-hop activities can be varied, hip-hop is generally considered to have four forms or “elements”: DJing, MCing, b-boying/b-girling, and graffiti. Although all four elements of hip-hop have become a part of many youth work initiatives across the globe, public debate and controversy continue to surround hip-hop activities. Very little research and literature has explored the complexities involved in the assembling of hip-hop activities in youth work sites of practice using these hip-hop elements. This study attends to the gap in hip-hop and human service literature by tracing how hip-hop activities were assembled in several sites of youth work activity in Christchurch, New Zealand. Actor-network theory (ANT) is the methodological framework used to map the assemblage of hip-hop-youth work activities in this study. ANT follows how action is distributed across both human and non-human actors. By recognising the potential agency of “things”, this research traces the roles played by human actors, such as young people and youth workers, together with those of non-human actors such as funding documents, social media, clothing, and youth venue equipment. This ethnographic study provides rich descriptions or “snapshots” of some of the key socio-material practices that shaped the enactment of hip-hop-youth work activities. These are derived from fieldwork undertaken between October 2009 and December 2011, where participant observation took place across a range of sites of hip-hop-youth work activity. In addition to this fieldwork, formal interviews were undertaken with 22 participants, the majority being youth workers, young people, and youth trust administrators. The ANT framework reveals the complexity of the task of assembling hip-hop in youth work worlds. The thesis traces the work undertaken by both human and non-human actors in generating youth engagement in hip-hop-youth work activities. Young people’s hip-hop interests are shown to be varied, multiple, and continually evolving. It is also shown how generating youth interest in hip-hop-youth work activities involved overcoming young people’s indifference or lack of awareness of the hip-hop resources a youth trust had on offer. Furthermore, the study highlights where hip-hop activities were edited or “tinkered” with to avoid hip-hop “bads”. The thesis also unpacks how needed resources were enlisted, and how funders’ interests were translated into supporting hip-hop groups and activities. By tracing the range of actors mobilised to enact hip-hop-youth work activities, this research reveals how some youth trusts could avoid having to rely on obtaining government funds for their hip-hop activities. The thesis also includes an examination of one youth trust’s efforts to reconfigure its hip-hop activities after the earthquakes that struck Christchurch city in 2010 and 2011. Working both in and on the world, the text that is this thesis is also understood as an intervention. This study constitutes a deliberate attempt to strengthen understandings of hip-hop as a complex, multiple, and fluid entity. It therefore challenges traditional media and literature representations that simplify and thus either stigmatise or celebrate hip-hop. As such, this study opens up possibilities to consider the opportunities, as well as the complexities of assembling hip-hop in youth work sites of practice.
Research on responses to trauma has historically focused on the negative repercussions of a struggle with adversity. However, more recently, researchers have begun to examine posttraumatic growth: the positive psychological change that emerges from the struggle with a potentially traumatic event. Associations have been found between posttraumatic growth and greater peritraumatic distress, greater objective severity of trauma exposure, greater perceived stressfulness of events, social support, female gender, cognitive and behavioural responses to trauma, and personality measures. Posttraumatic growth has been measured typically in individuals with varying levels of posttraumatic stress disorder symptoms and other psychological difficulties, such as depression and anxiety. Although some theory and research posits that higher resilience would prohibit posttraumatic growth, no studies have examined posttraumatic growth in a resilient sample. The Canterbury earthquake sequence of 2010 and 2011 involved potentially traumatic events that saw the community struggle with a variety of challenges. However, in the midst of earthquake destruction, some positive initiatives emerged, driven by locals. The Gap Filler project (using city spaces left empty from fallen buildings for art and interactive community projects) and the Student Volunteer Army (groups of volunteers coordinated to help others in need) are examples of this. In this context, it seemed likely that posttraumatic growth was occurring and might be seen in individuals who were coping well with challenges. Culture is theorised to influence the posttraumatic growth process (Calhoun, Cann, & Tedeschi, 2010), and the nature of the trauma undergone is also likely to influence the process of growth. The current thesis measures posttraumatic growth quantitatively and qualitatively in a New Zealand sample. It measures and describes posttraumatic growth in a resilient population after the earthquake sequence of 2010 and 2011 in Canterbury, New Zealand. Findings are used to test current models of posttraumatic growth for individuals coping well after trauma and to elaborate on mechanisms proposed by models such as the comprehensive model of posttraumatic growth (Calhoun et al., 2010) and the organismic valuing theory of growth through adversity (Joseph & Linley, 2005). Correlates of posttraumatic growth are examined and likely supporting factors of posttraumatic growth are identified for this population. Study 1 used quantitative analysis to explore correlates of posttraumatic growth and found that greater posttraumatic growth related to greater peritraumatic distress, greater perceived stressfulness of earthquake events, greater objective stressfulness of earthquake events, greater difficulty with stressful life events, less satisfaction with social support, and female gender. Findings from Study 1 give important detail about the nature of distress included in the comprehensive model of posttraumatic growth (Calhoun et al., 2010) for this population. Levels of posttraumatic growth were lower than those in North American studies but similar to those in a Chinese study. The current sample, however, showed lower endorsement of Relating to Others than the Chinese study, perhaps because of cultural differences. Study 2 used qualitative analysis to examine the experience of posttraumatic growth in the sample. The theme of ‘a greater sense of community’ was found and adds to the comprehensive model of posttraumatic growth, in that an expression of posttraumatic growth (a greater connection with others) can inform ongoing social processing in the posttraumatic growth process. Having a formal or informal role in earthquake recovery appeared to influence self-concept and reflection; this elaborates on the influence of role on reflection in Calhoun et al.’s model. Findings illustrate possible mechanisms of the organismic valuing process theorised by Joseph and Linley (2005). Implications include the importance of providing opportunities for individuals to take on a role after a crisis, encouraging them to act to respond to difficulties, and encouraging them to meet personal needs for relatedness, competence, and autonomy. Finding positive aspects to a difficult situation, as well as acknowledging adversity, can be supported in future to help individuals process their traumas. As a society, we can help individuals cope with adversity by providing ways they can meet their needs for relatedness, competence, and autonomy. Community groups likely provide opportunities for members to act in ways that meet such needs. This will allow them to effectively act to meet their needs in times of crisis.
In 2010 and 2011 Christchurch, New Zealand experienced a series of earthquakes that caused extensive damage across the city, but primarily to the Central Business District (CBD) and eastern suburbs. A major feature of the observed damage was extensive and severe soil liquefaction and associated ground damage, affecting buildings and infrastructure. The behaviour of soil during earthquake loading is a complex phenomena that can be most comprehensively analysed through advanced numerical simulations to aid engineers in the design of important buildings and critical facilities. These numerical simulations are highly dependent on the capabilities of the constitutive soil model to replicate the salient features of sand behaviour during cyclic loading, including liquefaction and cyclic mobility, such as the Stress-Density model. For robust analyses advanced soil models require extensive testing to derive engineering parameters under varying loading conditions for calibration. Prior to this research project little testing on Christchurch sands had been completed, and none from natural samples containing important features such as fabric and structure of the sand that may be influenced by the unique stress-history of the deposit. This research programme is focussed on the characterisation of Christchurch sands, as typically found in the CBD, to facilitate advanced soil modelling in both res earch and engineering practice - to simulate earthquake loading on proposed foundation design solutions including expensive ground improvement treatments. This has involved the use of a new Gel Push (GP) sampler to obtain undisturbed samples from below the ground-water table. Due to the variable nature of fluvial deposition, samples with a wide range of soil gradations, and accordingly soil index properties, were obtained from the sampling sites. The quality of the samples is comprehensively examined using available data from the ground investigation and laboratory testing. A meta-quality assessment was considered whereby a each method of evaluation contributed to the final quality index assigned to the specimen. The sampling sites were characterised with available geotechnical field-based test data, primarily the Cone Penetrometer Test (CPT), supported by borehole sampling and shear-wave velocity testing. This characterisation provides a geo- logical context to the sampling sites and samples obtained for element testing. It also facilitated the evaluation of sample quality. The sampling sites were evaluated for liquefaction hazard using the industry standard empirical procedures, and showed good correlation to observations made following the 22 February 2011 earthquake. However, the empirical method over-predicted liquefaction occurrence during the preceding 4 September 2010 event, and under-predicted for the subsequent 13 June 2011 event. The reasons for these discrepancies are discussed. The response of the GP samples to monotonic and cyclic loading was measured in the laboratory through triaxial testing at the University of Canterbury geomechanics laboratory. The undisturbed samples were compared to reconstituted specimens formed in the lab in an attempt to quantify the effect of fabric and structure in the Christchurch sands. Further testing of moist tamped re- constituted specimens (MT) was conducted to define important state parameters and state-dependent properties including the Critical State Line (CSL), and the stress-strain curve for varying state index. To account for the wide-ranging soil gradations, selected representative specimens were used to define four distinct CSL. The input parameters for the Stress-Density Model (S-D) were derived from a suite of tests performed on each representative soil, and with reference to available GP sample data. The results of testing were scrutinised by comparing the data against expected trends. The influence of fabric and structure of the GP samples was observed to result in similar cyclic strength curves at 5 % Double Amplitude (DA) strain criteria, however on close inspection of the test data, clear differences emerged. The natural samples exhibited higher compressibility during initial loading cycles, but thereafter typically exhibited steady growth of plastic strain and excess pore water pressure towards and beyond the strain criteria and initial liquefaction, and no flow was observed. By contrast the reconstituted specimens exhibited a stiffer response during initial loading cycles, but exponential growth in strains and associated excess pore water pressure beyond phase-transformation, and particularly after initial liquefaction where large strains were mobilised in subsequent cycles. These behavioural differences were not well characterised by the cyclic strength curve at 5 % DA strain level, which showed a similar strength for both GP samples and MT specimens. A preliminary calibration of the S-D model for a range of soil gradations is derived from the suite of laboratory test data. Issues encountered include the influence of natural structure on the peak-strength–state index relationship, resulting in much higher peak strengths than typically observed for sands in the literature. For the S-D model this resulted in excessive stiffness to be modelled during cyclic mobility, when the state index becomes large momentarily, causing strain development to halt. This behaviour prevented modelling the observed re- sponse of silty sands to large strains, synonymous with “liquefaction”. Efforts to reduce this effect within the current formulation are proposed as well as future research to address this issue.