Despite over a century of study, the relationship between lunar cycles and earthquakes remains controversial and difficult to quantitatively investigate. Perhaps as a consequence, major earthquakes around the globe are frequently followed by 'prediction' claims, using lunar cycles, that generate media furore and pressure scientists to provide resolute answers. The 2010-2011 Canterbury earthquakes in New Zealand were no exception; significant media attention was given to lunarderived earthquake predictions by non-scientists, even though the predictions were merely 'opinions' and were not based on any statistically robust temporal or causal relationships. This thesis provides a framework for studying lunisolar earthquake temporal relationships by developing replicable statistical methodology based on peer reviewed literature. Notable in the methodology is a high accuracy ephemeris, called ECLPSE, designed specifically by the author for use on earthquake catalogs, and a model for performing phase angle analysis. The statistical tests were carried out on two 'declustered' seismic catalogs, one containing the aftershocks from the Mw7.1 earthquake in Canterbury, and the other containing Australian seismicity from the past two decades. Australia is an intraplate setting far removed from active plate boundaries and Canterbury is proximal to a plate boundary, thus allowing for comparison based on tectonic regime and corresponding tectonic loading rate. No strong, conclusive, statistical correlations were found at any level of the earthquake catalogs, looking at large events, onshore events, offshore events, and the fault type of some events. This was concluded using Schuster's test of significance with α=5% and analysis of standard deviations. A few weak correlations, with p-5-10% of rejecting the null hypothesis, and anomalous standard deviations were found, but these are difficult to interpret. The results invalidate the statistical robustness of 'earthquake predictions' using lunisolar parameters in this instance. An ambitious researcher could improve on the quality of the results and on the range of parameters analyzed. The conclusions of the thesis raise more questions than answers, but the thesis provides an adaptable methodology that can be used to further investigation the problem.
Capacity design and hierarchy of strength philosophies at the base of modern seismic codes allow inelastic response in case of severe earthquakes and thus, in most traditional systems, damage develops at well-defined locations of reinforced concrete (RC) structures, known as plastic hinges. The 2010 and 2011 Christchurch earthquakes have demonstrated that this philosophy worked as expected. Plastic hinges formed in beams, in coupling beams and at the base of columns and walls. Structures were damaged permanently, but did not collapse. The 2010 and 2011 Christchurch earthquakes also highlighted a critical issue: the reparability of damaged buildings. No methodologies or techniques were available to estimate the level of subsequent earthquakes that RC buildings could still sustain before collapse. No repair techniques capable of restoring the initial condition of buildings were known. Finally, the cost-effectiveness of an eventual repair intervention, when compared with a new building, was unknown. These aspects, added to nuances of New Zealand building owners’ insurance coverage, encouraged the demolition of many buildings. Moreover, there was a perceived strong demand from government and industry to develop techniques for assessing damage to steel reinforcement bars embedded in cracked structural concrete elements. The most common questions were: “Have the steel bars been damaged in correspondence to the concrete cracks?”, “How much plastic deformation have the steel bars undergone?”, and “What is the residual strain capacity of the damaged bars?” Minimally invasive techniques capable of quantifying the level and extent of plastic deformation and residual strain capacity are not yet available. Although some studies had been recently conducted, a validated method is yet to be widely accepted. In this thesis, a least-invasive method for the damage-assessment of steel reinforcement is developed. Based on the information obtained from hardness testing and a single tensile test, it is possible to estimate the mechanical properties of earthquake-damaged rebars. The reduction in the low-cycle fatigue life due to strain ageing is also quantified. The proposed damage assessment methodology is based on empirical relationships between hardness and strain and residual strain capacity. If damage is suspected from in situ measurements, visual inspection or computer analysis, a bar may be removed and more accurate hardness measurements can be obtained using the lab-based Vickers hardness methodology. The Vickers hardness profile of damaged bars is then compared with calibration curves (Vickers hardness versus strain and residual strain capacity) previously developed for similar steel reinforcement bars extracted from undamaged locations. Experimental tests demonstrated that the time- and temperature-dependent strain-ageing phenomenon causes changes in the mechanical properties of plastically deformed steels. In particular, yield strength and hardness increases, whereas ductility decreases. The changes in mechanical properties are quantified and their implications on the hardness method are highlighted. Low-cycle fatigue (LCF) failures of steel reinforcing bars have been observed in laboratory testing and post-earthquake damage inspections. Often, failure might not occur during a first seismic event. However, damage is accumulated and the remaining fatigue life is reduced. Failure might therefore occur in a subsequent seismic event. Although numerous studies exist on the LCF behaviour of steel rebars, no studies had been conducted on the strain-ageing effects on the remaining fatigue life. In this thesis, the reduction in fatigue life due to this phenomenon is determined through a number of experimental tests.
The Leader Fault was one of at least 17 faults that ruptured the ground surface across the northeastern South Island of New Zealand during the Mw 7.8 2016 Kaikōura Earthquake. The southern ~6 km of the Leader Fault, here referred to as the South Leader Fault (SLF), ruptured the North Canterbury (tectonic) Domain and is the primary focus of this study. The main objective of the thesis is to understand the key factors that contributed to the geometry and kinematics of the 2016 SLF rupture and its intersection with The Humps Fault (HF). This thesis employs a combination of techniques to achieve the primary objective, including detailed mapping of the bedrock geology, geomorphology and 2016 rupture, measurement of 2016 ground surface displacements, kinematic analysis of slip vectors from the earthquake, and logging of a single natural exposure across a 2016 rupture that was treated as a paleoseismic trench. The resulting datasets were collected in the field, from terrestrial LiDAR and InSAR imagery, and from historical (pre-earthquake) aerial photographs for a ~11 km2 study area. Surface ruptures in the study area are a miniature version of the entire rupture from the earthquake; they are geometrically and kinematically complex, with many individual and discontinuous segments of varying orientations and slip senses which are distributed across a zone up to ~3.5 km wide. Despite this variability, three main groups of ruptures have been identified. These are: 1) NE-SW striking, shallow to moderate dipping (25-45°W) faults that are approximately parallel to Cenozoic bedding with mainly reverse dip-slip and, and for the purposes of this thesis, are considered to be part of the SLF. 2) N-S striking, steeply dipping (~85°E) oblique sinistral faults that are up to the west and part of the SLF. 3) E-NE striking, moderate to steeply dipping (45-68°N) dextral reverse faults which are part of the HF. Bedding-parallel faults are interpreted to be flexural slip structures formed during folding of the near-surface Cenozoic strata, while the steeply dipping SLF ruptured a pre-existing bedrock fault which has little topographic expression. Groups 1 and 2 faults were both locally used for gravitational failure during the earthquake. Despite this non-tectonic fault movement, the slip vectors for faults that ruptured during the earthquake are broadly consistent with NCD tectonics and the regional ~100-120° trend of the principal horizontal stress/strain axes. Previous earthquake activity on the SLF is required by its displacement of Cenozoic formations but Late Quaternary slip on the fault prior to 2016 is neither supported by pre-existing fault scarps nor by changes in topography across the fault. By contrast, at least two earthquakes (including 2016) appear to have ruptured the HF from the mid Holocene, consistent with recurrence intervals of no more than ~7 kyr, and with preliminary observations from trenches on the fault farther to the west. The disparity in paleoearthquake records of the two faults suggests that they typically do not rupture together, thus it is concluded that the HF-SLF rupture pattern observed in the Kaikōura Earthquake rarely occurs in a single earthquake.
We measure the longer-term effect of a major earthquake on the local economy, using night-time light intensity measured from space, and investigate whether insurance claim payments for damaged residential property affected the local recovery process. We focus on the destructive Canterbury Earthquake Sequence (CES) 2010 -2011 as our case study. Uniquely for this event, more than 95% of residential housing units were covered by insurance, but insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery and describe the recovery’s determinants. We also find that insurance payments contributed significantly to the process of economic recovery after the earthquake, but delayed payments were less affective and cash settlement of claims were more effective than insurance-managed repairs in contributing to local recovery.
The 2010–2011 Canterbury earthquakes and their aftermath have been described by the Human Rights Commission as one of New Zealand's greatest contemporary human rights challenges. This article documents the shortcomings in the realisation of the right to housing in post-quake Canterbury for homeowners, tenants and the homeless. The article then considers what these shortcomings tell us about New Zealand's overall human rights framework, suggesting that the ongoing and seemingly intractable nature of these issues and the apparent inability to resolve them indicate an underlying fragility implicit in New Zealand's framework for dealing with the consequences of a large-scale natural disaster. The article concludes that there is a need for a comprehensive human rights-based approach to disaster preparedness, response and recovery in New Zealand.
This study contains an evaluation of the seismic hazard associated with the Springbank Fault, a blind structure discovered in 1998 close to Christchurch. The assessment of the seismic hazard is approached as a deterministic process in which it is necessary to establish: 1) fault characteristics; 2) the maximum earthquake that the fault is capable of producing and 3) ground motions estimations. Due to the blind nature of the fault, conventional techniques used to establish the basic fault characteristics for seismic hazard assessments could not be applied. Alternative methods are used including global positioning system (GPS) surveys, morphometric analyses along rivers, shallow seismic reflection surveys and computer modelling. These were supplemented by using multiple empirical equations relating fault attributes to earthquake magnitude, and attenuation relationships to estimate ground motions in the near-fault zone. The analyses indicated that the Springbank Fault is a reverse structure located approximately 30 km to the northwest of Christchurch, along a strike length of approximately 16 km between the Eyre and Ashley River. The fault does not reach the surface, buy it is associated with a broad anticline whose maximum topographic expression offers close to the mid-length of the fault. Two other reverse faults, the Eyrewell and Sefton Faults, are inferred in the study area. These faults, together with the Springbank and Hororata Faults and interpreted as part of a sys of trust/reverse faults propagating from a decollement located at mid-crustal depths of approximately 14 km beneath the Canterbury Plains Within this fault system, the Springbank Fault is considered to behave in a seismically independent way, with a fault slip rate of ~0.2 mm/yr, and the capacity of producing a reverse-slip earthquake of moment magnitude ~6.4, with an earthquake recurrence of 3,000 years. An earthquake of the above characteristics represents a significant seismic hazard for various urban centres in the near-fault zone including Christchurch, Rangiora, Oxford, Amberley, Kaiapoi, Darfield, Rollestion and Cust. Estimated peak ground accelerations for these towns range between 0.14 g to 0.5 g.
On 4 September 2010 the Magnitude 7.1 'Darfield' Earthquake marked the beginning of the Canterbury earthquake sequence. The Darfield earthquake produced strong ground shaking throughout the centralCanterbury Plains, affecting rural areas, small towns and the city of Christchurch. The event produced a 29km long surface rupture through intensive farmland, causing localised flooding and liquefaction. The central Canterbury plains were subjected to a sustained period of thousands of aftershocks in the months after the Darfield earthquake. The primary sector is a major component of the in New Zealand economy. Business units are predominantly small family-run farm organisations, though there are increasing levels of corporate farming. The agribusiness sector contributes 20 per cent of real GDP and 47 per cent of total exports for New Zealand. Of the approximately 2,000 farms that are located in the Canterbury Plains, the most common farming sectors in the region are Mixed farming (mostly comprised of sheep and/or beef farming), Dairy farming, and Arable farming (cropping). Many farms on the Canterbury Plains require some form of irrigation and are increasingly capital intensive, reliant on built infrastructure, technology and critical services. Farms are of great significance to their local rural economies, with many rural non-farming organisations dependent on the health of local farming organisations. Despite the economic significance of the sector, there have been few, if any studies analysing how modern intensive farms are affected by earthquakes. The aim of this report is to (1) summarise the impacts the Darfield earthquake had on farming organisations and outline in general terms how farms are vulnerable to the effects of an earthquake; (2) identify what factors helped mitigate earthquake-related impacts. Data for this paper was collected through two surveys of farming and rural non-farming organisations following the earthquake and contextual interviews with affected organisations. In total, 78 organisations participated in the study (Figure 1). Farming organisations represented 72% (N=56) of the sample.
Liquefaction during the 4th September 2010 Mw 7.1 Darfield earthquake and large aftershocks in 2011 (Canterbury earthquake sequence, CES) caused severe damage to land and infrastructure within Christchurch, New Zealand. Approximately one third of the total CES-induced financial losses were directly attributable to liq- uefaction and thus highlights the need for local and regional authorities to assess liquefaction hazards for present and future developments. This thesis is the first to conduct paleo-liquefaction studies in eastern Christchurch for the purpose of de- termining approximate return times of liquefaction-inducing earthquakes within the region. The research uncovered evidence for pre-CES liquefaction dated by radiocarbon and cross-cutting relationships as post-1660 to pre-1905. Additional paleo-liquefaction investigations within the eastern Christchurch suburb of Avon- dale, and the northern township of Kaiapoi, revealed further evidence for pre-CES liquefaction. Pre-CES liquefaction in Avondale is dated as post-1321 and pre-1901, while the Kaiapoi features likely formed during three distinct episodes: post-1458 and possibly during the 1901 Cheviot earthquake, post-1297 to pre-1901, and pre-1458. Evaluation of the liquefaction potential of active faults within the Can- terbury region indicates that many faults have the potential to cause widespread liquefaction within Avondale and Kaiapoi. The identification of pre-CES liquefac- tion confirms that these areas have previously liquefied, and indicates that residen- tial development in eastern Christchurch between 1860 and 2005 occurred in areas containing geologic evidence for pre-CES liquefaction. Additionally, on the basis of detailed field and GIS-based mapping and geospatial-statistical analysis, the distribution and severity of liquefaction and lateral spreading within the eastern Christchurch suburb of Avonside is shown in this study to be strongly in uenced by geomorphic and topographic variability. This variability is not currently ac- counted for in site-specific liquefaction assessments nor the simplified horizontal displacement models, and accounts for some of the variability between the pre- dicted horizontal displacements and those observed during the CES. This thesis highlights the potential applications of paleo-liquefaction investigations and ge- omorphic mapping to seismic and liquefaction hazard assessments and may aid future land-use planning decisions.
Beach ridge stratigraphy can provide an important record of both sustained coastal progradation and responses to events such as extreme storms, as well as evidence of earthquake induced sediment pulses. This study is a stratigraphic investigation of the late Holocene mixed sand gravel (MSG) beach ridge plain on the Canterbury coast, New Zealand. The subsurface was imaged along a 370 m shore-normal transect using 100 and 200 MHz ground penetrating radar (GPR) antennae, and cored to sample sediment textures. Results show that, seaward of a back-barrier lagoon, the Pegasus Bay beach ridge plain prograded almost uniformly, under conditions of relatively stable sea level. Nearshore sediment supply appears to have created a sustained sediment surplus, perhaps as a result of post-seismic sediment pulses, resulting in a flat, morphologically featureless beach ridge plain. Evidence of a high magnitude storm provides an exception, with an estimated event return period in excess of 100 years. Evidence from the GPR sequence combined with modern process observations from MSG beaches indicates that a paleo storm initially created a washover fan into the back-barrier lagoon, with a large amount of sediment simultaneously moved off the beach face into the nearshore. This erosion event resulted in a topographic depression still evident today. In the subsequent recovery period, sediment was reworked by swash onto the beach as a sequence of berm deposit laminations, creating an elevated beach ridge that also has a modern-day topographic signature. As sediment supply returned to normal, and under conditions of falling sea level, a beach ridge progradation sequence accumulated seaward of the storm feature out to the modern-day beach as a large flat, uniform progradation plain. This study highlights the importance of extreme storm events and earthquake pulses on MSG coastlines in triggering high volume beach ridge formation during the subsequent recovery period.
Disasters are rare events with major consequences; yet comparatively little is known about managing employee needs in disaster situations. Based on case studies of four organisations following the devastating earthquakes of 2010 - 2011 in Christchurch, New Zealand, this paper presents a framework using redefined notions of employee needs and expectations, and charting the ways in which these influence organisational recovery and performance. Analysis of in-depth interview data from 47 respondents in four organisations highlighted the evolving nature of employee needs and the crucial role of middle management leadership in mitigating the effects of disasters. The findings have counterintuitive implications for human resource functions in a disaster, suggesting that organisational justice forms a central framework for managing organisational responses to support and engage employees for promoting business recovery.
Hybrid broadband simulation methods typically compute high-frequency portion of ground-motions using a simplified-physics approach (commonly known as “stochastic method”) using the same 1D velocity profile, anelastic attenuation profile and site-attenuation (κ0) value for all sites. However, these parameters relating to Earth structure are known to vary spatially. In this study we modify this conventional approach for high-frequency ground-shaking by using site-specific input parameters (referred to as “site-specific”) and analyze improvements over using same parameters for all sites (referred to as “generic”). First, we theoretically understand how different 1D velocity profiles, anelastic attenuation profiles and site-attenuation (κ0) values affects the Fourier Acceleration Spectrum (FAS). Then, we apply site-specific method to simulate 10 events from the 2010-2011 Canterbury earthquake sequence to assess performance against the generic approach in predicting recorded ground-motions. Our initial results suggest that the site-specific method yields a lower simulation standard deviation than generic case.
The purpose of this study is to analyse the felt earthquake impacts, resilience and recovery of organizations in Canterbury by comparing three business sectors (accommodation/food services, Education/Training and Manufacturing). A survey of the three sectors in 2013 of Canterbury organizations impacted by the earthquakes revealed significant differences between the three sectors on felt earthquake impacts and resilience. On recovery and mitigation factors, the accommodation/food services sector is not significantly different from the other two sectors. Overall, the survey results presented here indicate that the Accommodation/Food Services sector was the least impacted by the earthquakes in comparison to the Education/Training and Manufacturing sectors. Implications for post-disaster management and recovery of the accommodation sector are suggested.
Science education research shows that a traditional, stand-and-deliver lecture format is less effective than teaching strategies that are learner-centred and that promote active engagement. The Carl Wieman Science Education Initiative (CWSEI) has used this research to develop resources to improve learning in university science courses. We report on a successful adaptation and implementation of CWSEI in the New Zealand university context. This two-year project at Massey University and the University of Canterbury began by using perception and concept surveys before and after undergraduate science courses to measure students’ attitudes towards science as well as their knowledge. Using these data, and classroom observations of student engagement and corroborating focus groups, the research team worked with lecturers to create interventions to enhance student engagement and learning in those courses. Results show several positive changes related to these interventions and they suggest several recommendations for lecturers and course coordinators. The recommendations include:1. Make learning outcomes clear, both for the lecturer and the students; this helps to cull extraneous material and scaffold student learning. 2. Use interactive activities to improve engagement, develop deeper levels of thinking, and improve learning. 3. Intentionally foster “expert-like thinking” amongst students in the first few semesters of the degree programme. 4. Be flexible because one size does not fit all and contextual events are beyond anyone’s control.In addition to these recommendations, data collected at the Canterbury site during the 2010 and 2011 earthquakes reinforced the understanding that the most carefully designed teaching innovations are subject to contextual conditions beyond the control of academics.
The structure and geomorphology of active orogens evolves on time scales ranging from a single earthquake to millions of years of tectonic deformation. Analysis of crustal deformation using new and established remote sensing techniques, and integration of these data with field mapping, geochronology and the sedimentary record, create new opportunities to understand orogenic evolution over these timescales. Timor Leste (East Timor) lies on the northern collisional boundary between continental crust from the Australian Plate and the Banda volcanic arc. GPS studies have indicated that the island of Timor is actively shortening. Field mapping and fault kinematic analysis of an emergent Pliocene marine sequence identifies gentle folding, overprinted by a predominance of NW-SE oriented dextral-normal faults and NE-SW oriented sinistral-normal faults that collectively bound large (5-20km2) bedrock massifs throughout the island. These fault systems intersect at non-Andersonian conjugate angles of approximately 120° and accommodate an estimated 20 km of orogen-parallel extension. Folding of Pliocene rocks in Timor may represent an early episode of contraction but the overall pattern of deformation is one of lateral crustal extrusion sub-parallel to the Banda Arc. Stratigraphic relationships suggest that extrusion began prior to 5.5 Ma, during and after initial uplift of the orogen. Sedimentological, geochemical and Nd isotope data indicate that the island of Timor was emergent and shedding terrigenous sediment into carbonate basins prior to 4.5 Ma. Synorogenic tectonic and sedimentary phases initiated almost synchronously across much of Timor Leste and <2 Myr before similar events in West Timor. An increase in plate coupling along this obliquely converging boundary, due to subduction of an outlying continental plateau at the Banda Trench, is proposed as a mechanism for uplift that accounts for orogen-parallel extension and early uplift of Timor Leste. Rapid bathymetric changes around Timor are likely to have played an important role in evolution of the Indonesian Seaway. The 2010 Mw 7.1 Darfield (Canterbury) earthquake in New Zealand was complex, involving multiple faults with strike-slip, reverse and normal displacements. Multi-temporal cadastral surveying and airborne light detection and ranging (LiDAR) surveys allowed surface deformation at the junction of three faults to be analyzed in this study in unprecedented detail. A nested, localized restraining stepover with contractional bulging was identified in an area with the overall fault structure of a releasing bend, highlighting the surface complexities that may develop in fault interaction zones during a single earthquake sequence. The earthquake also caused river avulsion and flooding in this area. Geomorphic investigations of these rivers prior to the earthquake identify plausible precursory patterns, including channel migration and narrowing. Comparison of the pre and post-earthquake geomorphology of the fault rupture also suggests that a subtle scarp or groove was present along much of the trace prior to the Darfield earthquake. Hydrogeology and well logs support a hypothesis of extended slip history and suggests that that the Selwyn River fan may be infilling a graben that has accumulated late Quaternary vertical slip of <30 m. Investigating fault behavior, geomorphic and sedimentary responses over a multitude of time-scales and at different study sites provides insights into fault interactions and orogenesis during single earthquakes and over millions of years of plate boundary deformation.
Depending on their nature and severity, disasters can create large volumes of debris and waste. Waste volumes from a single event can be the equivalent of many times the annual waste generation rate of the affected community. These volumes can overwhelm existing solid waste management facilities and personnel. Mismanagement of disaster waste can affect both the response and long term recovery of a disaster affected area. Previous research into disaster waste management has been either context specific or event specific, making it difficult to transfer lessons from one disaster event to another. The aim of this research is to develop a systems understanding of disaster waste management and in turn develop context- and disaster-transferrable decision-making guidance for emergency and waste managers. To research this complex and multi-disciplinary problem, a multi-hazard, multi-context, multi-case study approach was adopted. The research focussed on five major disaster events: 2011 Christchurch earthquake, 2009 Victorian Bushfires, 2009 Samoan tsunami, 2009 L’Aquila earthquake and 2005 Hurricane Katrina. The first stage of the analysis involved the development of a set of ‘disaster & disaster waste’ impact indicators. The indicators demonstrate a method by which disaster managers, planners and researchers can simplify the very large spectra of possible disaster impacts, into some key decision-drivers which will likely influence post-disaster management requirements. The second stage of the research was to develop a set of criteria to represent the desirable environmental, economic, social and recovery effects of a successful disaster waste management system. These criteria were used to assess the effectiveness of the disaster waste management approaches for the case studies. The third stage of the research was the cross-case analysis. Six main elements of disaster waste management systems were identified and analysed. These were: strategic management, funding mechanisms, operational management, environmental and human health risk management, and legislation and regulation. Within each of these system elements, key decision-making guidance (linked to the ‘disaster & disaster waste’ indicators) and management principles were developed. The ‘disaster & disaster waste’ impact indicators, the effects assessment criteria and management principles have all been developed so that they can be practically applied to disaster waste management planning and response in the future.
The extent of liquefaction in the eastern suburbs of Christchurch (Aranui, Bexley, Avonside, Avonhead and Dallington) from the February 22 2011 Earthquake resulted in extensive damage to in-ground waste water pipe systems. This caused a huge demand for portable toilets (or port-a-loos) and companies were importing them from outside Canterbury and in some instances from Australia. However, because they were deemed “assets of importance” under legislation, their allocation had to be coordinated by Civil Defence and Emergency Management (CDEM). Consequently, companies supplying them had to ignore requests from residents, businesses and rest homes; and commitments to large events outside of the city such as the Hamilton 400 V8 Supercars and the Pasifika Festival in Auckland were impacted. Frustrations started to show as neighbourhoods questioned the equity of the port-a-loos distribution. The Prime Minister was reported as reassuring citizens in the eastern suburbs in the first week of March that1 “a report about the distribution of port-a-loos and chemical toilets shows allocation has been fair. Key said he has asked Civil Defence about the distribution process and where the toilets been sent. He said there aren’t enough for the scale of the event but that is quickly being rectified and the need for toilets is being reassessed all the time.” Nonetheless, there still remained a deep sense of frustration and exclusion over the equity of the port-a-loos distribution. This study took the simple approach of mapping where those port-a-loos were on 11-12 March for several areas in the eastern suburbs and this suggested that their distribution was not equitable and was not well done. It reviews the predictive tools available for estimating damage to waste water pipes and asks the question could this situation have been better planned so that pot-a-loo locations could have been better prioritised? And finally it reviews the integral roles of communication and monitoring as part of disaster management strategy. The impression from this study is that other New Zealand urban centres could or would also be at risk and that work is need to developed more rational management approaches for disaster planning.
The effects of soil-foundation-structure interaction (SFSI) have been a topic of discussion amongst the structural and geotechnical community for many decades. The complexity of the mechanisms, as well as the need for inter-disciplinary knowledge of geotechnical and structural dynamics has plagued the advancement and the consequent inclusion of SFSI effects in design. A rigorous performance-based design methodology should not just consider the performance of the superstructure but the supporting foundation system as well. Case studies throughout history (eg. Kobe 1995, Kocaeli 1999 and Christchurch earthquakes 2010-2011) have demonstrated that a poor performance at the foundation level can result in a full demolition of the structure and, in general terms, that the extent of damage to, and repairability of, the building system as a whole, is given by the combination of the damage to the soil, foundation and superstructure. The lack of consideration of the modifying factors of SFSI and an absence of intuitive performance levels for controlling foundation and soil behaviour under seismic loads has resulted in inadequate designs for buildings sited on soft soil. For engineers to be satisfied that their designs meet the given performance levels they must first, understand how SFSI affects the overall system performance and secondly have tools available to adequately account for it in their design/assessment. This dissertation presents an integrated performance-based design procedure for buildingfoundation systems that considers all of the major mechanisms of SFSI. A new soil-foundation macro-element model was implemented into a nonlinear finite element software and validated against several experimental tests. The numerical model was used to provide insights in to the mechanisms of SFSI and statistical analysis on the results yielded simple expressions that allow the behaviour to be quantified. Particular attention was paid to the effects of shear force on the foundation response and the quantification of the rocking mode of response. The residual deformations of the superstructure and distribution of forces up the structure were also investigated. All of the major SFSI mechanisms are discussed in detail and targeted numerical studies are used to explain and demonstrate concepts. The design procedure was validated through the design and assessment of a series of concrete buildings that were designed to account for the effects of SFSI.
Recently developed performance-based earthquake engineering framework, such as one provided by PEER (Deierlein et al. 2003), assist in the quantification in terms of performance such as casualty, monetary losses and downtime. This opens up the opportunity to identify cost-effective retrofit/rehabilitation strategies by comparing upfront costs associated with retrofit with the repair costs that can be expected over time. This loss assessment can be strengthened by learning from recent earthquakes, such as the 2010 Canterbury and 2016 Kaikoura earthquakes. In order to investigate which types of retrofit/rehabilitation strategies may be most cost-effective, a case study building was chosen for this research. The Pacific Tower, a 22-storey EBF apartment located within the Christchurch central business district (CBD), was damaged and repaired during the 2010 Canterbury earthquake series. As such, by taking hazard levels accordingly (i.e. to correspond to the Christchurch CBD), modelling and analysing the structure, and considering the vulnerability and repair costs of its different components, it is possible to predict the expected losses of the aforementioned building. Using this information, cost-effective retrofit/rehabilitation strategy can be determined. This research found that more often than not, it would be beneficial to improve the performance of valuable non-structural components, such as partitions. Although it is true that improving such elements will increase the initial costs, over time, the benefits gained from reduced losses should be expected to overcome the initial costs. Aftershocks do increase the predicted losses of a building even in lower intensities due to the fact that non-structural components can get damaged at such low intensities. By comparing losses computed with and without consideration of aftershocks for a range of historical earthquakes, it was found that the ratio between losses due to main shock with aftershocks to the losses due to the main shock only tended to increase with increasing main shock magnitude. This may be due to the fact that larger magnitude earthquakes tend to generate larger magnitude aftershocks and as those aftershocks happen within a region around the main shock, they are more likely to cause intense shaking and additional damage. In addition to this observation, it was observed that the most significant component of loss of the case study building was the non-structural partition walls.
The Stone Jug Fault (SJF) ruptured during the November 14th, 2016 (at 12:02 am), Mw 7.8 Kaikōura Earthquake which initiated ~40 km west-southwest of the study area, at a depth of approximately 15 km. Preliminary post-earthquake mapping indicated that the SJF connects the Conway-Charwell and Hundalee faults, which form continuous surface rupture, however, detailed study of the SJF had not been undertaken prior to this thesis due to its remote location and mountainous topography. The SJF is 19 km long, has an average strike of ~160° and generally carries approximately equal components of sinistral and reverse displacement. The primary fault trace is sigmoidal in shape with the northern and southern tips rotating in strike from NNW to NW, as the SJF approaches the Hope and Hundalee faults. It comprises several steps and bends and is associated with many (N=48) secondary faults, which are commonly near irregularities in the main fault geometry and in a distributed fault zone at the southern tip. The SJF is generally parallel to Torlesse basement bedding where it may utilise pre-existing zones of weakness. Horizontal, vertical and net displacements range up to 1.4 m, with displacement profiles along the primary trace showing two main maxima separated by a minima towards the middle and ends of the fault. Average net displacement along the primary trace is ~0.4m, with local changes in relative values of horizontal and vertical displacement at least partly controlled by fault strike. Two trenches excavated across the northern segment of the fault revealed displacement of mainly Holocene stratigraphy dated using radiocarbon (N=2) and OSL (N=4) samples. Five surface-rupturing paleoearthquakes displaying vertical displacements of <1 m occurred at: 11,000±1000, 7500±1000, 6500±1000, 3500±100 and 3 (2016 Kaikōura) years BP. These events produce an average slip rate since ~11 ka of 0.2-0.4 mm/yr and recurrence intervals of up to 5500 years with an average recurrence interval of 2750 yrs. Comparison of these results with unpublished trench data suggests that synchronous rupture of the Hundalee, Stone Jug, Conway-Charwell, and Humps faults at ~3500 yrs BP cannot be discounted and it is possible that multi-fault ruptures in north Canterbury are more common than previously thought.
Post-tensioned timber technology was originally developed and researched at the University of Canterbury (UC) in New Zealand in 2005. It can provide a low-damage seismic design solution for multi-storey mass timber buildings. Since mass timber products, such as cross-laminated timber (CLT), have high in-plane stiffness, a post-tensioned timber shear wall will deform mainly in a rocking mechanism. The moment capacity of the wall at the base is commonly determined using the elastic form of the Modified Monolithic Beam Analogy (MMBA). In the calculation of the moment capacity at the wall base, it is critical to accurately predict the location of the neutral axis and the timber compressive stress distribution. Three 2/3 scale 8.6m tall post-tensioned CLT walls were experimentally tested under quasi-static cyclic loading – both uni-directional and bi-directional- in this study. These specimens included a single wall, a coupled wall, and a C-shaped core-wall. The main objective was to develop post-tensioned C-shaped timber core-walls for tall timber buildings with enhanced lateral strength and stiffness. To better understand the timber compressive stress distributions at the wall base, particle tracking technology (PTT) technology was applied for the first time to investigate the behaviour of the compression toe. Previous post-tensioned timber testing primarily used the displacement measurements to determine the timber compressive behavior at the wall base or rocking interfaces. However, by using PTT technology, the timber strain measurements in the compression zone can be much more accurate as PTT is able to track the movement of many particles on the timber surface. This paper presents experimental testing results of post-tensioned CLT walls with a focus on capturing timber compressive behavior using PTT. The PTT measurements were able to better capture small base rotations which occurred at the onset of gap opening and capture unexpected phenomena in core-wall tests. The single wall test result herein presented indicates that while the MMBA could predict the moment rotation behavior with reasonable accuracy, the peak strain response was under predicted in the compression toe. Further detailed study is required to better understand the complex strain fields generated reflective of the inherent cross-thickness inhomogeneity and material variability of CLT.
Researchers have begun to explore the opportunity presented by blue-green infrastructure(a subset of nature-based solutions that provide blue and green space in urban infrastructure)as a response to the pressures of climate change. The 2010/2011 Canterbury earthquake sequence created a unique landscape within which there is opportunity to experiment with and invest in new solutions to climate change adaptation in urban centres. Constructed wetlands are an example of blue-green infrastructure that can potentially support resilience in urban communities. This research explores interactions between communities and constructed wetlands to understand how this may influence perceptions of community resilience. The regeneration of the Ōtākaro Avon River Corridor (OARC) provides a space to investigate these relationships. Seven stakeholders from the community, industry, and academia, each with experience in blue-green infrastructure in the OARC, participated in a series of semi-structured interviews. Each participant was given the opportunity to reflect on their perspectives of community, community resilience, and constructed wetlands and their interconnections. Interview questions aligned with the overarching research objectives to (1) understand perceptions around the role of wetlands in urban communities, (2) develop a definition for community resilience in the context of the Ōtākaro Avon community, and (3) reflect on how wetlands can contribute to (or detract from) community resilience. This study found that constructed wetlands can facilitate learning about the challenges and solutions needed to adapt to climate change. From the perspective of the community representatives, community resilience is linked to social capital. Strong social networks and a relationship with nature were emphasised as core components of a community’s ability to adapt to disruption. Constructed wetlands are therefore recognised as potentially contributing to community resilience by providing spaces for people to engage with each other and nature. Investment in constructed wetlands can support a wider response to climate change impacts. This research was undertaken with the support of the Ōtākaro Living Laboratory Trust, who are invested in the future of the OARC. The outcomes of this study suggest that there is an opportunity to use wetland spaces to establish programmes that explore the perceptions of constructed wetlands from a broader community definition, at each stage of the wetland life cycle, and at wider scales(e.g., at a city scale or beyond).
A major lesson from the 2011 Christchurch earthquake was the apparent lack of ductility of some lightly reinforced concrete (RC) wall structures. In particular, the structural behaviour of the critical wall in the Gallery Apartments building demonstrated that the inelastic deformation capacity of a structure, as well as potentially brittle failure of the reinforcement, is dependent on the level of bond deterioration between reinforcement and surrounding concrete that occurs under seismic loading. This paper presents the findings of an experimental study on bond behaviour between deformed reinforcing bars and the surrounding concrete. Bond strength and relative bond slip was evaluated using 75 pull-out tests under monotonic and cyclic loading. Variations of the experiments include the loading rate, loading history, concrete strength (25 to 70 MPa), concrete age, cover thickness, bar diameter (16 and 20 mm), embedded length, and the position of the embedded bond region within the specimen (deep within or close to free surface). Select test results are presented with inferred implications for RC structures.
Earthquake-triggered soil liquefaction caused extensive damage and heavy economic losses in Christchurch during the 2010-2011 Canterbury earthquakes. The most severe manifestations of liquefaction were associated with the presence of natural deposits of clean sands and silty sands of fluvial origin. However, liquefaction resistance of fines-containing sands is commonly inferred from empirical relationships based on clean sands (i.e. sands with less than 5% fines). Hence, existing evaluation methods have poor accuracy when applied to silty sands. Also, existing methods do not quantify appropriately the influence on liquefaction resistance of soil fabric and structure, which are unique to a specific depositional environment. This study looks at the influence of fines content, soil fabric (i.e. arrangement of soil particles) and structure (e.g. layering, segregation) on the undrained cyclic behaviour and liquefaction resistance of fines-containing sandy soils from Christchurch using Direct Simple Shear (DSS) tests on soil specimens reconstituted in the laboratory with the water sedimentation technique. The poster describes experimental procedures and presents early test results on two sands retrieved at two different sites in Christchurch.
There is a growing awareness of the need for the earthquake engineering practice to incorporate in addition to empirical approaches in evaluation of liquefaction hazards advanced methods which can more realistically represent soil behaviour during earthquakes. Currently, this implementation is hindered by a number of challenges mainly associated with the amount of data and user-experience required for such advanced methods. In this study, we present key steps of an advanced seismic effective-stress analysis procedure, which on the one hand can be fully automated and, on the other hand, requires no additional input (at least for preliminary applications) compared to simplified cone penetration test (CPT)-based liquefaction procedures. In this way, effective-stress analysis can be routinely applied for quick, yet more robust estimations of liquefaction hazards, in a similar fashion to the simplified procedures. Important insights regarding the dynamic interactions in liquefying soils and the actual system response of a deposit can be gained from such analyses, as illustrated with the application to two sites from Christchurch, New Zealand.
This paper presents an examination of ground motion observations from 20 near-source strong motion stations during the most significant 10 events in the 2010-2011 Canterbury earthquake to examine region-specific systematic effects based on relaxing the conventional ergodic assumption. On the basis of similar site-to-site residuals, surfical geology, and geographical proximity, 15 of the 20 stations are grouped into four sub-regions: the Central Business District; and Western, Eastern, and Northern suburbs. Mean site-to-site residuals for these sub-regions then allows for the possibility of non-ergodic ground motion prediction over these sub-regions of Canterbury, rather than only at strong motion station locations. The ratio of the total non-ergodic vs. ergodic standard deviation is found to be, on average, consistent with previous studies, however it is emphasized that on a site-by-site basis the non-ergodic standard deviation can easily vary by ±20%.
This study investigates the uncertainty of simulated earthquake ground motions for smallmagnitude events (Mw 3.5 – 5) in Canterbury, New Zealand. 148 events were simulated with specified uncertainties in: event magnitude, hypocentre location, focal mechanism, high frequency rupture velocity, Brune stress parameter, the site 30-m time-averaged shear wave velocity (Vs30), anelastic attenuation (Q) and high frequency path duration. In order to capture these uncertainties, 25 realisations for each event were generated using the Graves and Pitarka (2015) hybrid broadband simulation approach. Monte-Carlo realisations were drawn from distributions for each uncertainty, to generate a suite of simulation realisations for each event and site. The fit of the multiple simulation realisations to observations were assessed using linear mixed effects regression to generate the systematic source, path and site effects components across all ground motion intensity measure residuals. Findings show that additional uncertainties are required in each of the three source, path, and site components, however the level of output uncertainty is promising considering the input uncertainties included.
One of the less understood geotechnical responses to the cyclic loading from the MW6.2 Christchurch Earthquake, on the 22nd of February 2011, is the fissuring in the loessial soil-mantled, footslope positions of the north-facing valleys of the Port Hills. The fissures are characterized by mostly horizontal offset (≤500mm), with minor vertical displacement (≤300mm), and they extend along both sides of valleys for several hundred metres in an approximately contour-parallel orientation. The fissure traces correspond to extensional features mapped in other studies. Previous studies have suggested that the fissures are the headscarps of incipient landslides, but the surface and subsurface features are not typical of landslide movement. Whilst there are some features that correlate with landslide movement, there are many features that contradict the landslide movement hypothesis. Of critical importance to this investigation was the fact that there are no landslide flanks, there has been no basal shear surface found, there is little deformation in the so-called ‘landslide body’, and there have been no recorded zones of low shear strength in the soil deposit that are indicative of a basal shear surface. This thesis is a detailed geotechnical study on the fissures along part of Ramahana Road in the Hillsborough Valley, Christchurch. Shallow and deep investigation methods found that the predominant soil is loess-colluvium, to depths of ~20m, and this soil has variable geotechnical characteristics depending on the layer sampled. The factor that has the most influence on shear strength was found to be the moisture content. Direct shear-box testing of disturbed, recompacted loess-colluvium found that the soil had a cohesion of 35-65kPa and a friction angle of 38-43° when the soil moisture content was at 8-10%. However when the moisture content was at 19-20% the soil’s cohesion decreased to 3-5kPa and its friction angle decreased to 33-38°, this moisture content is at or slightly above the plastic limit. An electrical resistivity geophysical survey was conducted perpendicular to multiple fissure traces and through the compressional zone at 17 Ramahana Road. The electrical resistivity line found that there was an area of high resistivity at the toe of the slope, and an area of high conductivity downslope of this and at greater depths. This area correlated to the compressional zone recorded by previous studies. Moisture content testing of the soil in these locations showed that the soil in the resistive area was relatively dry (9%) compared to the surrounding soil (13%), whilst the soil in the conductive area was relatively wet (22%)compared to the surrounding soil (19%). Density tests of the soil in the compressional zone recorded that the resistive area had a higher dry density than the surrounding soil (~1790 kg/m3 compared to ~1650 kg/m3). New springs arose downslope of the compressional zone contemporaneously with the fissures, and it is interpreted that these have arisen from increased hydraulic head in the Banks Peninsula bedrock aquifer system, and earthquake induced-bedrock fracturing. A test pit was dug across an infilled fissure trace at 17 Ramahana Road to a depth of 3m. The fissure trace had an aperture of 450-470mm at the ground surface, but it gradually lost aperture with depth until 2.0-2.1m where it became a segmented fissure trace with 1-2mm aperture. A mixed-colluvium layer was intercepted by the fissure trace at 2.4m depth, and there was no observable vertical offset of this layer. The fissure trace was at an angle of 78° at the ground surface, but it also flattened with depth, which gave it a slightly curved appearance. The fissure trace was at an assumed angle of 40-50° near the base of the test pit. Rotational slide, translational slide and lateral spread landslide movement types were compared and contrasted as possibilities for landslide movement types, whilst an alternative hypothesis was offered that the fissures are tensile failures with a quasi-toppling motion involving a cohesive block of loessial soil moving outwards from the slope, with an accommodating compressional strain in the lower less cohesive soil. The mechanisms behind this movement are suggested to be the horizontal earthquake inertia forces from the Christchurch Earthquake, the static shear stress of the slope, and bedrock uplift of the Port Hills in relation to the subsidence of the Christchurch city flatlands. Extremely high PGA is considered to be a prerequisite to the fissure trace development, and these can only be induced in the Hillsborough Valley from a Port Hills Fault rupture, which has a recurrence interval of ~10,000 years. The current understanding of how the loess-colluvium soil would behave under cyclic loading is limited, and the mechanisms behind the suggested movement type are not completely understood. Further research is needed to confirm the proposed mechanism of the fissure traces. Laboratory tests such as the cyclic triaxial and cyclic shear test would be beneficial in future research to quantitatively test how the soil behaves under cyclic loading at various moisture contents and clay contents, and centrifuge experiments would be of great use to qualitatively test the suggested mode of movement in the loessial soil.
The Avon-Heathcote Estuary, located in Christchurch, New Zealand, experienced coseismic deformation as a result of the February 22nd 2011 Christchurch Earthquake. The deformation is reflected as subsidence in the northern area and uplift in the southern area of the Estuary, in addition to sand volcanoes which forced up sediment throughout the floor of the Estuary altering estuary bed height and tidal flow. The first part of the research involved quantifying the change in the modern benthic foraminifera distribution as a result of the coseismic deformation caused by the February 22nd 2011 earthquake. By analysing the taxa present immediately post deformation and then the taxa present 2 years post deformation a comparison of the benthic foraminifera distribution can be made of the pre and post deformation. Both the northern and the southern areas of the Estuary were sampled to establish whether foraminifera faunas migrated landward or seaward as a result of subsidence and uplift experienced in different areas. There was no statistical change in overall species distribution in the two year time period since the coseismic deformation occurred, however, there were some noticeable changes in foraminifera distribution at BSNS-Z3 showing a landward migration of taxa. The changes that were predicted to occur as a result of the deformation of the Estuary are taking longer than expected to show up in the foraminiferal record and a longer time period is needed to establish these changes. The second stage involved establishing the modern distribution of foraminifera at Settlers Reserve in the southern area of the Avon-Heathcote Estuary by detailed sampling along a 160 m transect. Foraminifera are sensitive to environmental parameters, tidal height, grainsize, pH and salinity were recorded to evaluate the effect these parameters have on distribution. Bray-Curtis two-way cluster analysis was primarily used to assess the distribution pattern of foraminifera. The modern foraminifera distribution is comparable to that of the modern day New Zealand brackish-water benthic foraminifera distribution and includes species not yet found in other studies of the Avon-Heathcote Estuary. Differences in sampling techniques and the restricted intertidal marshland area where the transect samples were collected account for some of the differences seen between this model and past foraminifera studies. xiii The final stage involved sampling a 2.20 m core collected from Settlers Reserve and using the modern foraminiferal distribution to establish a foraminiferal history of Settlers Reserve. As foraminifera are sensitive to tidal height they may record past coseismic deformation events and the core was used to ascertain whether record of past coseismic deformation is preserved in Settlers Reserve sediments. Sampling the core for foraminifera, grainsize, trace metals and carbon material helped to build a story of estuary development. Using the modern foraminiferal distribution and the tidal height information collected, a down core model of past tidal heights was established to determine past rates of change. Foraminifera are not well preserved throughout the core, however, a sudden relative rise in sea level is recorded between 0.25 m and 0.85 m. Using trace metal and isotope analysis to develop an age profile, this sea level rise is interpreted to record coseismic subsidence associated with a palaeoseismic event in the early 1900’s. Overall, although the Avon-Heathcote Estuary experienced clear coseismic deformation as a result of the 22nd of February 2011 earthquake, modern changes in foraminiferal distribution cannot yet be tracked, however, past seismic deformation is identified in a core. The modern transect describes the foraminifera distribution which identifies species that have not been identified in the Avon-Heathcote Estuary before. This thesis enhances the current knowledge of the Avon-Heathcote Estuary and is a baseline for future studies.
The overarching goal of this dissertation is to improve predictive capabilities of geotechnical seismic site response analyses by incorporating additional salient physical phenomena that influence site effects. Specifically, multidimensional wave-propagation effects that are neglected in conventional 1D site response analyses are incorporated by: (1) combining results of 3D regional-scale simulations with 1D nonlinear wave-propagation site response analysis, and (2) modelling soil heterogeneity in 2D site response analyses using spatially-correlated random fields to perturb soil properties. A method to combine results from 3D hybrid physics-based ground motion simulations with site-specific nonlinear site response analyses was developed. The 3D simulations capture 3D ground motion phenomena on a regional scale, while the 1D nonlinear site response, which is informed by detailed site-specific soil characterization data, can capture site effects more rigorously. Simulations of 11 moderate-to-large earthquakes from the 2010-2011 Canterbury Earthquake Sequence (CES) at 20 strong motion stations (SMS) were used to validate simulations with observed ground motions. The predictions were compared to those from an empirically-based ground motion model (GMM), and from 3D simulations with simplified VS30- based site effects modelling. By comparing all predictions to observations at seismic recording stations, it was found that the 3D physics-based simulations can predict ground motions with comparable bias and uncertainty as the GMM, albeit, with significantly lower bias at long periods. Additionally, the explicit modelling of nonlinear site-response improves predictions significantly compared to the simplified VS30-based approach for soft-soil or atypical sites that exhibit exceptionally strong site effects. A method to account for the spatial variability of soils and wave scattering in 2D site response analyses was developed and validated against a database of vertical array sites in California. The inputs required to run the 2D analyses are nominally the same as those required for 1D analyses (except for spatial correlation parameters), enabling easier adoption in practice. The first step was to create the platform and workflow, and to perform a sensitivity study involving 5,400 2D model realizations to investigate the influence of random field input parameters on wave scattering and site response. Boundary conditions were carefully assessed to understand their effect on the modelled response and select appropriate assumptions for use on a 2D model with lateral heterogeneities. Multiple ground-motion intensity measures (IMs) were analyzed to quantify the influence from random field input parameters and boundary conditions. It was found that this method is capable of scattering seismic waves and creating spatially-varying ground motions at the ground surface. The redistribution of ground-motion energy across wider frequency bands, and the scattering attenuation of high-frequency waves in 2D analyses, resemble features observed in empirical transfer functions (ETFs) computed in other studies. The developed 2D method was subsequently extended to more complicated multi-layer soil profiles and applied to a database of 21 vertical array sites in California to test its appropriate- ness for future predictions. Again, different boundary condition and input motion assumptions were explored to extend the method to the in-situ conditions of a vertical array (with a sensor embedded in the soil). ETFs were compared to theoretical transfer functions (TTFs) from conventional 1D analyses and 2D analyses with heterogeneity. Residuals of transfer-function- based IMs, and IMs of surface ground motions, were also used as validation metrics. The spatial variability of transfer-function-based IMs was estimated from 2D models and compared to the event-to-event variability from ETFs. This method was found capable of significantly improving predictions of median ETF amplification factors, especially for sites that display higher event-to-event variability. For sites that are well represented by 1D methods, the 2D approach can underpredict amplification factors at higher modes, suggesting that the level of heterogeneity may be over-represented by the 2D random field models used in this study.
Landslides are significant hazards, especially in seismically-active mountainous regions, where shaking amplified by steep topography can result in widespread landsliding. These landslides present not only an acute hazard, but a chronic hazard that can last years-to-decades after the initial earthquake, causing recurring impacts. The Mw 7.8 Kaikōura earthquake caused more than 20,000 landslides throughout North Canterbury and resulted in significant damage to nationally significant infrastructure in the coastal transport corridor (CTC), isolating Kaikōura from the rest of New Zealand. In the years following, ongoing landsliding triggered by intense rainfall exacerbated the impacts and slowed the recovery process. However, while there is significant research on co-seismic landslides and their initial impacts in New Zealand, little research has explored the evolution of co-seismic landslides and how this hazard changes over time. This research maps landslides annually between 2013 and 2021 to evaluate the changes in pre-earthquake, co-seismic and post-earthquake rates of landsliding to determine how landslide hazard has changed over this time. In particular, the research explores how the number, area, and spatial distribution of landslides has changed since the earthquake, and whether post-earthquake mitigation works have in any way affected the long-term landslide hazard. Mapping of landslides was undertaken using open-source, medium resolution Landsat-8 and Sentinel-2 satellite imagery, with landslides identified visually and mapped as single polygons that capture both the source zone and deposit. Three study areas with differing levels of post-earthquake mitigation are compared: (i) the northern CTC, where the majority of mitigation was in the form of active debris removal; (ii) the southern CTC, where mitigation was primarily via passive protection measures; and (iii) Mount Fyffe, which has had no mitigation works since the earthquake. The results show that despite similar initial impacts during the earthquake, the rate of recovery in terms of landslide rates varies substantially across the three study areas. In Mount Fyffe, the number and area of landslides could take 45 and 22 years from 2021 respectively to return to pre-earthquake levels at the current rate. Comparatively, in the CTC, it could take just 5 years and 3-4 years from 2021 respectively. Notably, the fastest recovery in terms of landslide rates in the CTC was primarily located directly along the transport network, whereas what little recovery did occur in Mount Fyffe appeared to follow no particular pattern. Importantly, recovery rates in the northern CTC were notably higher than in the southern CTC, despite greater co-seismic impacts in the former. Combined, these results suggest the active, debris removal mitigation undertaken in the northern CTC may have had the effect of dramatically reducing the time for landslide rates to return to pre-earthquake levels. The role of slope angle and slope aspect were explored to evaluate if these observations could be driven by local differences in topography. The Mount Fyffe study area has higher slope angles than the CTC as a whole and landslides predominantly occurred on slightly steeper slopes than in the CTC. This may have contributed to the longer recovery times for landsliding in Mount Fyffe due to greater gravitational instability, however the observed variations are minor compared to the differences in recovery rates. In terms of slope aspect, landslides in Mount Fyffe preferentially occurred on north- and south-facing slopes whereas landslides in the CTC preferred the east- and south-facing slopes. The potential role of these differences in landslide recovery remains unclear but may be related to the propagation direction of the earthquake and the tracking direction of post-earthquake ex-tropical cyclones. Finally, landslides in the CTC are observed to be moving further away from the transport network and the number of landslides impacting the CTC decreased significantly since the earthquake. Nevertheless, the potential for further landslide reactivation remains. Therefore, despite the recovery in the CTC, it is clear that there is still risk of the transport network being impacted by further landsliding, at least for the next 3-5 yrs.