Geological research in the immediate aftermath of the 2016 Kaikōura Earthquake, New Zealand, was necessary due to the importance and perishability of field data. It also reflects a real desire on the part of researchers to contribute not only to immediate scientific understanding but also to the societal recovery effort by enhancing knowledge of the event for the benefit of affected communities, civil defence organizations and regional and national decision makers. This commitment to outreach and engagement is consistent with the recent IAPG statement of Geoethics. More immediately, it was informed by experience of the 2010-2011 Canterbury Earthquake sequence. After that earlier disaster, intense interactions between researchers and various response agencies as well as local communities informed the development and dissemination of a set of ethical guidelines for researchers immediately following the Mw7.8 14 November 2016 Kaikōura Earthquake. In this presentation, I argue that ethical engagement of this kind is the key to gathering high quality research data immediately after the event. Creating trusting and mutually respectful, mutually beneficial relationships is also vital to ongoing engagement to facilitate further “in depth” research in collaboration with communities.
The Canterbury earthquakes and the rebuild are generation-defining events for twenty-first century Aotearoa/ New Zealand. This article uses an actor network approach to explore 32 women’s narratives of being shaken into dangerous disaster situations and reconstituting themselves to cope in socially innovative ways. The women’s stories articulate on-going collective narratives of experiencing disaster and coping with loss in ‘resilient’ ways. In these women’s experiences, coping in disasters is not achieved by talking through the emotional trauma. Instead, coping comes from seeking solace through engagement with one’s own and others’ personal risk and resourcefulness in ways that feed into the emergence of socially innovative voluntary organisations. These stories offer conceptual insight into the multivalent interconnections between resilience and vulnerabilities and the contested nature of post-disaster recovery in Aotearoa/New Zealand. These women gave voice to living through disasters resiliently in ways that forged new networks of support across collective and personal narratives and broader social goals and aspirations for Aotearoa/New Zealand’s future.
There has not been substantial research conducted in the area of fraud and natural disasters. Therefore, this study sought to examine the perceptions of Canterbury residents toward the recovery process following the September 2010 and February 2011 earthquakes and whether residents felt as though contractor fraud occurs in Canterbury. A questionnaire was developed to gauge information about Canterbury residents’ self-reports involving the earthquakes, specific contractors involved, parties involved with the recovery process in general, and demographic information. Participants included a total of 213 residents from the Canterbury region who had been involved with contractors and/or insurance companies due to the recovery process. Results indicated that a high percentage of the participants were not satisfied with the recovery process and that almost half of the participants reported feeling scammed by contractors in Canterbury after the 2010 and 2011 earthquakes. Moreover, the results indicate that participants neither agreed with the assessments made about their property losses nor the plans made to recover their properties. In many cases, participants felt pressured and even reluctant to accept these assessments and/or plans. The present study does not seek to explain why contractor fraud exists or what motivates scammers. Conversely, it attempts to demonstrate the perceptions of contractor fraud and satisfaction that have taken place in the aftermath of the Canterbury earthquakes.
This thesis set out to explore the experiences of clients and counsellors in immediate crisis intervention shortly after a major earthquake. It explored the experiences and perceptions of change during counselling for both clients and counsellor, all of which were exposed to the disaster. This study supported the idea of counsellors needing to adapt to the context of post-disaster counselling and addressing client’s immediate needs. Having both been through the same disaster meant counsellors were often going through similar experiences and emotions as their clients during this time. This led counsellors to develop a greater sense of connection and understanding of their client, as well as showing more emotional responsivity and self-disclosure. This was experienced as different to their normal therapy engagement. The implications of these counsellor responses were seen to be helpful, but at times had the potential to be hindering for counselling. Clients valued their counsellor’s techniques and personal qualities but often failed to identify what contribution they, themselves, made to change processes. The differing nature of counselling in post-disaster areas, as gauged by this study may help inform expectations and experiences regarding provision of post-disaster acute interventions.
One of the failure modes that got the attention of researchers in the 2011 February New Zealand earthquake was the collapse of a key supporting structural wall of Grand Chancellor Hotel in Christchurch which failed in a brittle manner. However, until now this failure mode has been still a bit of a mystery for the researchers in the field of structural engineering. Moreover, there is no method to identify, assess and design the walls prone to such failure mode. Following the recent break through regarding the mechanism of this failure mode based on experimental observations (out-of-plane shear failure), a numerical model that can capture this failure was developed using the FE software DIANA. A comprehensive numerical parametric study was conducted to identify the key parameters contributing to the development of out-of-plane shear failure in reinforced concrete (RC) walls. Based on the earthquake observations, experimental and numerical studies conducted by the authors of this paper, an analytical method to identify walls prone to out-of-plane shear failure that can be used in practice by engineers is proposed. The method is developed based on the key parameters affecting the seismic performance of RC walls prone to out-of-plane shear failure and can be used for both design and assessment purposes
The Avon and Heathcote Rivers, located in the city of Christchurch, New Zealand, are lowland spring-fed rivers linked with the Christchurch Groundwater System. At present, the flow paths and recharge sources to the Christchurch Groundwater System are not fully understood. Study of both the Avon and Heathcote Rivers can provide greater insight into this system. In addition, during the period 2010-2012, Christchurch has experienced large amounts of seismic activity, including a devastating Mw 6.2 aftershock on February 22nd, 2011, which caused widespread damage and loss of life. Associated with these earthquakes was the release of large amounts of water through liquefaction and temporary springs throughout the city. This provided a unique opportunity to study groundwater surface water interactions following a large scale seismic event. Presented herein is the first major geochemical study on the Avon and Heathcote Rivers and the hydrological impact of the February 22, 2011 Christchurch Earthquake. The Avon, Heathcote, and Waimakariri Rivers were sampled in quarterly periods starting in July 2011 and analyzed for stable Isotopes δ¹⁸O, δD, and δ¹³C and major anion composition. In addition, post -earthquake samples were collected over the days immediately following the February 22, 2011 earthquake and analyzed for stable isotopes δ¹⁸O and δD and major anion composition. A variety of analytical methods were used identify the source of the waters in the Avon-Heathcote System and evaluate the effectiveness of stable isotopes as geochemical tracers in the Christchurch Groundwater System. The results of this thesis found that the waters from the Avon and Heathcote Rivers are geochemically the same, originating from groundwater, and exhibit a strong tidal influence within 5km of the Avon-Heathcote Estuary. The surface waters released following the February 22nd, 2011 earthquake were indistinguishable from quarterly samples taken from the Avon and Heathcote Rivers when comparing stable isotopic composition. The anion data suggests the waters released following the February 22nd, 2011 Christchurch Earthquake were sourced primarily from shallow groundwater, and also suggests a presence of urban sewage at some sites. Attempts to estimate recharge sources for the Avon-Heathcote Rivers using published models for the Christchurch Groundwater System yielded results that were not consistent between models. In evaluating the use of geochemical constituents as tracers in the Christchurch Groundwater System, no one isotope could provide a clear resolution, but when used in conjunction, δ¹⁸O, δ¹³C, and DIC, seem to be the most effective tracers. Sample sizes for δ¹³C were too small for a robust evaluation. Variability on the Waimakariri River appears to be greater than previously estimated, which could have significant impacts on geochemical models for the Christchurch Groundwater System. This research demonstrates the value of using multiple geochemical constituents to enrich our understanding of the groundwater surfaces-water interactions and the Christchurch Groundwater System as a whole.
When disasters and crises, both man-made and natural, occur, resilient higher education institutions adapt in order to continue teaching and research. This may necessitate the closure of the whole institution, a building and/or other essential infrastructure. In disasters of large scale the impact can be felt for many years. There is an increasing recognition of the need for disaster planning to restructure educational institutions so that they become more resilient to challenges including natural disasters (Seville, Hawker, & Lyttle, 2012).The University of Canterbury (UC) was affected by seismic events that resulted in the closure of the University in September 2010 for 10 days and two weeks at the start of the 2011 academic year This case study research describes ways in which e-learning was deployed and developed by the University to continue and even to improve learning and teaching in the aftermath of a series of earthquakes in 2010 and 2011. A qualitative intrinsic embedded/nested single case study design was chosen for the study. The population was the management, support staff and educators at the University of Canterbury. Participants were recruited with purposive sampling using a snowball strategy where the early key participants were encouraged to recommend further participants. Four sources of data were identified: (1) documents such as policy, reports and guidelines; (2) emails from leaders of the colleges and academics; (3) communications from senior management team posted on the university website during and after the seismic activity of 2010 and 2011; and (4) semi-structured interviews of academics, support staff and members of senior management team. A series of inductive descriptive content analyses identified a number of themes in the data. The Technology Acceptance Model 2 (Venkatesh & Davis, 2000) and the Indicator of Resilience Model (Resilient Organisations, 2012) were used for additional analyses of each of the three cases. Within the University case, the cases of two contrasting Colleges were embedded to produce a total of three case studies describing e-learning from 2000 - 2014. One contrast was the extent of e-learning deployment at the colleges: The College of Education was a leader in the field, while the College of Business and Law had relatively little e-learning at the time of the first earthquake in September 2010. The following six themes emerged from the analyses: Communication about crises, IT infrastructure, Availability of e-learning technologies, Support in the use of e-learning technologies, Timing of crises in academic year and Strategic planning for e-learning. One of the findings confirmed earlier research that communication to members of an organisation and the general public about crises and the recovery from crises is important. The use of communication channels, which students were familiar with and already using, aided the dissemination of the information that UC would be using e-learning as one of the options to complete the academic year. It was also found that e-learning tools were invaluable during the crises and facilitated teaching and learning whilst freeing limited campus space for essential activities and that IT infrastructure was essential to e-learning. The range of e-learning tools and their deployment evolved over the years influenced by repeated crises and facilitated by the availability of centrally located support from the e-Learning support team for a limited set of tools, as well as more localised support and collaboration with colleagues. Furthermore, the reasons and/or rate of e-learning adoption in an educational institution during crises varied with the time of the academic year and the needs of the institution at the time. The duration of the crises also affected the adoption of e-learning. Finally, UC’s lack of an explicit e-learning strategy influenced the two colleges to develop college-specific e-learning plans and those College plans complemented the incorporation of e-learning for the first time in the University’s teaching and learning strategy in 2013. Twelve out of the 13 indicators of the Indicators of Resilience Model were found in the data collected for the study and could be explained using the model; it revealed that UC has become more resilient with e-learning in the aftermath of the seismic activities in 2010 and 2011. The interpretation of the results using TAM2 demonstrated that the adoption of technologies during crises aided in overcoming barriers to learning at the time of the crisis. The recommendations from this study are that in times of crises, educational institutions take advantage of Cloud computing to communicate with members of the institution and stakeholders. Also, that the architecture of a university’s IT infrastructure be made more resilient by increasing redundancy, backup and security, centralisation and Cloud computing. In addition, when under stress it is recommended that new tools are only introduced when they are essential.
Geologic phenomena produced by earthquake shaking, including rockfalls and liquefaction features, provide important information on the intensity and spatiotemporal distribution of earthquake ground motions. The study of rockfall and liquefaction features produced in contemporary well- instrumented earthquakes increases our knowledge of how natural and anthropogenic environments respond to earthquakes and improves our ability to deduce seismologic information from analogous pre-contemporary (paleo-) geologic features. The study of contemporary and paleo- rockfall and liquefaction features enables improved forecasting of environmental responses to future earthquakes. In this thesis I utilize a combination of field and imagery-based mapping, trenching, stratigraphy, and numerical dating techniques to understand the nature and timing of rockfalls (and hillslope sedimentation) and liquefaction in the eastern South Island of New Zealand, and to examine the influence that anthropogenic activity has had on the geologic expressions of earthquake phenomena. At Rapaki (Banks Peninsula, NZ), field and imagery-based mapping, statistical analysis and numerical modeling was conducted on rockfall boulders triggered by the fatal 2011 Christchurch earthquakes (n=285) and compared with newly identified prehistoric (Holocene and Pleistocene) boulders (n=1049) deposited on the same hillslope. A significant population of modern boulders (n=26) travelled farther downslope (>150 m) than their most-travelled prehistoric counterparts, causing extensive damage to residential dwellings at the foot of the hillslope. Replication of prehistoric boulder distributions using 3-dimensional rigid body numerical models requires the application of a drag-coefficient, attributed to moderate to dense slope vegetation, to account for their spatial distribution. Radiocarbon dating provides evidence for 17th to early 20th century deforestation at the study site during Polynesian and European colonization and after emplacement of prehistoric rockfalls. Anthropocene deforestation enabled modern rockfalls to exceed the limits of their prehistoric predecessors, highlighting a shift in the geologic expression of rockfalls due to anthropogenic activity. Optical and radiocarbon dating of loessic hillslope sediments in New Zealand’s South Island is used to constrain the timing of prehistoric rockfalls and associated seismic events, and quantify spatial and temporal patterns of hillslope sedimentation including responses to seismic and anthropogenic forcing. Luminescence ages from loessic sediments constrain timing of boulder emplacement to between ~3.0 and ~12.5 ka, well before the arrival of Polynesians (ca AD 1280) and Europeans (ca AD 1800) in New Zealand, and suggest loess accumulation was continuing at the study site until 12-13 ka. Large (>5 m3) prehistoric rockfall boulders preserve an important record of Holocene hillslope sedimentation by creating local traps for sediment aggradation and upbuilding soil formation. Sediment accumulation rates increased considerably (>~10 factor increase) following human arrival and associated anthropogenic burning of hillslope vegetation. New numerical ages are presented to place the evolution of loess-mantled hillslopes in New Zealand’s South Island into a longer temporal framework and highlight the roles of earthquakes and humans on hillslope surface process. Extensive field mapping and characterization for 1733 individual prehistoric rockfall boulders was conducted at Rapaki and another Banks Peninsula site, Purau, to understand their origin, frequency, and spatial and volumetric distributions. Boulder characteristics and distributions were compared to 421 boulders deposited at the same sites during the 2010-2011 Canterbury earthquake sequence. Prehistoric boulders at Rapaki and Purau are comprised of two dominant lithofacies types: volcanic breccia and massive (coherent) lava basalt. Volcanic breccia boulders are found in greatest abundance (64-73% of total mapped rockfall) and volume (~90-96% of total rockfall) at both locations and exclusively comprise the largest boulders with the longest runout distances that pose the greatest hazard to life and property. This study highlights the primary influence that volcanic lithofacies architecture has on rockfall hazard. The influence of anthropogenic modifications on the surface and subsurface geologic expression of contemporary liquefaction created during the 2010-2011 Canterbury earthquake sequence (CES) in eastern Christchurch is examined. Trench observations indicate that anthropogenic fill layer boundaries and the composition/texture of discretely placed fill layers play an important role in absorbing fluidized sand/silt and controlling the subsurface architecture of preserved liquefaction features. Surface liquefaction morphologies (i.e. sand blows and linear sand blow arrays) display alignment with existing utility lines and utility excavations (and perforated pipes) provided conduits for liquefaction ejecta during the CES. No evidence of pre-CES liquefaction was identified within the anthropogenic fill layers or underlying native sediment. Radiocarbon dating of charcoal within the youngest native sediment suggests liquefaction has not occurred at the study site for at least the past 750-800 years. The importance of systematically examining the impact of buried infrastructure on channelizing and influencing surface and subsurface liquefaction morphologies is demonstrated. This thesis highlights the importance of using a multi-technique approach for understanding prehistoric and contemporary earthquake phenomena and emphasizes the critical role that humans play in shaping the geologic record and Earth’s surface processes.
The timeliness and quality of recovery activities are impacted by the organisation and human resourcing of the physical works. This research addresses the suitability of different resourcing strategies on post-disaster demolition and debris management programmes. This qualitative analysis primarily draws on five international case studies including 2010 Canterbury earthquake, 2009 L’Aquila earthquake, 2009 Samoan Tsunami, 2009 Victorian Bushfires and 2005 Hurricane Katrina. The implementation strategies are divided into two categories: collectively and individually facilitated works. The impacts of the implementation strategies chosen are assessed for all disaster waste management activities including demolition, waste collection, transportation, treatment and waste disposal. The impacts assessed include: timeliness, completeness of projects; and environmental, economic and social impacts. Generally, the case studies demonstrate that detritus waste removal and debris from major repair work is managed at an individual property level. Debris collection, demolition and disposal are generally and most effectively carried out as a collective activity. However, implementation strategies are affected by contextual factors (such as funding and legal constraints) and the nature of the disaster waste (degree of hazardous waste, geographical spread of waste etc.) and need to be designed accordingly. Community involvement in recovery activities such as demolition and debris removal is shown to contribute positively to psychosocial recovery.
Our poster will present on-going QuakeCoRE-founded work on strong motion seismology for Dunedin-Mosgiel area, focusing on ground motion simulations for Dunedin Central Business District (CBD). Source modelling and ground motion simulations are being carried out using the SCEC (Southern California Earthquakes Center) Broad Band simulation Platform (BBP). The platform computes broadband (0-10 Hz) seismograms for earthquakes and was first implemented at the University of Otago in 2016. As large earthquakes has not been experienced in Dunedin in the time of period of instrumental recording, user-specified scenario simulations are of great value. The Akatore Fault, the most active fault in Otago and closest major fault to Dunedin, is the source focused on in the present study. Simulations for various Akatore Fault source scenarios are run and presented. Path and site effects are key components considered in the simulation process. A 1D shear wave velocity profile is required by SCEC BBP, and this is being generated to represent the Akatore-to-CBD path and site within the BBP. A 3D shear velocity model, with high resolution within Dunedin CBD, is being developed in parallel with this study (see Sangster et al. poster). This model will be the basis for developing a 3D shear wave velocity model for greater Dunedin-Mosgiel area for future ground motion simulations, using Canterbury software (currently under development).
Buildings subject to earthquake shaking will tend to move not only horizontally but also rotate in plan. In-plan rotation is known as “building torsion” and it may occur for a variety of reasons, including stiffness and strength eccentricity and/or torsional effects from ground motions. Methods to consider torsion in structural design standards generally involve analysis of the structure in its elastic state. This is despite the fact that the structural elements can yield, thereby significantly altering the building response and the structural element demands. If demands become too large, the structure may collapse. While a number of studies have been conducted into the behavior of structures considering inelastic building torsion, there appears to be no consensus that one method is better than another and as a result, provisions within current design standards have not adopted recent proposals in the literature. However, the Canterbury Earthquakes Royal Commission recently made the recommendation that provisions to account for inelastic torsional response of buildings be introduced within New Zealand building standards. Consequently, this study examines how and to what extent the torsional response due to system eccentricity may affect the seismic performance of a building and considers what a simple design method should account for. It is concluded that new methods should be simple, be applicable to both the elastic and inelastic range of response, consider bidirectional excitation and include guidance for multi-story systems.
Slender precast concrete wall panels are currently in vogue for the construction of tall single storey warehouse type buildings. Often their height to thickness ratio exceed the present New Zealand design code (NZS 3101) limitations of 30:1. Their real performance under earthquake attack is unknown. Therefore, this study seeks to assess the dynamic performance of slender precast concrete wall panels with different base connection details. Three base connections (two fixed base and one rocking) from two wall specimens with height to thickness ratios of 60:1 were tested under dynamic loading. The two fixed based walls had longitudinal steel volumes of 1.27% to 0.54% and were tested on the University of Canterbury shaking table to investigate their proneness to out-of-plane buckling. Based on an EUler-type theoretical formula derived as part of the study, an explanation is made as to why walls with high in-plane capacity are more prone to buckling. The theory was validated against the present and past experimental evidence. The rocking base connection designed and built in accordance with a damage avoidance philosophy was tested on the shaking table in a similar fashion to the fixed base specimens. Results show that in contrast with their fixed base counterparts, rocking walls can indeed fulfil a damage-free design objective while also remaining stable under strong earthquake ground shaking.
Recurrent liquefaction in Christchurch during the 2010-2011 Canterbury earthquake sequence created a wealth of shallow subsurface intrusions with geometries and orientations governed by (1) strong ground motion severity and duration, and (2) intrinsic site characteristics including liquefaction susceptibility, lateral spreading severity, geomorphic setting, host sediment heterogeneity, and anthropogenic soil modifications. We present a suite of case studies that demonstrate how each of these characteristics influenced the geologic expressions of contemporary liquefaction in the shallow subsurface. We compare contemporary features with paleo-features to show how geologic investigations of recurrent liquefaction can provide novel insights into the shaking characteristics of modern and paleo-earthquakes, the influence of geomorphology on liquefaction vulnerability, and the possible controls of anthropogenic activity on the geologic record. We conclude that (a) sites of paleo-liquefaction in the last 1000-2000 years corresponded with most severe liquefaction during the Canterbury earthquake sequence, (b) less vulnerable sites that only liquefied in the strongest and most proximal contemporary earthquakes are unlikely to have liquefied in the last 1000-2000 years or more, (c) proximal strong earthquakes with large vertical accelerations favoured sill formation at some locations, (d) contemporary liquefaction was more severe than paleoliquefaction at all study sites, and (e) stratigraphic records of successive dike formation were more complete at sites with severe lateral spreading, (f) anthropogenic fill suppressed surface liquefaction features and altered subsurface liquefaction architecture.
Data from the 2010-2011 Canterbury earthquake sequence (CES) provides an unprecedented opportunity to assess and advance the current state of practice for evaluating liquefaction triggering. Towards this end, select case histories from the CES are used herein to assess the predictive capabilities of three alternative CPT-based simplified liquefaction evaluation procedures: Robertson and Wride (1998); Moss et al. (2006); and Idriss and Boulanger (2008). Additionally, the Liquefaction Potential Index (LPI) framework for predicting the severity of surficial liquefaction manifestations is also used to assess the predictive capabilities of the liquefaction evaluation procedures. Although it is not without limitations, use of the LPI framework for this purpose circumvents the need for selecting “critical” layers and their representative properties for study sites, which inherently involves subjectivity and thus has been a point of contention among researchers. It was found that while all the assessed liquefaction triggering evaluation procedures performed well for the parameter ranges of the sites analyzed, the procedure proposed by Idriss and Boulanger (2008) yielded predictions that are more consistent with field observations than the other procedures. However, use of the Idriss and Boulanger (2008) procedure in conjunction with a Christchurch-specific correlation to estimate fines content showed a decreased performance relative to using a generic fines content correlation. As a result, the fines correction for the Idriss and Boulanger (2008) procedure needs further study.
Over 900 buildings in the Christchurch central business district and 10,000 residential homes were demolished following the 22nd of February 2011 Canterbury earthquake, significantly disrupting the rebuild progress. This study looks to quantify the time required for demolitions during this event which will be useful for future earthquake recovery planning. This was done using the Canterbury Earthquake Recovery Authority (CERA) demolition database, which allowed an in-depth look into the duration of each phase of the demolition process. The effect of building location, building height, and the stakeholder which initiated the demolition process (i.e. building owner or CERA) was investigated. The demolition process comprises of five phases; (i) decision making, (ii) procurement and planning, (iii) demolition, (iv) site clean-up, and (v) completion certification. It was found that the time required to decide to demolish the building made up majority of the total demolition duration. Demolition projects initiated by CERA had longer procurement and planning durations, but was quicker in other phases. Demolished buildings in the suburbs had a longer decision making duration, but had little effect on other phases of the demolition process. The decision making and procurement and planning phases of the demolition process were shorter for taller buildings, though the other phases took longer. Fragility functions for the duration of each phase in the demolition process are provided for the various categories of buildings for use in future studies.
For the people of Christchurch and its wider environs of Canterbury in New Zealand, the 4th of September 2010 earthquake and the subsequent aftershocks were daunting. To then experience a more deadly earthquake five months later on the 22nd of February 2011 was, for the majority, overwhelming. A total of 185 people were killed and the earthquake and continuing aftershocks caused widespread damage to properties, especially in the central city and eastern suburbs. A growing body of literature consistently documents the negative impact of experiencing natural disasters on existing psychological disorders. As well, several studies have identified positive coping strategies which can be used in response to adversities, including reliance on spiritual and cultural beliefs as well as developing resilience and social support. The lifetime prevalence of severe mental health disorders such as posttraumatic stress disorder (PTSD) occurring as a result of experiencing natural disasters in the general population is low. However, members of refugee communities who were among those affected by these earthquakes, as well as having a past history of experiencing traumatic events, were likely to have an increased vulnerability. The current study was undertaken to investigate the relevance to Canterbury refugee communities of the recent Canterbury Earthquake Recovery Authority (CERA) draft recovery strategy for Christchurch post-earthquakes. This was accomplished by interviewing key informants who worked closely with refugee communities. These participants were drawn from different agencies in Christchurch including Refugee Resettlement Services, the Canterbury Refugee Council, CERA, and health promotion and primary healthcare organisations, in order to obtain the views of people who have comprehensive knowledge of refugee communities as well as expertise in local mainstream services. The findings from the semi-structured interviews were analysed using qualitative thematic analysis to identify common themes raised by the participants. The key informants described CERA’s draft recovery strategy as a significant document which highlighted the key aspects of recovery post disaster. Many key informants identified concerns regarding the practicality of the draft recovery strategy. For the refugee communities, some of those concerns included the short consultation period for the implementation phase of the draft recovery strategy, and issues surrounding communication and collaboration between refugee agencies involved in the recovery. This study draws attention to the importance of communication and collaboration during recovery, especially in the social reconstruction phase following a disaster, for all citizens but most especially for refugee communities.
This thesis seeks to examine how the integration of play, small toys specifically, and the use of solution-focused brief therapy techniques can affect the outcomes for primary school aged children undergoing counselling. The setting is a counselling agency in Christchurch, New Zealand. A qualitative research approach is used and the data analysed using a narrative inquiry approach. The context of this study is the counselling service of an agency where young children, adolescents and their families are helped and supported through a variety of life issues. The counselling the participants are offered uses a combination of a solution-focused and play therapy where the purpose is to encourage clients to find exceptions to their presenting problems and identify their preferred future. The aim of this study is to help the children navigate their problem through a better understanding of and the gaining of personal skills and strengths. Participants were invited to be part of this study through the agency waiting list. The four included presented with a variety of reasons for coming to counselling yet these proved similar to that which the agency has been routinely presented with in the aftermath of the Canterbury earthquakes from 2011 to present day. Each participant had the consent of their parents or caregivers to engage in this project. The participants themselves separately agreed to engage in a solution- focused counselling process where the counsellor also integrated the use of small toys as part of the course. Counselling sessions were audiotaped, aspects photographed and analysed with a specific focus on client engagement. Four key themes emerged as the participants explored their personal narrative. Firstly, the “I’m OK” theme depicted in their first scaling activity, secondly a recognition that things could indeed be better and they needed help. Thirdly, a realisation of their own strengths and skills and finally that the future was an optimistic place to look forward to. These themes are described and explained through descriptions of the participant’s stories as well as self-reflection by the researcher. Transcriptions of sessions are included as are excerpts from the research journal and photographs of the use of the small toys by the children.
Context of the project: On 4 September 2010, 22 February 2011, 13 June 2011 and 23 December 2011 Christchurch suffered major earthquakes and aftershocks (well over 10,000) that have left the central city in ruins and many of the eastern suburbs barely habitable even now. The earthquakes on 22 February caused catastrophic loss of life with 185 people killed. The toll this has taken on the residents of Christchurch has been considerable, not least of all for the significant psychological impact and disruption it has had on the children. As the process of rebuilding the city commenced, it became clear that the arts would play a key role in maintaining our quality of life during difficult times. For me, this started with the children and the most expressive of all the art forms – music.
Earthquake events can be sudden, stressful, unpredictable, and uncontrollable events in which an individual’s internal and external assumptions of their environment may be disrupted. A number of studies have found depression, and other psychological symptoms may be common after natural disasters. They have also found an association between depression, losses and disruptions for survivors. The present study compared depression symptoms in two demographically matched communities differentially affected by the Canterbury (New Zealand) earthquakes. Hypotheses were informed by the theory of learned helplessness (Abramson, Seligman & Teasdale, 1978). A door-to-door survey was conducted in a more physically affected community sample (N=67) and a relatively unaffected community sample (N=67), 4 months after the February 2011 earthquake. Participants were again assessed approximately 10 months after the quake. Measures of depression, acute stress, anxiety, aftershock anxiety, losses, physical disruptions and psychological disruptions were taken. In addition, prior psychological symptoms, medication, alcohol and cigarette use were assessed. Participants in the more affected community reported higher depression scores than the less affected community. Overall, elevated depressive score at time 2 were predicted by depression at time 1, acute stress and anxiety symptoms at time 2, physical disruptions following the quake and psychosocial functioning disruptions at time 2. These results suggest the influence of acute stress, anxiety and disruptions in predicting depression sometime after an earthquake. Supportive interventions directed towards depression, and other psychological symptoms, may prove helpful in psychological adjustment following ongoing disruptive stressors and uncontrollable seismic activity.
Individual responses to natural disasters are highly variable. The psychological and behavioural response trajectories of those who manage to cope well with adverse life events are in need of further investigation. Increased alcohol use is often observed in communities exposed to mass traumas, particularly among those exposed to severe levels of trauma, with males drinking more than females. The current study examined patterns of alcohol use and motivations for drinking among a sample of psychologically resilient individuals with varying levels of exposure to the Canterbury earthquakes (N = 91) using structured and semi-structured interviews and self-report measures. As hypothesised, there was a significant increase in alcohol consumption since the earthquakes began, and males reported significantly higher levels of pre-earthquake and current alcohol consumption than females. Contrary to expectations, there was no association between traumatic exposure severity and alcohol consumption. While participants reported anxiety-based coping motives for drinking at levels comparable to those reported by other studies, depression-based coping motives were significantly lower, providing partial support for the hypothesis that participants would report coping motives for drinking at levels comparable to those found by other researchers. No gender differences in drinking motives were found. As expected, current alcohol consumption was positively correlated with anxiety and depression-based coping motives for drinking. Psychological resilience was not significantly associated with alcohol use, however resilience was negatively associated with depression-based coping motives for drinking. These findings have inter-generational and international implications for post-traumatic intervention.
Nowadays the telecommunication systems’ performance has a substantial impact on our lifestyle. Their operationality becomes even more substantial in a post-disaster scenario when these services are used in civil protection and emergency plans, as well as for the restoration of all the other critical infrastructure. Despite the relevance of loss of functionality of telecommunication networks on seismic resilience, studies on their performance assessment are few in the literature. The telecommunication system is a distributed network made up of several components (i.e. ducts, utility holes, cabinets, major and local exchanges). Given that these networks cover a large geographical area, they can be easily subjected to the effects of a seismic event, either the ground shaking itself, or co-seismic events such as liquefaction and landslides. In this paper, an analysis of the data collected after the 2010-2011 Canterbury Earthquake Sequence (CES) and the 2016 Kaikoura Earthquake in New Zealand is conducted. Analysing these data, information gaps are critically identified regarding physical and functional failures of the telecommunication components, the timeline of repair/reconstruction activities and service recovery, geotechnical tests and land planning maps. Indeed, if these missing data were presented, they could aid the assessment of the seismic resilience. Thus, practical improvements in the post-disaster collection from both a network and organisational viewpoints are proposed through consultation of national and international researchers and highly experienced asset managers from Chorus. Finally, an outline of future studies which could guide towards a more resilient seismic performance of the telecommunication network is presented.
This paper presents the preliminary conclusions of the first stage of Wellington Case Study project (Regulating For Resilience in an Earthquake Vulnerable City) being undertaken by the Disaster Law Research Group at the University of Canterbury Law School. This research aims to map the current regulatory environment around improving the seismic resilience of the urban built environment. This work provides the basis for the second stage of the project which will map the regulatory tools onto the reality of the current building stock in Wellington. Using a socio-legal methodology, the current research examines the regulatory framework around seismic resilience for existing buildings in New Zealand, with a particularly focus on multi-storey in the Wellington CBD. The work focusses both on the operation and impact of the formal seismic regulatory tools open to public regulators (under the amended Building Act) as other non-seismic regulatory tools. As well as examining the formal regulatory frame, the work also provides an assessment of the interactions between other non-building acts (such as Health and Safety at Work Act 2015) on the requirements of seismic resilience. Other soft-law developments (particularly around informal building standards) are also examined. The final output of this work will presents this regulatory map in a clear and easily accessible manner and provide an assessment of the suitability of this at times confusing and patchy legal environment as Wellington moves towards becoming a resilient city. The final conclusion of this work will be used to specifically examine the ability of Wellington to make this transition under the current regulatory environment as phase two of the Wellington Case Study project.
This study explicitly investigates uncertainties in physics-based ground motion simulation validation for earthquakes in the Canterbury region. The simulations utilise the Graves and Pitarka (2015) hybrid methodology, with separately quantified parametric uncertainties in the comprehensive physics and simplified physics components of the model. The study is limited to the simulation of 148 small magnitude (Mw 3.5 – 5) earthquakes, with a point source approximation for the source rupture representations, which also enables a focus on a small number of relevant uncertainties. The parametric uncertainties under consideration were selected through sensitivity analysis, and specifically include: magnitude, Brune stress parameter and high frequency rupture velocity. Twenty Monte Carlo realisations were used to sample parameter uncertainties for each of the 148 events. Residuals associated with the following intensity measures: spectral acceleration, peak ground velocity, arias intensity and significant duration, were ascertained. Using these residuals, validation was performed through assessment of systematic biases in site and source terms from mixed-effects regression. Based on the results to date, initial standard deviation recommendations for parameter uncertainties, based on the Canterbury simulations have been obtained. This work ultimately provides an initial step toward explicit incorporation of modelling uncertainty in simulated ground motion predictions for future events, which will improve the use of simulation models in seismic hazard analysis. We plan to subsequently assess uncertainties for larger magnitude events with more complex ruptures, and events across a larger geographic region, as well as uncertainties due to path attenuation, site effects, and more general model epistemic uncertainties.
A seismic financial risk analysis of typical New Zealand reinforced concrete buildings constructed with topped precast concrete hollow-core units is performed on the basis of experimental research undertaken at the University of Canterbury over the last five years. An extensive study that examines seismic demands on a variety of multi-storey RC buildings is described and supplemented by the experimental results to determine the inter-storey drift capacities of the buildings. Results of a full-scale precast concrete super-assemblage constructed and tested in the laboratory in two stages are used. The first stage investigates existing construction and demonstrates major shortcomings in construction practice that would lead to very poor seismic performance. The second stage examines the performance of the details provided by Amendment No. 3 to the New Zealand Concrete Design Code NZS 3101:1995. This paper uses a probabilistic financial risk assessment framework to estimate the expected annual loss (EAL) from previously developed fragility curves of RC buildings with precast hollow core floors connected to the frames according to the pre-2004 standard and the two connection details recommended in the 2004 amendment. Risks posed by different levels of damage and by earthquakes of different frequencies are examined. The structural performance and financial implications of the three different connection details are compared. The study shows that the improved connection details recommended in the 2004 amendment give a significant economic payback in terms of drastically reduced financial risk, which is also representative of smaller maintenance cost and cheaper insurance premiums.
Tertiary students, not just working populations, might be experiencing feelings of burnout following the Christchurch earthquakes of 2010 and 2011. In the aftermath of a major disaster, the gap between the resources available to handle pressures (e.g., support) and the demands inherent in the pursuit of an academic degree (e.g., heavy workload) may lead to feelings of burnout among students. This study hypothesised that burnout dimensions (emotional exhaustion and disengagement) would be related to students’ perceptions of immediate institutional support, extended institutional support, peer support, family support, and work overload. Additionally, it was proposed that institutional and social support would moderate the relationship between work overload and burnout. Two hundred and seventy one third and fourth year students were sampled using an online questionnaire. These particular students were expected to be at greater risk of emotional exhaustion and academic disengagement because they were at the earliest stage of their tertiary education when the major earthquakes first hit. Family support and extended institutional support were found to be associated with decreased levels of emotional exhaustion and disengagement. Meanwhile, work overload was found to be related to increased levels of emotional exhaustion and disengagement. Furthermore, both peer support and immediate institutional support were found to have a moderating effect on the relationship between work overload and disengagement. This study has exposed unique findings which contribute to burnout research especially in a post-disaster context, and raises the importance of providing the right types of support for individuals who are particularly dealing with the consequences of a natural disaster.
This participant-observation study explores the process of gathering and evaluating both financial and non-financial information and communication and transfer of that information within a medium-size Electrical Company in Christchurch, New Zealand. The previous literature has established the importance and the main characteristics of small and medium enterprises (SMEs), mainly studying manufacturing companies. However, there has been little research done in New Zealand on the overall communication process and the financial and non-financial information usage in a small-medium enterprise. Face-to-face interviews were carried out with all the office employees and two partners, along with a ten month participant-observation in the Electrical Company in order to understand how financial and non-financial information is communicated and processed in an SME. Also, research in an SME that has overcome the 2008 economic depression and several major earthquakes allows a deep understanding of lessons learned and what is valued by the Electrical Company. The research has found characteristics of this SME similar to those that have been mentioned in previous literature. However, the partners of the Electrical Company understand the importance of financial management and use financial information extensively to ensure the business expenses are under control. Moreover, the partners use more than just financial information to manage the company. They gather non-financial information through talking to their accountant, their customers and people in the same industry and they keenly follow the news on the rebuilding of Christchurch.
The self-regulation approach to educating parents focusses on promoting parenting confidence, independence, and the ability to solve future problems. As parents learn the skills to modify their own behaviour, in turn, they aim to foster self-regulation in their children/adolescents. A need had been identified by Christchurch school principals for the Ministry of Education to respond to the post-earthquake stress in local families. The aim of this study was to investigate if a parenting programme was effective in promoting parental self-management skills and adolescent behaviour change in Christchurch families affected by earthquakes between 2010 and 2012. A single case research design was used to follow five families with adolescents (12-16 years old) as they participated in a Group Teen Triple P – Positive Parenting Programme. Measures of self-management skill acquisition were taken during three family discussions (pre-intervention, mid-intervention, and post-intervention) and during the three telephone consultations (Sessions 5-7). Adolescent target behaviour tallies were also analysed for change. The main findings showed that parental self-management skill acquisition increased over-time accompanied by positive change in adolescent behaviour. Additionally, the results suggested that higher rates and levels of self-management skill acquisition in the parents were associated with greater improvements in adolescent behaviour. This study demonstrated that Group Teen Triple P – Positive Parenting Programme was effective in promoting self-management competencies in parents and behaviour change in adolescents.
The combination of music and disaster has been the subject of much study, especially starstudded telethons and songs that commemorate tragedy. However, there are many other ways that music can be used after disaster that provide benefits far greater than money or memorials but are not necessarily as prominent in the worldwide media landscape. Beginning in September 2010, the city of Christchurch, New Zealand, has been struck by several major earthquakes and over 11,000 aftershocks, the most destructive of which caused 185 deaths. As with many other disasters, music has been used as a method of fundraising and commemoration, but personal experience suggests many other ways that music can be used as a coping mechanism and aid to personal and community recovery. Therefore, in order to uncover the connections, context, and strategies behind its use, this thesis addresses the question: Since the earthquakes began, how has popular music been beneficial for the city and people of Christchurch? As well as documenting a wide variety of musical ‘earthquake relief’ events and charitable releases, this research also explores some of the more intangible aspects of the music-aid relationship. Two central themes are presented – fundraising and psychosocial uses – utilising individual voices and case studies to illustrate the benefits of music use after disaster at a community or city-wide level. Together the disparate threads and story fragments weave a detailed picture of the ways in which music as shared experience, as text, as commodity, and as a tool for memory and movement has been incorporated into the fabric of the city during the recovery phase.
The 2010-2011 Christchurch earthquakes generated damage in several Reinforced Concrete (RC) buildings, which had RC walls as the principal resistant element against earthquake demand. Despite the agreement between structural engineers and researchers in an overall successfully performance there was a lack of knowledge about the behaviour of the damaged structures, and even deeper about a repaired structure, which triggers arguments between different parties that remains up to these days. Then, it is necessary to understand the capacity of the buildings after the earthquake and see how simple repairs techniques improve the building performance. This study will assess the residual capacity of ductile slender RC walls according to current standards in New Zealand, NZS 3101.1 2006 A3. First, a Repaired RC walls Database is created trying to gather previous studies and to evaluate them with existing international guidelines. Then, an archetype building is designed, and the wall is extracted and scaled. Four half-scale walls were designed and will be constructed and tested at the Structures Testing Laboratory at The University of Auckland. The overall dimensions are 3 [m] height, 2 [m] length and 0.175 [m] thick. All four walls will be identical, with differences in the loading protocol and the presence or absence of a repair technique. Results are going to be useful to assess the residual capacity of a damaged wall compare to the original behaviour and also the repaired capacity of walls with simpler repair techniques. The expected behaviour is focussed on big changes in stiffness, more evident than in previously tested RC beams found in the literature.
Observations of out-of-plane (OOP) instability in the 2010 Chile earthquake and in the 2011 Christchurch earthquake resulted in concerns about the current design provisions of structural walls. This mode of failure was previously observed in the experimental response of some wall specimens subjected to in-plane loading. Therefore, the postulations proposed for prediction of the limit states corresponding to OOP instability of rectangular walls are generally based on stability analysis under in-plane loading only. These approaches address stability of a cracked wall section when subjected to compression, thereby considering the level of residual strain developed in the reinforcement as the parameter that prevents timely crack closure of the wall section and induces stability failure. The New Zealand code requirements addressing the OOP instability of structural walls are based on the assumptions used in the literature and the analytical methods proposed for mathematical determination of the critical strain values. In this study, a parametric study is conducted using a numerical model capable of simulating OOP instability of rectangular walls to evaluate sensitivity of the OOP response of rectangular walls to variation of different parameters identified to be governing this failure mechanism. The effects of wall slenderness (unsupported height-to-thickness) ratio, longitudinal reinforcement ratio of the boundary regions and length on the OOP response of walls are evaluated. A clear trend was observed regarding the influence of these parameters on the initiation of OOP displacement, based on which simple equations are proposed for prediction of OOP instability in rectangular walls.