On February 22, 2011, a magnitude Mw 6.2 earthquake affected the Canterbury region, New Zealand, resulting in many fatalities. Liquefaction occurred across many areas, visible on the surface as ‘‘sand volcanoes’’, blisters and subsidence, causing significant damage to buildings, land and infrastructure. Liquefaction occurred at a number of sites across the Christchurch Boys High School sports grounds; one area in particular contained a piston ground failure and an adjacent silt volcano. Here, as part of a class project, we apply near-surface geophysics to image these two liquefaction features and determine whether they share a subsurface connection. Hand auger results enable correlation of the geophysical responses with the subsurface stratigraphy. The survey results suggest that there is a subsurface link, likely via a paleo-stream channel. The anomalous responses of the horizontal loop electromagnetic survey and electrical resistivity imaging highlight the disruption of the subsurface electrical properties beneath and between the two liquefaction features. The vertical magnetic gradient may also show a subtle anomalous response in this area, however the results are inconclusive. The ground penetrating radar survey shows disruption of the subsurface stratigraphy beneath the liquefaction features, in particular sediment mounding beneath the silt ejection (‘‘silt volcano’’) and stratigraphic disruption beneath the piston failure. The results indicate how near-surface geophysics allow the characteristics of liquefaction in the subsurface to be better understood, which could aid remediation work following liquefaction-induced land damage and guide interpretation of geophysical surveys of paleoliquefaction features.
On 22 February 2011,a magnitude Mw 6.3 earthquake occurred with an epicenter located near Lyttelton at about 10km from Christchurch in Canterbury region on the South Island of New Zealand (Figure 1). Since this earthquake occurred in the midst of the aftershock activity which had continued since the 4 September 2010 Darfield Earthquake occurrence, it was considered to be an aftershock of the initial earthquake. Because of the short distance to the city and the shallower depth of the epicenter, this earthquake caused more significant damage to pipelines, traffic facilities, residential houses/properties and multi-story buildings in the central business district than the September 2010 Darfield Earthquake in spite of its smaller earthquake magnitude. Unfortunately, this earthquake resulted in significant number of casualties due to the collapse of multi-story buildings and unreinforced masonry structures in the city center of Christchurch. As of 4 April, 172 casualties were reported and the final death toll is expected to be 181. While it is extremely regrettable that Christchurch suffered a terrible number of victims, civil and geotechnical engineers have this hard-to-find opportunity to learn the response of real ground from two gigantic earthquakes which occurred in less than six months from each other. From geotechnical engineering point of view, it is interesting to discuss the widespread liquefaction in natural sediments, repeated liquefaction within short period and further damage to earth structures which have been damaged in the previous earthquake. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. The team included the following members: Misko Cubrinovski (University of Canterbury, NZ, Team Leader), Susumu Yasuda (Tokyo Denki University, Japan, JGS Team Leader), Rolando Orense (University of Auckland, NZ), Kohji Tokimatsu (Tokyo Institute of Technology, Japan), Ryosuke Uzuoka (Tokushima University, Japan), Takashi Kiyota (University of Tokyo, Japan), Yasuyo Hosono (Toyohashi University of Technology, Japan) and Suguru Yamada (University of Tokyo, Japan).
Individual responses to natural disasters are highly variable. The psychological and behavioural response trajectories of those who manage to cope well with adverse life events are in need of further investigation. Increased alcohol use is often observed in communities exposed to mass traumas, particularly among those exposed to severe levels of trauma, with males drinking more than females. The current study examined patterns of alcohol use and motivations for drinking among a sample of psychologically resilient individuals with varying levels of exposure to the Canterbury earthquakes (N = 91) using structured and semi-structured interviews and self-report measures. As hypothesised, there was a significant increase in alcohol consumption since the earthquakes began, and males reported significantly higher levels of pre-earthquake and current alcohol consumption than females. Contrary to expectations, there was no association between traumatic exposure severity and alcohol consumption. While participants reported anxiety-based coping motives for drinking at levels comparable to those reported by other studies, depression-based coping motives were significantly lower, providing partial support for the hypothesis that participants would report coping motives for drinking at levels comparable to those found by other researchers. No gender differences in drinking motives were found. As expected, current alcohol consumption was positively correlated with anxiety and depression-based coping motives for drinking. Psychological resilience was not significantly associated with alcohol use, however resilience was negatively associated with depression-based coping motives for drinking. These findings have inter-generational and international implications for post-traumatic intervention.
Unreinforced masonry (URM) structures comprise a majority of the global built heritage. The masonry heritage of New Zealand is comparatively younger to its European counterparts. In a country facing frequent earthquakes, the URM buildings are prone to extensive damage and collapse. The Canterbury earthquake sequence proved the same, causing damage to over _% buildings. The ability to assess the severity of building damage is essential for emergency response and recovery. Following the Canterbury earthquakes, the damaged buildings were categorized into various damage states using the EMS-98 scale. This article investigates machine learning techniques such as k-nearest neighbors, decision trees, and random forests, to rapidly assess earthquake-induced building damage. The damage data from the Canterbury earthquake sequence is used to obtain the forecast model, and the performance of each machine learning technique is evaluated using the remaining (test) data. On getting a high accuracy the model is then run for building database collected for Dunedin to predict expected damage during the rupture of the Akatore fault.
In 2010 and 2011 a series of earthquakes hit the central region of Canterbury, New Zealand, triggering widespread and damaging liquefaction in the area of Christchurch. Liquefaction occurred in natural clean sand deposits, but also in silty (fines-containing) sand deposits of fluvial origin. Comprehensive research efforts have been subsequently undertaken to identify key factors that influenced liquefaction triggering and severity of its manifestation. This research aims at evaluating the effects of fines content, fabric and layered structure on the cyclic undrained response of silty soils from Christchurch using Direct Simple Shear (DSS) tests. This poster outlines preliminary calibration and verification DSS tests performed on a clean sand to ensure reliability of testing procedures before these are applied to Christchurch soils.
This paper discusses the seismic performance of the standard RC office building in Christchurch that is given as a structural design example in NZS3101, the concrete structures seismic standard in New Zealand. Firstly the push-over analysis was carried out to evaluate the lateral load carrying capacity of the RC building and then to compare that carrying capacity with the Japanese standard law. The estimated figures showed that the carrying capacity of the New Zealand standard RC office building of NZS3101:2006 was about one third of Japanese demanded carrying capacity. Secondly, time history analysis of the multi-mass system was performed to estimate the maximum response story drift angle using recorded ground motions. Finally, a three-dimensional analysis was carried out to estimate the response of the building to the 22nd February, 2011 Canterbury earthquake. The following outcomes were obtained. 1) The fundamental period of the example RC building is more than twice that of Japanese simplified calculation, 2) The example building’s maximum storey drift angle reached 2.5% under the recorded ground motions. The main purpose of this work is to provide background information of seismic design practice for the reconstruction of Christchurch.
This dissertation addresses several fundamental and applied aspects of ground motion selection for seismic response analyses. In particular, the following topics are addressed: the theory and application of ground motion selection for scenario earthquake ruptures; the consideration of causal parameter bounds in ground motion selection; ground motion selection in the near-fault region where directivity effect is significant; and methodologies for epistemic uncertainty consideration and propagation in the context of ground motion selection and seismic performance assessment. The paragraphs below outline each contribution in more detail. A scenario-based ground motion selection method is presented which considers the joint distribution of multiple intensity measure (IM) types based on the generalised conditional intensity measure (GCIM) methodology (Bradley, 2010b, 2012c). The ground motion selection algorithm is based on generating realisations of the considered IM distributions for a specific rupture scenario and then finding the prospective ground motions which best fit the realisations using an optimal amplitude scaling factor. In addition, using different rupture scenarios and site conditions, two important aspects of the GCIM methodology are scrutinised: (i) different weight vectors for the various IMs considered; and (ii) quantifying the importance of replicate selections for ensembles with different numbers of desired ground motions. As an application of the developed scenario-based ground motion selection method, ground motion ensembles are selected to represent several major earthquake scenarios in New Zealand that pose a significant seismic hazard, namely, Alpine, Hope and Porters Pass ruptures for Christchurch city; and Wellington, Ohariu, and Wairarapa ruptures for Wellington city. A rigorous basis is developed, and sensitivity analyses performed, for the consideration of bounds on causal parameters (e.g., magnitude, source-to-site distance, and site condition) for ground motion selection. The effect of causal parameter bound selection on both the number of available prospective ground motions from an initial empirical as-recorded database, and the statistical properties of IMs of selected ground motions are examined. It is also demonstrated that using causal parameter bounds is not a reliable approach to implicitly account for ground motion duration and cumulative effects when selection is based on only spectral acceleration (SA) ordinates. Specific causal parameter bounding criteria are recommended for general use as a ‘default’ bounding criterion with possible adjustments from the analyst based on problem-specific preferences. An approach is presented to consider the forward directivity effects in seismic hazard analysis, which does not separate the hazard calculations for pulse-like and non-pulse-like ground motions. Also, the ability of ground motion selection methods to appropriately select records containing forward directivity pulse motions in the near-fault region is examined. Particular attention is given to ground motion selection which is explicitly based on ground motion IMs, including SA, duration, and cumulative measures; rather than a focus on implicit parameters (i.e., distance, and pulse or non-pulse classifications) that are conventionally used to heuristically distinguish between the near-fault and far-field records. No ad hoc criteria, in terms of the number of directivity ground motions and their pulse periods, are enforced for selecting pulse-like records. Example applications are presented with different rupture characteristics, source-to-site geometry, and site conditions. It is advocated that the selection of ground motions in the near-fault region based on IM properties alone is preferred to that in which the proportion of pulse-like motions and their pulse periods are specified a priori as strict criteria for ground motion selection. Three methods are presented to propagate the effect of seismic hazard and ground motion selection epistemic uncertainties to seismic performance metrics. These methods differ in their level of rigor considered to propagate the epistemic uncertainty in the conditional distribution of IMs utilised in ground motion selection, selected ground motion ensembles, and the number of nonlinear response history analyses performed to obtain the distribution of engineering demand parameters. These methods are compared for an example site where it is observed that, for seismic demand levels below the collapse limit, epistemic uncertainty in ground motion selection is a smaller uncertainty contributor relative to the uncertainty in the seismic hazard itself. In contrast, uncertainty in ground motion selection process increases the uncertainty in the seismic demand hazard for near-collapse demand levels.
Heathcote Valley school strong motion station (HVSC) consistently recorded ground motions with higher intensities than nearby stations during the 2010-2011 Canterbury earthquakes. For example, as shown in Figure 1, for the 22 February 2011 Christchurch earthquake, peak ground acceleration at HVSC reached 1.4 g (horizontal) and 2 g (vertical), the largest ever recorded in New Zealand. Strong amplification of ground motions is expected at Heathcote Valley due to: 1) the high impedance contrast at the soil-rock interface, and 2) the interference of incident and surface waves within the valley. However, both conventional empirical ground motion prediction equations (GMPE) and the physics-based large scale ground motions simulations (with empirical site response) are ineffective in predicting such amplification due to their respective inherent limitations.
Advanced seismic effective-stress analysis is used to scrutinize the liquefaction performance of 55 well-documented case-history sites from Christchurch. The performance of these sites during the 2010-2011 Canterbury earthquake sequence varied significantly, from no liquefaction manifestation at the ground surface (in any of the major events) to severe liquefaction manifestation in multiple events. For the majority of the 55 sites, the simplified liquefaction evaluation procedures, which are conventionally used in engineering practice, could not explain these dramatic differences in the manifestation. Detailed geotechnical characterization and subsequent examination of the soil profile characteristics of the 55 sites identified some similarities but also important differences between sites that manifested liquefaction in the two major events of the sequence (YY-sites) and sites that did not manifest liquefaction in either event (NN-sites). In particular, while the YY-sites and NN-sites are shown to have practically identical critical layer characteristics, they have significant differences with regard to their deposit characteristics including the thickness and vertical continuity of their critical zones and liquefiable materials. A CPT-based effective stress analysis procedure is developed and implemented for the analyses of the 55 case history sites. Key features of this procedure are that, on the one hand, it can be fully automated in a programming environment and, on the other hand, it is directly equivalent (in the definition of cyclic resistance and required input data) to the CPT-based simplified liquefaction evaluation procedures. These features facilitate significantly the application of effective-stress analysis for simple 1D free-field soil-column problems and also provide a basis for rigorous comparisons of the outcomes of effective-stress analyses and simplified procedures. Input motions for the analyses are derived using selected (reference) recordings from the two major events of the 2010-2011 Canterbury earthquake sequence. A step-by-step procedure for the selection of representative reference motions for each site and their subsequent treatment (i.e. deconvolution and scaling) is presented. The focus of the proposed procedure is to address key aspects of spatial variability of ground motion in the near-source region of an earthquake including extended-source effects, path effects, and variation in the deeper regional geology.
The Sendai Framework for Disaster Risk Reduction 2015-2030 finds that, despite progress in disaster risk reduction over the last decade “evidence indicates that exposure of persons and assets in all countries has increased faster than vulnerability has decreased, thus generating new risk and a steady rise in disaster losses” (p.4, UNISDR 2015). Fostering cooperation among relevant stakeholders and policy makers to “facilitate a science-policy interface for effective decisionmaking in disaster risk management” is required to achieve two priority areas for action, understanding disaster risk and enhancing disaster preparedness (p. 13, p. 23, UNISDR 2015). In other topic areas, the term science-policy interface is used interchangeably with the term boundary organisation. Both terms are usually used refer to systematic collaborative arrangements used to manage the intersection, or boundary, between science and policy domains, with the aim of facilitating the joint construction of knowledge to inform decision-making. Informed by complexity theory, and a constructivist focus on the functions and processes that minimize inevitable tensions between domains, this conceptual framework has become well established in fields where large complex issues have significant economic and political consequences, including environmental management, biodiversity, sustainable development, climate change and public health. To date, however, there has been little application of this framework in the disaster risk reduction field. In this doctoral project the boundary management framework informs an analysis of the research response to the 2010-2011 Canterbury Earthquake Sequence, focusing on the coordination role of New Zealand’s national Natural Hazards Research Platform. The project has two aims. It uses this framework to tell the nuanced story of the way this research coordination role evolved in response to both the complexity of the unfolding post-disaster environment, and to national policy and research developments. Lessons are drawn from this analysis for those planning and implementing arrangements across the science-policy boundary to manage research support for disaster risk reduction decision-making, particularly after disasters. The second aim is to use this case study to test the utility of the boundary management framework in the disaster risk reduction context. This requires that terminology and concepts are explained and translated in terms that make this analysis as accessible as possible across the disciplines, domains and sectors involved in disaster risk reduction. Key findings are that the focus on balance, both within organisations, and between organisations and domains, and the emphasis on systemic effects, patterns and trends, offer an effective and productive alternative to the more traditional focus on individual or organisational performance. Lessons are drawn concerning the application of this framework when planning and implementing boundary organisations in the hazard and disaster risk management context.
On 4 September 2010, people in Canterbury were shaken from their beds by a major earthquake. This report tells the story of the University of Canterbury (UC), its staff and its students, as they rose to the many challenges presented by the earthquake. This report however, is intended to do more than just acknowledge their hard work and determination; it also critically reflects on the things that worked well and the aspects of the response that, in hindsight, could have been done better. Luckily major events such as this earthquake do not happen every day. UC has benefited from the many universities around the world that have shared their experiences of previous disasters. We hope that this report serves to pass forward the favour and enables others to benefit from the lessons that we have learnt from this event.
Earthquakes cause significant damage to buildings due to strong vibration of the ground. Levitating houses using magnets and electromagnets would provide a complete isolation of ground motion for protecting buildings from seismic damage. Two types of initial configuration for the electromagnet system were proposed with the same air gap (10mm) between the electromagnet and reluctance plate. Both active and passive controller are modelled to investigate the feasibility of using a vibration control system for stabilizing the magnetic system within the designed air gap (10mm) in the vertical direction. A nonlinear model for the magnetic system is derived to implement numerical simulation of structural response under the earthquake record in Christchurch Botanic Gardens on 21 February 2011. The performance of the uncontrolled and the controlled systems are compared and the optimal combination of control gains are determined for the PID active controller. Simulation results show both active PID controller with constant and nonlinear attracting force are able to provide an effective displacement control within the required air gap (+/-5mm). The maximum control force demand for the PID controller in the presence of nonlinear attracting force is 4.1kN, while the attracting force in equilibrium position is 10kN provided by the electromagnet. These results show the feasibility of levitating a house using the current electromagnet and PID controller. Finally, initial results of passive control using two permanent magnets or dampers show the structural responses can be effectively reduced and centralized to +/-1mm using a nonlinear centring barrier function.
A magnitude 6.3 earthquake struck the city of Christchurch at 12:51pm on Tuesday 22 February 2011. The earthquake caused 182 fatalities, a large number of injuries, and resulted in widespread damage to the built environment, including significant disruption to the lifelines. The event created the largest lifeline disruption in a New Zealand city in 80 years, with much of the damage resulting from extensive and severe liquefaction in the Christchurch urban area. The Christchurch earthquake occurred when the Canterbury region and its lifelines systems were at the early stage of recovering from the 4 September 2010 Darfield (Canterbury) magnitude 7.1 earthquake. This paper describes the impact of the Christchurch earthquake on lifelines by briefly summarising the physical damage to the networks, the system performance and the operational response during the emergency management and the recovery phase. Special focus is given to the performance and management of the gas, electric and road networks and to the liquefaction ejecta clean-up operations that contributed to the rapid reinstatement of the functionality of many of the lifelines. The water and wastewater system performances are also summarized. Elements of resilience that contributed to good network performance or to efficient emergency and recovery management are highlighted in the paper.
This paper provides a summary of the ground motions observed in the recent Canterbury, New Zealand earthquake sequence. The sequence occurred in a region of relatively moderate seismicity, 130km to the east of the Alpine Fault, the major plate-boundary in the region. From an engineering perspective, the sequence has been primarily comprised of the initial 04/09/2010 Darfield earthquake (Mw7.1) followed by the 22/02/2011 Christchurch earthquake (Mw6.3), and two aftershocks on 13/06/ 2011 (Mw5.3 and 6.0, respectively). The dense spacing of strong motions in the region, and their close proximity to the respective causative faults, has resulted in strong ground motions far exceeding the previous catalogue of strong motion observed in New Zealand. The observed ground motions have exhibited clear evidence of: (i) near-source directivity; (ii) sedimentary basin focusing, amplification and basin effect refraction; (iii) non-linear site response; (iv) cyclic mobility postliquefaction; and (v) extreme vertical ground motions exceeding 2g, among others.
Abstract This study provides a simplified methodology for pre-event data collection to support a faster and more accurate seismic loss estimation. Existing pre-event data collection frameworks are reviewed. Data gathered after the Canterbury earthquake sequences are analysed to evaluate the relative importance of different sources of building damage. Conclusions drawns are used to explore new approaches to conduct pre-event building assessment.
Fatal earthquakes such as that which occurred in Christchurch on February 22nd 2011, can result in survivors having difficulties with cognitively processing the event, which may be the precursor to posttraumatic stress symptoms. Trauma related dissociation has been proposed to be a mechanism related to these cognitive processing difficulties. Most research focusing on information processing and dissociation post-trauma has conducted controlled analogue studies or has not focused solely on information processing and dissociation. There is also scant research on these constructs across therapy. In response to this gap in research, two studies were developed. An association was proposed between dissociation and information processing as demonstrated by an increase in conceptual processing and a reduction in dissociation. It was predicted that an improvement in these constructs would be related to a reduction in PTSD symptoms over therapy. Study1 applied a case-study design to 5 individuals who were attending therapy for post-traumatic stress disorder in response to the trauma they had experienced from the Christchurch earthquakes. Study 2 assessed information processing and dissociation (via self and observer report) in 20 individuals who had direct exposure to the effects of the earthquake. Earthquake information processing and dissociation were assessed as they were happening nearly two year’s post-quake using correlation analyses and hierarchical regressions. The hypotheses were partially confirmed, in that an increase in conceptual processing was not shown to be associated with a reduction in dissociation. However, an increase in conceptual processing was shown to be related to trauma symptom improvement particularly for re-experiencing symptoms. In addition, study 2 demonstrated a possible relationship between trait dissociation and arousal symptoms. These findings partially support the proposed role information processing and dissociation play in the recovery from PTSD. The findings suggest that trauma related difficulties should be assessed as early as possible to resolve issues related to a delay in symptom reporting.
Social media have changed disaster response and recovery in the way people inform themselves, provide community support and make sense of unfolding and past events online. During the Canterbury earthquakes of 2010 and 2011 social media platforms such as Facebook and Twitter became part of the story of the quakes in the region, as well as a basis for ongoing public engagement during the rebuild efforts in Christchurch. While a variety of research has been conducted on the use of social media in disaster situations (Bruns & Burgess, 2012; Potts, Seitzinger, Jones, & Harrison, 2011; Shklovski, Palen, & Sutton, 2008), studies about their uses in long-term disaster recovery and across different platforms are underrepresented. This research analyses networked practices of sensemaking around the Canterbury earthquakes over the course of disaster response, recovery and rebuild, focussing on Facebook and Twitter. Following a mixed methodological design data was gathered in interviews with people who started local Facebook pages, and through digital media methods of data collection and computational analysis of public Facebook pages and a historical Twitter dataset gathered around eight different earthquake-related events between 2010 and 2013. Data is further analysed through discursive and narrative tools of inquiry. This research sheds light on communication practices in the drawn-out process of disaster recovery on the ground in connecting different modes of discourse. Examining the ongoing negotiation of networked identities through technologically mediated social practices during Canterbury’s rebuild, the connection between online environments and the city of Christchurch, as a physical place, is unpacked. This research subsequently develops a new methodology to study social media platforms and provide new and detailed information on both the communication practices in issue-based online publics and the ongoing negotiation of the impact of the Canterbury earthquakes through networked digital means.
The Canterbury earthquake sequence in New Zealand’s South Island induced widespread liquefaction phenomena across the Christchurch urban area on four occasions (4 Sept 2010; 22 Feb; 13 June; 23 Dec 2011), that resulted in widespread ejection of silt and fine sand. This impacted transport networks as well as infiltrated and contaminated the damaged storm water system, making rapid clean-up an immediate post-earthquake priority. In some places the ejecta was contaminated by raw sewage and was readily remobilised in dry windy conditions, creating a long-term health risk to the population. Thousands of residential properties were inundated with liquefaction ejecta, however residents typically lacked the capacity (time or resources) to clean-up without external assistance. The liquefaction silt clean-up response was co-ordinated by the Christchurch City Council and executed by a network of contractors and volunteer groups, including the ‘Farmy-Army’ and the ‘Student-Army’. The duration of clean-up time of residential properties and the road network was approximately 2 months for each of the 3 main liquefaction inducing earthquakes; despite each event producing different volumes of ejecta. Preliminary cost estimates indicate total clean-up costs will be over NZ$25 million. Over 500,000 tonnes of ejecta has been stockpiled at Burwood landfill since the beginning of the Canterbury earthquakes sequence. The liquefaction clean-up experience in Christchurch following the 2010-2011 earthquake sequence has emerged as a valuable case study to support further analysis and research on the coordination, management and costs of large volume deposition of fine grained sediment in urban areas.
Validation is an essential step to assess the applicability of simulated ground motions for utilization in engineering practice, and a comprehensive analysis should include both simple intensity measures (PGA, SA, etc), as well as the seismic response of a range of complex systems obtained by response history analysis. In order to enable a spectrum of complex structural systems to be considered in systematic validation of ground motion simulations in a routine fashion, an automated workflow was developed. Such a workflow enables validation of simulated ground motions in terms of different complex model responses by considering various ground motion sets and different ground motion simulation methods. The automated workflow converts the complex validation process into a routine one by providing a platform to perform the validation process promptly as a built-in process of simulation post-processing. As a case study, validation of simulated ground motions was investigated via the automated workflow by comparing the dynamic responses of three steel special moment frame (SMRF) subjected to the 40 observed and 40 simulated ground motions of 22 February 2011 Christchurch earthquake. The seismic responses of the structures are principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, the results indicate a general agreement in seismic demands obtained using the recorded and simulated ensembles of ground motions and provide further evidence that simulated ground motions can be used in code-based structural performance assessments in-place of, or in combination with, ensembles of recorded ground motions.
Blended learning plays an important role in many tertiary institutions but little has been written about the implementation of blended learning in times of adversity, natural disaster or crisis. This paper describes how, in the wake of the 22 February Canterbury earthquake, five teacher educators responded to crisis-driven changing demands and changing directions. Our narratives describe how blended learning provided students in initial teacher education programmes with some certainty and continuity during a time of civil emergency. The professional learning generated from our experiences provides valuable insights for designing and preparing for blended learning in times of crisis, as well as developing resilient blended learning programmes for the future.
Rapid, accurate structural health monitoring (SHM) assesses damage to optimise decision-making. Many SHM methods are designed to track nonlinear stiffness changes as damage. However, highly nonlinear pinched hysteretic systems are problematic in SHM. Model-based SHM often fails as any mismatch between model and measured response dynamics leads to significant error. Thus, modelfree methods of hysteresis loop tracking methods have emerged. This study compares the robustness and accuracy in the presence of significant measurement noise of the proven hysteresis loop analysis (HLA) SHM method with 3 emerging model-free methods and 2 further novel adaptations of these methods using a highly nonlinear, 6-story numerical structure to provide a known ground-truth. Mean absolute errors in identifying a known nonlinear stiffness trajectory assessed at four points over two successive ground motion inputs from September 2010 and February 2011 in Christchurch range from 1.71-10.52%. However, the variability is far wider with maximum errors ranging from 3.90-49.72%, where the second largest maximum absolute error was still 19.74%. The lowest mean and maximum absolute errors were for the HLA method. The next best method had mean absolute error of 2.92% and a maximum of 10.51%. These results show the clear superiority of the HLA method over all current emerging model-free methods designed to manage the highly nonlinear pinching responses common in reinforced concrete structures. These results, combined with high robustness and accuracy in scaled and fullscale experimental studies, provide further validation for using HLA for practical implementation.
SeisFinder is an open-source web service developed by QuakeCoRE and the University of Canterbury, focused on enabling the extraction of output data from computationally intensive earthquake resilience calculations. Currently, SeisFinder allows users to select historical or future events and retrieve ground motion simulation outputs for requested geographical locations. This data can be used as input for other resilience calculations, such as dynamic response history analysis. SeisFinder was developed using Django, a high-level python web framework, and uses a postgreSQL database. Because our large-scale computationally-intensive numerical ground motion simulations produce big data, the actual data is stored in file systems, while the metadata is stored in the database.
This dissertation addresses a diverse range of applied aspects in ground motion simulation validation via the response of complex structures. In particular, the following topics are addressed: (i) the investigation of similarity between recorded and simulated ground motions using code-based 3D irregular structural response analysis, (ii) the development of a framework for ground motion simulations validation to identify the cause of differences between paired observed and simulated dataset, and (iii) the illustration of the process of using simulations for seismic performance-based assessment. The application of simulated ground motions is evaluated for utilisation in engineering practice by considering responses of 3D irregular structures. Validation is performed in a code-based context when the NZS1170.5 (NZS1170.5:2004, 2004) provisions are followed for response history analysis. Two real buildings designed by engineers and physically constructed in Christchurch before the 2010-2011 Canterbury earthquake sequence are considered. The responses are compared when the buildings are subjected to 40 scaled recorded and their subsequent simulated ground motions selected from 22 February 2011 Christchurch. The similarity of recorded and simulated responses is examined using statistical methods such as bootstrapping and hypothesis testing to determine whether the differences are statistically significant. The findings demonstrate the applicability of simulated ground motion when the code-based approach is followed in response history analysis. A conceptual framework is developed to link the differences between the structural response subjected to simulated and recorded ground motions to the differences in their corresponding intensity measures. This framework allows the variability to be partitioned into the proportion that can be “explained” by the differences in ground motion intensity measures and the remaining “unexplained” variability that can be attributed to different complexities such as dynamic phasing of multi-mode response, nonlinearity, and torsion. The application of this framework is examined through a hierarchy of structures reflecting a range of complexity from single-degree-of-freedom to 3D multi-degree-of-freedom systems with different materials, dynamic properties, and structural systems. The study results suggest the areas that ground motion simulation should focus on to improve simulations by prioritising the ground motion intensity measures that most clearly account for the discrepancies in simple to complex structural responses. Three approaches are presented to consider recorded or simulated ground motions within the seismic performance-based assessment framework. Considering the applications of ground motions in hazard and response history analyses, different pathways in utilising ground motions in both areas are explored. Recorded ground motions are drawn from a global database (i.e., NGA-West2 Ancheta et al., 2014). The NZ CyberShake dataset is used to obtain simulations. Advanced ground motion selection techniques (i.e., generalized conditional intensity measure, GCIM) are used for ground motion selection at a few intensity levels. The comparison is performed by investigating the response of an example structure (i.e., 12-storey reinforced concrete special moment frame) located in South Island, NZ. Results are compared and contrasted in terms of hazard, groundmotion selection, structural responses, demand hazard, and collapse risk, then, the probable reasons for differences are discussed. The findings from this study highlight the present opportunities and shortcomings in using simulations in risk assessment. i
The Mw 6.2 February 22nd 2011 Christchurch earthquake (and others in the 2010-2011 Canterbury sequence) provided a unique opportunity to study the devastating effects of earthquakes first-hand and learn from them for future engineering applications. All major events in the Canterbury earthquake sequence caused widespread liquefaction throughout Christchurch’s eastern suburbs, particularly extensive and severe during the February 22nd event. Along large stretches of the Avon River banks (and to a lesser extent along the Heathcote) significant lateral spreading occurred, affecting bridges and the infrastructure they support. The first stage of this research involved conducting detailed field reconnaissance to document liquefaction and lateral spreading-induced damage to several case study bridges along the Avon River. The case study bridges cover a range of ages and construction types but all are reinforced concrete structures which have relatively short, stiff decks. These factors combined led to a characteristic deformation mechanism involving deck-pinning and abutment back-rotation with consequent damage to the abutment piles and slumping of the approaches. The second stage of the research involved using pseudo-static analysis, a simplified seismic modelling tool, to analyse two of the bridges. An advantage of pseudo-static analysis over more complicated modelling methods is that it uses conventional geotechnical data in its inputs, such as SPT blowcount and CPT cone resistance and local friction. Pseudo-static analysis can also be applied without excessive computational power or specialised knowledge, yet it has been shown to capture the basic mechanisms of pile behaviour. Single pile and whole bridge models were constructed for each bridge, and both cyclic and lateral spreading phases of loading were investigated. Parametric studies were carried out which varied the values of key parameters to identify their influence on pile response, and computed displacements and damages were compared with observations made in the field. It was shown that pseudo-static analysis was able to capture the characteristic damage mechanisms observed in the field, however the treatment of key parameters affecting pile response is of primary importance. Recommendations were made concerning the treatment of these governing parameters controlling pile response. In this way the future application of pseudo-static analysis as a tool for analysing and designing bridge pile foundations in liquefying and laterally spreading soils is enhanced.
The purpose of this thesis is to conduct a detailed examination of the forward-directivity characteristics of near-fault ground motions produced in the 2010-11 Canterbury earthquakes, including evaluating the efficacy of several existing empirical models which form the basis of frameworks for considering directivity in seismic hazard assessment. A wavelet-based pulse classification algorithm developed by Baker (2007) is firstly used to identify and characterise ground motions which demonstrate evidence of forward-directivity effects from significant events in the Canterbury earthquake sequence. The algorithm fails to classify a large number of ground motions which clearly exhibit an early-arriving directivity pulse due to: (i) incorrect pulse extraction resulting from the presence of pulse-like features caused by other physical phenomena; and (ii) inadequacy of the pulse indicator score used to carry out binary pulse-like/non-pulse-like classification. An alternative ‘manual’ approach is proposed to ensure 'correct' pulse extraction and the classification process is also guided by examination of the horizontal velocity trajectory plots and source-to-site geometry. Based on the above analysis, 59 pulse-like ground motions are identified from the Canterbury earthquakes , which in the author's opinion, are caused by forward-directivity effects. The pulses are also characterised in terms of their period and amplitude. A revised version of the B07 algorithm developed by Shahi (2013) is also subsequently utilised but without observing any notable improvement in the pulse classification results. A series of three chapters are dedicated to assess the predictive capabilities of empirical models to predict the: (i) probability of pulse occurrence; (ii) response spectrum amplification caused by the directivity pulse; (iii) period and amplitude (peak ground velocity, PGV) of the directivity pulse using observations from four significant events in the Canterbury earthquakes. Based on the results of logistic regression analysis, it is found that the pulse probability model of Shahi (2013) provides the most improved predictions in comparison to its predecessors. Pulse probability contour maps are developed to scrutinise observations of pulses/non-pulses with predicted probabilities. A direct comparison of the observed and predicted directivity amplification of acceleration response spectra reveals the inadequacy of broadband directivity models, which form the basis of the near-fault factor in the New Zealand loadings standard, NZS1170.5:2004. In contrast, a recently developed narrowband model by Shahi & Baker (2011) provides significantly improved predictions by amplifying the response spectra within a small range of periods. The significant positive bias demonstrated by the residuals associated with all models at longer vibration periods (in the Mw7.1 Darfield and Mw6.2 Christchurch earthquakes) is likely due to the influence of basin-induced surface waves and non-linear soil response. Empirical models for the pulse period notably under-predict observations from the Darfield and Christchurch earthquakes, inferred as being a result of both the effect of nonlinear site response and influence of the Canterbury basin. In contrast, observed pulse periods from the smaller magnitude June (Mw6.0) and December (Mw5.9) 2011 earthquakes are in good agreement with predictions. Models for the pulse amplitude generally provide accurate estimates of the observations at source-to-site distances between 1 km and 10 km. At longer distances, observed PGVs are significantly under-predicted due to their slower apparent attenuation. Mixed-effects regression is employed to develop revised models for both parameters using the latest NGA-West2 pulse-like ground motion database. A pulse period relationship which accounts for the effect of faulting mechanism using rake angle as a continuous predictor variable is developed. The use of a larger database in model development, however does not result in improved predictions of pulse period for the Darfield and Christchurch earthquakes. In contrast, the revised model for PGV provides a more appropriate attenuation of the pulse amplitude with distance, and does not exhibit the bias associated with previous models. Finally, the effects of near-fault directivity are explicitly included in NZ-specific probabilistic seismic hazard analysis (PSHA) using the narrowband directivity model of Shahi & Baker (2011). Seismic hazard analyses are conducted with and without considering directivity for typical sites in Christchurch and Otira. The inadequacy of the near-fault factor in the NZS1170.5: 2004 is apparent based on a comparison with the directivity amplification obtained from PSHA.
This poster discusses several possible approaches by which the nonlinear response of surficial soils can be explicitly modelled in physics-based ground motion simulations, focusing on the relative advantages and limitations of the various methodologies. These methods include fully-coupled 3D simulation models that directly allow soil nonlinearity in surficial soils, the domain reduction method for decomposing the physical domain into multiple subdomains for separate simulation, conventional site response analysis uncoupled from the simulations, and finally, the use of simple empirically based site amplification factors We provide the methodology for an ongoing study to explicitly incorporate soil nonlinearity into hybrid broadband simulations of the 2010-2011 Canterbury, New Zealand earthquakes.
The seismic response of unreinforced masonry (URM) buildings, in both their as-built or retrofitted configuration, is strongly dependent on the characteristics of wooden floors and, in particular, on their in-plane stiffness and on the quality of wall-to-floor connections. As part of the development of alternative performance-based retrofit strategies for URM buildings, experimental research has been carried out by the authors at the University of Canterbury, in order to distinguish the different elements contributing to the whole diaphragm's stiffness. The results have been compared to the ones predicted through the use of international guidelines in order to highlight shortcomings and qualities and to propose a simplified formulation for the evaluation of the stiffness properties.
Timber has experienced renewed interests as a sustainable building material in recent times. Although traditionally it has been the prime choice for residential construction in New Zealand and some other parts of the world, its use can be increased significantly in the future through a wider range of applications, particularly when adopting engineered wood material, Research has been started on the development of innovative solutions for multi-storey non-residential timber buildings in recent years and this study is part of that initiative. Application of timber in commercial and office spaces posed some challenges with requirements of large column-free spaces. The current construction practice with timber is not properly suited for structures with the aforementioned required characteristics and new type of structures has to be developed for this type of applications. Any new structural system has to have adequate capacity for carry the gravity and lateral loads due to occupancy and the environmental effects. Along with wind loading, one of the major sources of lateral loads is earthquakes. New Zealand, being located in a seismically active region, has significant risk of earthquake hazard specially in the central region of the country and any structure has be designed for the seismic loading appropriate for the locality. There have been some significant developments in precast concrete in terms of solutions for earthquake resistant structures in the last decade. The “Hybrid” concept combining post-tensioning and energy dissipating elements with structural members has been introduced in the late 1990s by the precast concrete industry to achieve moment-resistant connections based on dry jointed ductile connections. Recent research at the University of Canterbury has shown that the concept can be adopted for timber for similar applications. Hybrid timber frames using post-tensioned beams and dissipaters have the potential to allow longer spans and smaller cross sections than other forms of solid timber frames. Buildings with post-tensioned frames and walls can have larger column-free spaces which is a particular advantage for non-residential applications. While other researchers are focusing on whole structural systems, this research concentrated on the analysis and design of individual members and connections between members or between member and foundation. This thesis extends existing knowledge on the seismic behaviour and response of post-tensioned single walls, columns under uni-direction loads and small scale beam-column joint connections into the response and design of post-tensioned coupled walls, columns under bi-directional loading and full-scale beam-column joints, as well as to generate further insight into practical applications of the design concept for subassemblies. Extensive experimental investigation of walls, column and beam-column joints provided valuable confirmation of the satisfactory performance of these systems. In general, they all exhibited almost complete re-centering capacity and significant energy dissipation, without resulting into structural damage. The different configurations tested also demonstrated the flexibility in design and possibilities for applications in practical structures. Based on the experimental results, numerical models were developed and refined from previous literature in precast concrete jointed ductile connections to predict the behaviour of post-tensioned timber subassemblies. The calibrated models also suggest the values of relevant parameters for applications in further analysis and design. Section analyses involving those parameters are performed to develop procedures to calculate moment capacities of the subassemblies. The typical features and geometric configurations the different types of subassemblies are similar with the only major difference in the connection interfaces. With adoption of appropriate values representing the corresponding connection interface and incorporation of the details of geometry and configurations, moment capacities of all the subassemblies can be calculated with the same scheme. That is found to be true for both post-tensioned-only and hybrid specimens and also applied for both uni-directional and bi-directional loading. The common section analysis and moment capacity calculation procedure is applied in the general design approach for subassemblies.
We’ll never know why the thirteen people whose corpses were discovered in Pompeii’s Garden of the Fugitives hadn’t fled the city with the majority of the population when Vesuvius turned deadly in AD79. But surely, thanks to 21st century technology, we know just about everything there is to know about the experiences of the people who went through the Canterbury Earthquakes. Or has the ubiquity of digital technology, combined with seemingly massive online information flows and archives, created a false sense that Canterbury’s earthquake stories, images and media are being secured for posterity? In this paper Paul Millar makes reference to issues experienced while creating the CEISMIC Canterbury Earthquakes Digital Archive (www.ceismic.org.nz) to argue that rather than having preserved all the information needed to fully inform recovery, the record of the Canterbury earthquakes’ impacts, and the subsequent response, is incomplete and unrepresentative. While CEISMIC has collected and curated over a quarter of a million earthquake-related items, Millar is deeply concerned about the material being lost. Like Pompeii, this disaster has its nameless, faceless, silenced victims; people whose stories must be heard, and whose issues must be addressed, if recovery is to be meaningful.
Triple P parenting programmes have provided promising results for children and families in recent years. The aim of the current project was to explore the experiences of families leading up to participating in a Teen Triple P programme three years following the Christchurch earthquakes and their need for assistance in the management of their teenagers. Parents were interviewed prior to the commencement of the Teen Triple P programme and after its completion. Parents were also asked to complete a journal entry or engage in two brief telephone conversations with the researcher outlining their experiences with the Teen Triple P programme. These outlined the perceived fit of the programme to the needs of the family. Parents provided insight into their family’s experiences of the Christchurch 2010 and 2011 series of earthquakes and the perceived impact this had on their lives and the management of their teenagers. The results indicated that parents felt more positively about their parenting behaviours post-programme and were able to identify changes in their teen and/or family that they felt were as a response to participation in Teen Triple P. Parents provided rich descriptions of their earthquake experiences and the immediate and long-term impacts they endured both individually and as a family. Parents did not feel that the earthquakes fed into their decision to do a Teen Triple P Programme. The results helped improve our understanding of the effectiveness of Teen Triple P as a parenting programme as well increased our understanding of the challenges and needs of families in post-earthquake Christchurch.