Structural pounding may be defined as the collisions occurring between adjacent dynamically excited structures which lack a sufficient separation gap between them. Extensive theoretical and experimental studies have been conducted to investigate this phenomenon. However, the majority, if not all, of these studies fail to consider the flexibility of the soil upon which these structures are constructed. This study aims to investigate the degree of approximation inherent in previous pounding studies which neglected this important feature. In this study, two aspects of soil flexibility effects on dynamic structural response were investigated: the influence of the supporting soil properties on the individual structures (soil-structure interaction) and the through-soil interaction between the foundations of the adjacent structures. Two structural configurations of reinforced concrete moment-resistant frames were considered: the case of two adjacent twelve-storey frames and the pounding of a twelve- and six-storey frames. Four cases of external excitation were investigated: two actual earthquake records applied from two directions each. A nonlinear inelastic dynamic analysis software package developed at the University of Canterbury has been utilized in this study. Suitable numerical models were developed for the through-soil interaction phenomenon and for the structures, which were designed in accordance to the relevant New Zealand design codes. Soilstructure interaction was represented by means of existing models available in the literature. Various separation gaps were provided and the results were compared with the no pounding case. Storey-level impacts only were considered. The pounding response in which soil flexibility was accounted for was compared to the fixed base response for each of the separation gaps incorporated in this study. A high variation in the results was witnessed, indicating the significance of consideration of soil flexibility effects. In addition, the importance of excitation direction was highlighted in this study. The relative storey accelerations were more dependent on the characteristics of the excitation rather than on the magnitudes of the impact forces. Recommendations were proposed which aim towards the generalization of the results of this study.
There has not been substantial research conducted in the area of fraud and natural disasters. Therefore, this study sought to examine the perceptions of Canterbury residents toward the recovery process following the September 2010 and February 2011 earthquakes and whether residents felt as though contractor fraud occurs in Canterbury. A questionnaire was developed to gauge information about Canterbury residents’ self-reports involving the earthquakes, specific contractors involved, parties involved with the recovery process in general, and demographic information. Participants included a total of 213 residents from the Canterbury region who had been involved with contractors and/or insurance companies due to the recovery process. Results indicated that a high percentage of the participants were not satisfied with the recovery process and that almost half of the participants reported feeling scammed by contractors in Canterbury after the 2010 and 2011 earthquakes. Moreover, the results indicate that participants neither agreed with the assessments made about their property losses nor the plans made to recover their properties. In many cases, participants felt pressured and even reluctant to accept these assessments and/or plans. The present study does not seek to explain why contractor fraud exists or what motivates scammers. Conversely, it attempts to demonstrate the perceptions of contractor fraud and satisfaction that have taken place in the aftermath of the Canterbury earthquakes.
The Canterbury earthquakes in 2010 and 2011 had a significant impact on landlords and tenants of commercial buildings in the city of Christchurch. The devastation wrought on the city was so severe that in an unprecedented response to this disaster a cordon was erected around the central business district for nearly two and half years while demolition, repairs and rebuilding took place. Despite the destruction, not all buildings were damaged. Many could have been occupied and used immediately if they had not been within the cordoned area. Others had only minor damage but repairs to them could not be commenced, let alone completed, owing to restrictions on access caused by the cordon. Tenants were faced with a major problem in that they could not access their buildings and it was likely to be a long time before they would be allowed access again. The other problem was uncertainty about the legal position as neither the standard form leases in use, nor any statute, provided for issues arising from an inaccessible building. The parties were therefore uncertain about their legal rights and obligations in this situation. Landlords and tenants were unsure whether tenants were required to pay rent for a building that could not be accessed or whether they could terminate their leases on the basis that the building was inaccessible. This thesis looks at whether the common law doctrine of frustration could apply to leases in these circumstances, where the lease had made no provision. It analyses the history of the doctrine and how it applies to a lease, the standard form leases in use at the time of the earthquakes and the unexpected and extraordinary nature of the earthquakes. It then reports on the findings of the qualitative empirical research undertaken to look at the experiences of landlords and tenants after the earthquakes. It is argued that the circumstances of landlords and tenants met the test for the doctrine of frustration. Therefore, the doctrine could have applied to leases to enable the parties to terminate them. It concludes with a suggestion for reform in the form of a new Act to govern the special relationship between commercial landlords and tenants, similar to legislation already in place covering other types of relationships like those in residential tenancies and employment. Such legislation could provide dispute resolution services to enable landlords and tenants to have access to justice to determine their legal rights at all times, and in particular, in times of crisis.
Research on responses to trauma has historically focused on the negative repercussions of a struggle with adversity. However, more recently, researchers have begun to examine posttraumatic growth: the positive psychological change that emerges from the struggle with a potentially traumatic event. Associations have been found between posttraumatic growth and greater peritraumatic distress, greater objective severity of trauma exposure, greater perceived stressfulness of events, social support, female gender, cognitive and behavioural responses to trauma, and personality measures. Posttraumatic growth has been measured typically in individuals with varying levels of posttraumatic stress disorder symptoms and other psychological difficulties, such as depression and anxiety. Although some theory and research posits that higher resilience would prohibit posttraumatic growth, no studies have examined posttraumatic growth in a resilient sample. The Canterbury earthquake sequence of 2010 and 2011 involved potentially traumatic events that saw the community struggle with a variety of challenges. However, in the midst of earthquake destruction, some positive initiatives emerged, driven by locals. The Gap Filler project (using city spaces left empty from fallen buildings for art and interactive community projects) and the Student Volunteer Army (groups of volunteers coordinated to help others in need) are examples of this. In this context, it seemed likely that posttraumatic growth was occurring and might be seen in individuals who were coping well with challenges. Culture is theorised to influence the posttraumatic growth process (Calhoun, Cann, & Tedeschi, 2010), and the nature of the trauma undergone is also likely to influence the process of growth. The current thesis measures posttraumatic growth quantitatively and qualitatively in a New Zealand sample. It measures and describes posttraumatic growth in a resilient population after the earthquake sequence of 2010 and 2011 in Canterbury, New Zealand. Findings are used to test current models of posttraumatic growth for individuals coping well after trauma and to elaborate on mechanisms proposed by models such as the comprehensive model of posttraumatic growth (Calhoun et al., 2010) and the organismic valuing theory of growth through adversity (Joseph & Linley, 2005). Correlates of posttraumatic growth are examined and likely supporting factors of posttraumatic growth are identified for this population. Study 1 used quantitative analysis to explore correlates of posttraumatic growth and found that greater posttraumatic growth related to greater peritraumatic distress, greater perceived stressfulness of earthquake events, greater objective stressfulness of earthquake events, greater difficulty with stressful life events, less satisfaction with social support, and female gender. Findings from Study 1 give important detail about the nature of distress included in the comprehensive model of posttraumatic growth (Calhoun et al., 2010) for this population. Levels of posttraumatic growth were lower than those in North American studies but similar to those in a Chinese study. The current sample, however, showed lower endorsement of Relating to Others than the Chinese study, perhaps because of cultural differences. Study 2 used qualitative analysis to examine the experience of posttraumatic growth in the sample. The theme of ‘a greater sense of community’ was found and adds to the comprehensive model of posttraumatic growth, in that an expression of posttraumatic growth (a greater connection with others) can inform ongoing social processing in the posttraumatic growth process. Having a formal or informal role in earthquake recovery appeared to influence self-concept and reflection; this elaborates on the influence of role on reflection in Calhoun et al.’s model. Findings illustrate possible mechanisms of the organismic valuing process theorised by Joseph and Linley (2005). Implications include the importance of providing opportunities for individuals to take on a role after a crisis, encouraging them to act to respond to difficulties, and encouraging them to meet personal needs for relatedness, competence, and autonomy. Finding positive aspects to a difficult situation, as well as acknowledging adversity, can be supported in future to help individuals process their traumas. As a society, we can help individuals cope with adversity by providing ways they can meet their needs for relatedness, competence, and autonomy. Community groups likely provide opportunities for members to act in ways that meet such needs. This will allow them to effectively act to meet their needs in times of crisis.
With the occurrence of natural disasters on the increase, major cities around the world face the potential of complete loss of infrastructure due to design guidelines that do not consider resilience in the design. With the February 22nd, 2011 earthquake in Christchurch, being the largest insured event, lessons learnt from the rebuild will be vital for the preparation of future disasters. Therefore the objective of this research is to understand the financial implications of the changes to the waste water design guidelines used throughout the five year rebuild programme of works. The research includes a study of the SCIRT alliance model selected for the delivery that is flexible enough to handle changes in the design with minimal impact on the direct cost of the rebuild works. The study further includes the analysis and compares the impact of the three different guidelines on maintenance and replacement cost over the waste water pipe asset life. The research concludes that with the varying ground conditions in Christchurch and also the wide variety of materials in use in the waste water network up to the start of the CES, the rebuild was not a ‘one size fits all’ approach.
Voluntary turnover has been the subject of scholarly inquiry for more than 100 years and much is understood about the drivers of turnover, and the decision-making processes involved. To date most models of voluntary turnover have assumed a rational and sequential decision process, initiated primarily by dissatisfaction with the job and the perceived availability of alternatives. Operating within a strong predictive research agenda, countless studies have sought to validate, extend and refine these traditional models through the addition of distal antecedents, mediators, moderators, and proximal antecedents of turnover. The net result of this research is a large body of empirical support for a somewhat modest relationship between job dissatisfaction, perceived alternatives, turnover intentions, job search behaviour and actual turnover. Far less scholarly attention has been directed at understanding shock-induced turnover that is not necessarily derived from dissatisfaction. Moreover, almost no consideration has been given to understanding how a significant and commonly experienced extra-organisational shock, such as natural disaster, might impact turnover decision making. Additionally, the dynamic and cumulative impacts of multiple shocks on turnover decision making have to date not been examined by turnover researchers. In addressing these gaps this thesis presents a leaver-centric theory of employee turnover decision making that is grounded in the post-disaster context. Data for the study were collected from in-depth interviews with 31 leavers in four large organisations in Christchurch, New Zealand; an area that experienced a major natural disaster in the form of the Canterbury earthquake sequence. This context provided a unique setting in which to study turnover as the primary shock was followed by a series of smaller shocks, resulting in a period of sustained disruption to the pre-shock status quo. Grounded theory methods are used to develop a typology of leaving which describes four distinct patterns of turnover decision making that follow a significant extra-organisational shock. The proposed typology not only addresses the heterogeneous and complex nature of turnover decision making, but also provides a more nuanced explanation of the turnover process explicating how the choice of decision path followed is influenced by four contextual factors which emerged from the data: (1) pre-shock motivational state; (2) decision difficulty; (3) experienced shock magnitude; and (4) the availability of resources. The research findings address several shortcomings in the extant literature on employee turnover, and offer practical recommendations for managers seeking to retain employees in a post-disaster setting.
The Lake Coleridge Rock Avalanche Deposits (LCRADs) are located on Ryton Station in the middle Rakaia Valley, approximately 80 km west of Christchurch. Torlesse Supergroup greywacke is the basement material and has been significantly influenced by both active tectonics and glaciation. Both glacial and post-glacial processes have produced large volumes of material which blanket the bedrock on slopes and in the valley floors. The LCRADs were part of a regional study of rock avalanches by WHITEHOUSE (1981, 1983) and WHITEHOUSE and GRIFFITHS (1983), and a single rock avalanche event was recognised with a weathering rind age of 120 years B.P. that was later modified to 150 ± 40 years B.P. The present study has refined details of both the age and the sequence of events at the site, by identifying three separate rock avalanche deposits (termed the LCRA1, LCRA2 and LCRA3 deposits), which are all sourced from near the summit of Carriage Drive. The LCRA1 deposit is lobate in shape and had an estimated original deposit volume of 12.5 x 10⁶ m³, although erosion by the Ryton River has reduced the present day debris volume to 5.1 x 10⁶ m³. An optically stimulated luminescence date taken from sandy loess immediately beneath the LCRA1 deposit provided a maximum age for the rock avalanche event of 9,720 ± 750 years B.P., which is believed to be realistic given that this is shortly after the retreat of Acheron 3 ice from this part of the valley. Emplacement of rock avalanche material into an ancestral Ryton riverbed created a natural dam with a ~17 M m³ lake upstream. The river is thought to have created a natural spillway over the dam structure at ~557 m (a.s.l), and to have existed for a number of years before any significant downcutting occurred. Although a triggering mechanism for the LCRA1 deposit was poorly constrained, it is thought that stress rebound after glacial ice removal may have initiated failure. Due to the event occurring c.10,000 years ago, there was a lack of definition for a possible earthquake trigger, though the possibility is obvious. The LCRA₂ event had an original deposit volume of 0.66 x 10⁶ m³, and was constrained to the low-lying area adjacent to the Ryton River that had been created by river erosion of the LCRA1 deposit. Further erosion by the Ryton River has reduced the deposit volume to 0.4 x 10⁶ m³. A radiocarbon date from a piece of mānuka found within the LCRA2 deposit provided an age of 668 ± 36 years B.P., and this is thought to reliably date the event. The LCRA2 event also dammed the Ryton River, and the preservation of dam-break outwash terraces downstream from the deposit provides clear evidence of rapid dam erosion and flooding after overtopping, and breaching by the Ryton River. Based on the mean annual flow of the Ryton River, the LCRA2 lake would have taken approximately two weeks to fill assuming that there were no preferred breach paths and the material was relatively impermeable. The LCRA2 event is thought to have been coseismic with a fault rupture along the western segment of the PPAFZ, which has been dated at 600 ± 100 years B.P. by SMITH (2003). The small LCRA3 event was not able to be dated, but it is believed to have failed shortly after the LCRA2 event and it may in fact be a lag deposit of the second rock avalanche event possibly triggered by an aftershock. The deposit is only visible at one locality within the cliffs that line the Ryton River, and its lack of geomorphic expression is attributed to it occurring closely after the LCRA2 event, while the Ryton River was still dammed from the second rock avalanche event. A wedge-block of some 35,000 m³ of source material for a future rock avalanche was identified at the summit of Carriage Drive. The dilation of the rock mass, combined with unfavourably oriented sub-vertical bedding in the Torlesse Supergroup bedrock, has allowed toppling-style failure on both of the main ridge lines around the source area for the LCRADs. In the event of a future rock avalanche occurring within the Ryton riverbed an emergency response plan has been developed to provide a staged response, especially in relation to the camping ground located at the mouth of the Ryton River. A long-term management plan has also been developed for mitigation measures for the Ryton riverbed and adjacent floodplain areas downstream of a future rock avalanche at the LCRAD site.
The Canterbury Earthquake Sequence (CES) of 2010-2011 caused widespread liquefaction in many parts of Christchurch. Observations from the CES highlight some sites were liquefaction was predicted by the simplified method but did not manifest. There are a number of reasons why the simplified method may over-predict liquefaction, one of these is the dynamic interaction between soil layers within a stratified deposit. Soil layer interaction occurs through two key mechanisms; modification of the ground motion due to seismic waves passing through deep liquefied layers, and the effect of pore water seepage from an area of high excess pore water pressure to the surrounding soil. In this way, soil layer interaction can significantly alter the liquefaction behaviour and surface manifestation of soils subject to seismic loading. This research aimed to develop an understanding of how soil layer interaction, in particular ground motion modification, affects the development of excess pore water pressures and liquefaction manifestation in a soil deposit subject to seismic loading. A 1-D soil column time history Effective Stress Analysis (ESA) was conducted to give an in depth assessment of the development of pore pressures in a number of soil deposits. For this analysis, ground motions, soil profiles and model parameters were required for the ESA. Deconvolution of ground motions recorded at the surface during the CES was used to develop some acceleration time histories to input at the base of the soil-column model. An analysis of 55 sites around Christchurch, where detailed site investigations have been carried out, was then conducted to identify some simplified soil profiles and soil characteristics. From this analysis, four soil profiles representative of different levels of liquefaction manifestation were developed. These were; two thick uniform and vertically continuous sandy deposits that were representative of sites were liquefaction manifested in both the Mw 7.1 September 2010 and the Mw 6.3 February 2011 earthquakes, and two vertically discontinuous profiles with interlayered liquefiable and non-liquefiable layers representative of sites that did not manifest liquefaction in either the September 2010 or the February 2011 events. Model parameters were then developed for these four representative soil profiles through calibration of the constitutive model in element test simulations. Simulations were run for each of the four profiles subject to three levels of loading intensity. The results were analysed for the effect of soil layer interaction. These were then compared to a simplified triggering analysis for the same four profiles to determine where the simplified method was accurate in predicting soil liquefaction (for the continuous sandy deposits) and were it was less accurate (the vertically discontinuous deposits where soil layer interaction was a factor).
This thesis seeks to examine how the integration of play, small toys specifically, and the use of solution-focused brief therapy techniques can affect the outcomes for primary school aged children undergoing counselling. The setting is a counselling agency in Christchurch, New Zealand. A qualitative research approach is used and the data analysed using a narrative inquiry approach. The context of this study is the counselling service of an agency where young children, adolescents and their families are helped and supported through a variety of life issues. The counselling the participants are offered uses a combination of a solution-focused and play therapy where the purpose is to encourage clients to find exceptions to their presenting problems and identify their preferred future. The aim of this study is to help the children navigate their problem through a better understanding of and the gaining of personal skills and strengths. Participants were invited to be part of this study through the agency waiting list. The four included presented with a variety of reasons for coming to counselling yet these proved similar to that which the agency has been routinely presented with in the aftermath of the Canterbury earthquakes from 2011 to present day. Each participant had the consent of their parents or caregivers to engage in this project. The participants themselves separately agreed to engage in a solution- focused counselling process where the counsellor also integrated the use of small toys as part of the course. Counselling sessions were audiotaped, aspects photographed and analysed with a specific focus on client engagement. Four key themes emerged as the participants explored their personal narrative. Firstly, the “I’m OK” theme depicted in their first scaling activity, secondly a recognition that things could indeed be better and they needed help. Thirdly, a realisation of their own strengths and skills and finally that the future was an optimistic place to look forward to. These themes are described and explained through descriptions of the participant’s stories as well as self-reflection by the researcher. Transcriptions of sessions are included as are excerpts from the research journal and photographs of the use of the small toys by the children.
Geologic phenomena produced by earthquake shaking, including rockfalls and liquefaction features, provide important information on the intensity and spatiotemporal distribution of earthquake ground motions. The study of rockfall and liquefaction features produced in contemporary well- instrumented earthquakes increases our knowledge of how natural and anthropogenic environments respond to earthquakes and improves our ability to deduce seismologic information from analogous pre-contemporary (paleo-) geologic features. The study of contemporary and paleo- rockfall and liquefaction features enables improved forecasting of environmental responses to future earthquakes. In this thesis I utilize a combination of field and imagery-based mapping, trenching, stratigraphy, and numerical dating techniques to understand the nature and timing of rockfalls (and hillslope sedimentation) and liquefaction in the eastern South Island of New Zealand, and to examine the influence that anthropogenic activity has had on the geologic expressions of earthquake phenomena. At Rapaki (Banks Peninsula, NZ), field and imagery-based mapping, statistical analysis and numerical modeling was conducted on rockfall boulders triggered by the fatal 2011 Christchurch earthquakes (n=285) and compared with newly identified prehistoric (Holocene and Pleistocene) boulders (n=1049) deposited on the same hillslope. A significant population of modern boulders (n=26) travelled farther downslope (>150 m) than their most-travelled prehistoric counterparts, causing extensive damage to residential dwellings at the foot of the hillslope. Replication of prehistoric boulder distributions using 3-dimensional rigid body numerical models requires the application of a drag-coefficient, attributed to moderate to dense slope vegetation, to account for their spatial distribution. Radiocarbon dating provides evidence for 17th to early 20th century deforestation at the study site during Polynesian and European colonization and after emplacement of prehistoric rockfalls. Anthropocene deforestation enabled modern rockfalls to exceed the limits of their prehistoric predecessors, highlighting a shift in the geologic expression of rockfalls due to anthropogenic activity. Optical and radiocarbon dating of loessic hillslope sediments in New Zealand’s South Island is used to constrain the timing of prehistoric rockfalls and associated seismic events, and quantify spatial and temporal patterns of hillslope sedimentation including responses to seismic and anthropogenic forcing. Luminescence ages from loessic sediments constrain timing of boulder emplacement to between ~3.0 and ~12.5 ka, well before the arrival of Polynesians (ca AD 1280) and Europeans (ca AD 1800) in New Zealand, and suggest loess accumulation was continuing at the study site until 12-13 ka. Large (>5 m3) prehistoric rockfall boulders preserve an important record of Holocene hillslope sedimentation by creating local traps for sediment aggradation and upbuilding soil formation. Sediment accumulation rates increased considerably (>~10 factor increase) following human arrival and associated anthropogenic burning of hillslope vegetation. New numerical ages are presented to place the evolution of loess-mantled hillslopes in New Zealand’s South Island into a longer temporal framework and highlight the roles of earthquakes and humans on hillslope surface process. Extensive field mapping and characterization for 1733 individual prehistoric rockfall boulders was conducted at Rapaki and another Banks Peninsula site, Purau, to understand their origin, frequency, and spatial and volumetric distributions. Boulder characteristics and distributions were compared to 421 boulders deposited at the same sites during the 2010-2011 Canterbury earthquake sequence. Prehistoric boulders at Rapaki and Purau are comprised of two dominant lithofacies types: volcanic breccia and massive (coherent) lava basalt. Volcanic breccia boulders are found in greatest abundance (64-73% of total mapped rockfall) and volume (~90-96% of total rockfall) at both locations and exclusively comprise the largest boulders with the longest runout distances that pose the greatest hazard to life and property. This study highlights the primary influence that volcanic lithofacies architecture has on rockfall hazard. The influence of anthropogenic modifications on the surface and subsurface geologic expression of contemporary liquefaction created during the 2010-2011 Canterbury earthquake sequence (CES) in eastern Christchurch is examined. Trench observations indicate that anthropogenic fill layer boundaries and the composition/texture of discretely placed fill layers play an important role in absorbing fluidized sand/silt and controlling the subsurface architecture of preserved liquefaction features. Surface liquefaction morphologies (i.e. sand blows and linear sand blow arrays) display alignment with existing utility lines and utility excavations (and perforated pipes) provided conduits for liquefaction ejecta during the CES. No evidence of pre-CES liquefaction was identified within the anthropogenic fill layers or underlying native sediment. Radiocarbon dating of charcoal within the youngest native sediment suggests liquefaction has not occurred at the study site for at least the past 750-800 years. The importance of systematically examining the impact of buried infrastructure on channelizing and influencing surface and subsurface liquefaction morphologies is demonstrated. This thesis highlights the importance of using a multi-technique approach for understanding prehistoric and contemporary earthquake phenomena and emphasizes the critical role that humans play in shaping the geologic record and Earth’s surface processes.
Principal contractors can achieve better financial performance in civil construction projects by increasing the proportion of works delivered by subcontractors. However, anecdotally the use of subcontractors is thought to be make principal contractors less competitive due to compounding profit margins. This study found that projects with a higher proportion of subcontracted work exhibit better financial results than projects with less work delivered by subcontractors. This study uses the Christchurch Infrastructure Alliance (known as the Stronger Christchurch Infrastructure Rebuild Team, SCIRT) as a case study to observe why principal contracting firms engage subcontractors and the effect subcontracting has on the overall performance of a construction project. Five top tier civil contracting firms (known as ‘delivery teams’) participated in the alliance. Each team was responsible for the delivery of individual projects. A sample of 334 individual SCIRT projects were analysed, and key delivery team staff were surveyed, to investigate the effect subcontractor engagement has on performance. Between the five delivery teams there were clear differences in how much work was delivered via subcontracts. The extent of this subcontractor engagement had a significant effect on the relative performance of the principal contractor. A positive correlation between subcontractor engagement and overall financial performance is observed, and a negative correlation is observed between subcontractor engagement and non-financial performance. Although the causes of these relationships appear complex, the primary reason appears to be that subcontracting fosters increased productivity by cascading financial performance incentives closer to the physical construction task. To maximise competitiveness and financial performance, principal contractors must embrace the use of subcontractors and develop efficient systems of managing subcontracted work.
Five years on from the 2010-2011 Canterbury earthquakes, research has shown an increase in hyperarousal symptoms in school children. While Cognitive Behaviour Therapy is currently the gold standard for treating Post-Traumatic Stress, there are insufficient clinicians to treat the high numbers of children in post-disaster communities. Alternative non-verbal interventions in school based settings that target the physiological basis of hyperarousal may be more effective for long term stress reduction in some young children. Neuroscience research suggests that drawing activates brain areas connected with the autonomic nervous system, resulting in relaxation and self-regulation. The aim of the current study was to determine whether a 20-minute drawing lesson during the afternoon of the school day would reduce stress in children with hyperarousal symptoms. The study had a single subject ABA design. Four children participated, two of the children exhibited hyperarousal symptoms, and the other two did not, as determined by teacher and parent responses on the Behaviour Problem Index (BPI). The children’s selfreported stress (measured by the Subjective Unit of Distress (SUD) thermometer) and physiological stress (measured by finger temperature) were recorded at the start and end of each session during baseline, drawing lessons, and return to baseline phases. The results of the study showed a general reduction in physiological stress during the drawing lessons for the children with hyperarousal symptoms. However, the results indicated some discrepancies between the children’s physiological stress and perception of stress, which may suggest that the self-report measure was inappropriate for the children in this study. Overall, the study suggests that drawing lessons show promise as a school-based intervention for reducing stress in children with hyperarousal. More research is required to address the limitations of the present study, and before the study can be applied to the whole classroom as a positive strategy for managing stress at school.
While some scholarship on refugee youth has focussed on leaving a place that is typically considered ‘home,’ there has been little attention to what ‘home’ means to them and how this is negotiated in the country of (re)settlement. This is particularly the case for girls and women. New Zealand research on refugee settlement has largely focussed on the economic integration of refugees. Although this research is essential, it runs the risk of overlooking the socio-cultural aspects of the resettlement experiences and renders partial our understanding of how particular generations and ethnic groups develop a sense of belonging to their adopted homeland. In order to address these research gaps, this thesis explores the experiences of 12 Afghan women, aged 19-29 years, of refugee background who relocated to Christchurch, New Zealand, during their childhood and early teenage years. This study employed semi-structured, one-to-one, in-depth interviews and photo-elicitation to encourage talk about participants’ experiences of leaving Afghanistan, often living in countries of protracted displacement (Iran and/or Pakistan) and making- and being-at-home in New Zealand. In this thesis, I explore the ways in which they frame Afghanistan, and the ways in which their experiences in Iran and Pakistan disrupt the dichotomisation of belonging in terms of ‘here’ (ancestral land) and ‘there’ (country of residence). Furthermore, I use affect theorising to analyse the participants’ expressions of resettlement and home in New Zealand. Feeling at home is as much about negotiating cultural and gendered identities in Western secular societies as it is about belonging to a particular community. Through their experiences of ‘living in two worlds’, the participants are able to strategically challenge cultural expectations without undermining their reputations as Muslims and as Afghan women. The participants discussed their emotional responses to double-displacement: one as a result of war and the other as a result of 2011 Canterbury earthquakes. Therefore, I suggest that for young Afghan women, Afghanistan was among several markers of home in a long embodied journey of (re)settlement.
Worldwide turbidity is a huge concern for the health of aquatic ecosystems. Human activities on the land such as construction, deforestation, agriculture, and mining all have impacts on the amount of particulate solids that enter the world’s waterways. These particulate solids can pose a number of risks to aquatic life, but primary among them is the turbidity that they create in the water column. The way suspended solids interact with light creates cloudiness in the water which interferes with the vision, and visually mediated behaviours of aquatic organisms, particularly fish. The Avon-Heathcote estuary of Christchurch, New Zealand, is one such body of water that is subject to tremendous variation in turbidity, no doubt exacerbated by the destruction of Christchurch in the 2010 and 2011 earthquakes, as well as the subsequent ongoing rebuild. The yellow eyed mullet, Aldrichetta Forsteri, is one species that is common with the estuary, and uses it as a habitat for breeding. Though very common throughout New Zealand, and even a part of the catch of commercial fisheries, the yellow eyed mullet is a largely unstudied organism, with virtually no published scientific enquiry based on the species. The present work assesses how several behaviours of the yellow eyed mullet are effected by acute turbidity at 10, 50, 90, 130 and 170 NTU, finding that: 1) The optomotor response of mullet to 2.5 mm stripes drops to insignificant levels between 10 and 50 NTU, 2) The swimming activity of the yellow eyed mullet is highest at 10 NTU and drops to a significantly lower level at higher turbidities, 3) The grouping behaviour of small groups of yellow eyed mullet are unchanged by increasing turbidity levels, 4) that yellow eyed mullet do not exhibit significantly different behavioural response to a simulated predator at any of the tested turbidities, and 5) that yellow eyed mullet to do significantly alter their oxygen consumption during exposure to the turbidities in an increasing series. The results presented in these studies indicate that turbidites above 50 NTU pose a significant risk to the lifestyle of the yellow eyed mullet, potentially impacting their ability to perceive their surroundings, feed, school, and avoid predation. Future work has a lot of ground to cover to more precisely determine the relationship between yellow eyed mullet behaviour and physiology, and the turbidity of their environment. In particular, future work should focus more closely on the turbidities between 10 and 50 NTU, as well as looking to field work to see what the predominant predators of the mullet are, and specifically whether turbidity increases or decreases the risk of mullet being subject to avian predation. There is also considerable scope for studies on the effects of chronic turbidity upon mullet, which will add understand to the predicament of escalating turbidity and its effects upon this common and yet mysterious native fish.
This dissertation addresses several fundamental and applied aspects of ground motion selection for seismic response analyses. In particular, the following topics are addressed: the theory and application of ground motion selection for scenario earthquake ruptures; the consideration of causal parameter bounds in ground motion selection; ground motion selection in the near-fault region where directivity effect is significant; and methodologies for epistemic uncertainty consideration and propagation in the context of ground motion selection and seismic performance assessment. The paragraphs below outline each contribution in more detail. A scenario-based ground motion selection method is presented which considers the joint distribution of multiple intensity measure (IM) types based on the generalised conditional intensity measure (GCIM) methodology (Bradley, 2010b, 2012c). The ground motion selection algorithm is based on generating realisations of the considered IM distributions for a specific rupture scenario and then finding the prospective ground motions which best fit the realisations using an optimal amplitude scaling factor. In addition, using different rupture scenarios and site conditions, two important aspects of the GCIM methodology are scrutinised: (i) different weight vectors for the various IMs considered; and (ii) quantifying the importance of replicate selections for ensembles with different numbers of desired ground motions. As an application of the developed scenario-based ground motion selection method, ground motion ensembles are selected to represent several major earthquake scenarios in New Zealand that pose a significant seismic hazard, namely, Alpine, Hope and Porters Pass ruptures for Christchurch city; and Wellington, Ohariu, and Wairarapa ruptures for Wellington city. A rigorous basis is developed, and sensitivity analyses performed, for the consideration of bounds on causal parameters (e.g., magnitude, source-to-site distance, and site condition) for ground motion selection. The effect of causal parameter bound selection on both the number of available prospective ground motions from an initial empirical as-recorded database, and the statistical properties of IMs of selected ground motions are examined. It is also demonstrated that using causal parameter bounds is not a reliable approach to implicitly account for ground motion duration and cumulative effects when selection is based on only spectral acceleration (SA) ordinates. Specific causal parameter bounding criteria are recommended for general use as a ‘default’ bounding criterion with possible adjustments from the analyst based on problem-specific preferences. An approach is presented to consider the forward directivity effects in seismic hazard analysis, which does not separate the hazard calculations for pulse-like and non-pulse-like ground motions. Also, the ability of ground motion selection methods to appropriately select records containing forward directivity pulse motions in the near-fault region is examined. Particular attention is given to ground motion selection which is explicitly based on ground motion IMs, including SA, duration, and cumulative measures; rather than a focus on implicit parameters (i.e., distance, and pulse or non-pulse classifications) that are conventionally used to heuristically distinguish between the near-fault and far-field records. No ad hoc criteria, in terms of the number of directivity ground motions and their pulse periods, are enforced for selecting pulse-like records. Example applications are presented with different rupture characteristics, source-to-site geometry, and site conditions. It is advocated that the selection of ground motions in the near-fault region based on IM properties alone is preferred to that in which the proportion of pulse-like motions and their pulse periods are specified a priori as strict criteria for ground motion selection. Three methods are presented to propagate the effect of seismic hazard and ground motion selection epistemic uncertainties to seismic performance metrics. These methods differ in their level of rigor considered to propagate the epistemic uncertainty in the conditional distribution of IMs utilised in ground motion selection, selected ground motion ensembles, and the number of nonlinear response history analyses performed to obtain the distribution of engineering demand parameters. These methods are compared for an example site where it is observed that, for seismic demand levels below the collapse limit, epistemic uncertainty in ground motion selection is a smaller uncertainty contributor relative to the uncertainty in the seismic hazard itself. In contrast, uncertainty in ground motion selection process increases the uncertainty in the seismic demand hazard for near-collapse demand levels.
Between 2010 and 2011, Canterbury experienced a series of four large earthquake events with associated aftershocks which caused widespread damage to residential and commercial infrastructure. Fine grained and uncompacted alluvial soils, typical to the Canterbury outwash plains, were exposed to high peak ground acceleration (PGA) during these events. This rapid increase in PGA induced cyclic strain softening and liquefaction in the saturated, near surface alluvial soils. Extensive research into understanding the response of soils in Canterbury to dynamic loading has since occurred. The Earthquake Commission (EQC), the Ministry of Business and Employment (MBIE), and the Christchurch City Council (CCC) have quantified the potential hazards associated with future seismic events. Theses bodies have tested numerous ground improvement design methods, and subsequently are at the forefront of the Canterbury recovery and rebuild process. Deep Soil Mixing (DSM) has been proven as a viable ground improvement foundation method used to enhance in situ soils by increasing stiffness and positively altering in situ soil characteristics. However, current industry practice for confirming the effectiveness of the DSM method involves specific laboratory and absolute soil test methods associated with the mixed column element itself. Currently, the response of the soil around the columns to DSM installation is poorly understood. This research aims to understand and quantify the effects of DSM columns on near surface alluvial soils between the DSM columns though the implementation of standardised empirical soil test methods. These soil strength properties and ground improvement changes have been investigated using shear wave velocity (Vs), soil behaviour and density response methods. The results of the three different empirical tests indicated a consistent improvement within the ground around the DSM columns in sandier soils. By contrast, cohesive silty soils portrayed less of a consistent response to DSM, although still recorded increases. Generally, within the tests completed 50 mm from the column edge, the soil response indicated a deterioration to DSM. This is likely to be a result of the destruction of the soil fabric as the stress and strain of DSM is applied to the un‐mixed in situ soils. The results suggest that during the installation of DSM columns, a positive ground effect occurs in a similar way to other methods of ground improvement. However, further research, including additional testing following this empirical method, laboratory testing and finite 2D and 3D modelling, would be useful to quantify, in detail, how in situ soils respond and how practitioners should consider these test results in their designs. This thesis begins to evaluate how alluvial soils tend to respond to DSM. Conducting more testing on the research site, on other sites in Christchurch, and around the world, would provide a more complete data set to confirm the results of this research and enable further evaluation. Completing this additional research could help geotechnical DSM practitioners to use standardised empirical test methods to measure and confirm ground improvement rather than using existing test methods in future DSM projects. Further, demonstrating the effectiveness of empirical test methods in a DSM context is likely to enable more cost effective and efficient testing of DSM columns in future geotechnical projects.
This is an ethnographic case study, tracking the course of arguments about the future of a city’s central iconic building, damaged following a major earthquake sequence. The thesis plots this as a social drama and examines the central discourses of the controversy. The focus of the drama is the Anglican neo-Gothic Christ Church Cathedral, which stands in the central square of Christchurch, New Zealand. A series of major earthquakes in 2010/2011 devastated much of the inner city, destroying many heritage-listed buildings. The Cathedral was severely damaged and was declared by Government officials in 2011 to be a dangerous building, which needed to be demolished. The owners are the Church Property Trustees, chaired by Bishop Victoria Matthews, a Canadian appointed in 2008. In March 2012 Matthews announced that the Cathedral, because of safety and economic factors, would be deconstructed. Important artefacts were to be salvaged and a new Cathedral built, incorporating the old and new. This decision provoked a major controversy, led by those who claimed that the building could and should be restored. Discourses of history and heritage, memory, place and identity, ownership, economics and power are all identified, along with the various actors, because of their significance. However, the thesis is primarily concerned with the differing meanings given to the Cathedral. The major argument centres on the symbolic interaction between material objects and human subjects and the various ways these are interpreted. At the end of the research period, December 2015, the Christ Church Cathedral stands as a deteriorating wreck, inhabited by pigeons and rats and shielded by protective, colourfully decorated wooden fences. The decision about its future remains unresolved at the time of writing.
Background The 2010/2011 Canterbury earthquakes and aftershocks in New Zealand caused unprecedented destruction to the physical, social, economic, and community fabric of Christchurch city. The recovery phase in Christchurch is on going, six years following the initial earthquake. Research exploring how disabled populations experience community inclusion in the longer-term recovery following natural disasters is scant. Yet such information is vital to ensure that recovering communities are inclusive for all members of the affected population. This thesis specifically examined how people who use wheelchairs experienced community inclusion four years following the 2010/2011 Canterbury earthquakes. Aims The primary research aim was to understand how one section of the disability community – people who use wheelchairs – experienced community inclusion over the four years following the 2010/2011 Canterbury earthquakes and aftershocks. A secondary aim was to test a novel sampling approach, Respondent Driven Sampling, which had the potential to enable unbiased population-based estimates. This was motivated by the lack of an available sampling frame for the target population, which would inhibit recruitment of a representative sample. Methodology and methods An exploratory sequential mixed methods design was used, beginning with a qualitative phase (Phase One), which informed a second quantitative phase (Phase Two). The qualitative phase had two stages. First, a small sample of people who use wheelchairs participated in an individual, semi-structured interview. In the second stage, these participants were then invited to a group interview to clarify and prioritise themes identified in the individual interviews. The quantitative phase was a cross-sectional survey developed from the findings from Phase One. Initially, Respondent Driven Sampling was employed to conduct a national, electronic cross-sectional survey that aimed to recruit a sample that may provide unbiased population-based estimates. Following the unsuccessful application of Respondent Driven Sampling, a region-specific convenience sampling approach was used. The datasets from the qualitative and quantitative phases were integrated to address the primary aim of the research. Results In Phase One 13 participants completed the individual interviews, and five of them contributed to the group interview. Thematic analysis of individual and group interview data suggested that participants felt the 2010/11 earthquakes magnified many pre-existing barriers to community inclusion, and also created an exciting opportunity for change. This finding was encapsulated in five themes: 1) earthquakes magnified barriers, 2) community inclusion requires energy, 3) social connections are important, 4) an opportunity lost, and 5) an opportunity found. The findings from Phase One informed the development of a survey instrument to investigate how these findings generalised to a larger sample of individuals who use wheelchairs. In Phase Two, the Respondent Driven Sampling approach failed to recruit enough participants to satisfy the statistical requirements needed to reach equilibrium, thereby enabling the calculation of unbiased population estimates. The subsequent convenience sampling approach recruited 49 participants who, combined with the 15 participants from the Respondent Driven Sampling approach that remained eligible for the region-specific sample, resulted in the total of 64 individuals who used wheelchairs and were residents of Christchurch. Participants reported their level of community inclusion at three time periods: the six months prior to the first earthquake in September 2010 (time one), the six months following the first earthquake in September 2010 (time two), and the six months prior to survey completion (between October 2015 and March 2016, (time three)). Survey data provided some precision regarding the timing in which the magnified barriers developed. Difficulty with community inclusion rose significantly between time one and time two, and while reducing slightly, was still present during time three, and had not returned to the time one baseline. The integrated findings from Phase One and Phase Two suggested that magnified barriers to community inclusion had been sustained four years post-earthquake, and community access had not returned to pre-earthquake levels, let alone improved beyond pre-earthquake levels. Conclusion Findings from this mixed methods study suggest that four years following the initial earthquake, participants were still experiencing multiple magnified barriers, which contributed to physical and social exclusion, as well as fatigue, as participants relied on individual agency to negotiate such barriers. Participants also highlighted the exciting opportunity to create an accessible city. However because they were still experiencing barriers four years following the initial event, and were concerned that this opportunity might be lost if the recovery proceeds without commitment and awareness from the numerous stakeholders involved in guiding the recovery. To truly realise the opportunity to create an accessible city following a disaster, the transition from the response phase to a sustainable longer-term recovery must adopt a new model of community engagement where decision-makers partner with people living with disability to co-produce a vision and strategy for creating an inclusive community. Furthermore, despite the unsuccessful use of Respondent Driven Sampling in this study, future research exploring the application of RDS with wheelchair users is recommended before discounting this sampling approach in this population.
Capacity design and hierarchy of strength philosophies at the base of modern seismic codes allow inelastic response in case of severe earthquakes and thus, in most traditional systems, damage develops at well-defined locations of reinforced concrete (RC) structures, known as plastic hinges. The 2010 and 2011 Christchurch earthquakes have demonstrated that this philosophy worked as expected. Plastic hinges formed in beams, in coupling beams and at the base of columns and walls. Structures were damaged permanently, but did not collapse. The 2010 and 2011 Christchurch earthquakes also highlighted a critical issue: the reparability of damaged buildings. No methodologies or techniques were available to estimate the level of subsequent earthquakes that RC buildings could still sustain before collapse. No repair techniques capable of restoring the initial condition of buildings were known. Finally, the cost-effectiveness of an eventual repair intervention, when compared with a new building, was unknown. These aspects, added to nuances of New Zealand building owners’ insurance coverage, encouraged the demolition of many buildings. Moreover, there was a perceived strong demand from government and industry to develop techniques for assessing damage to steel reinforcement bars embedded in cracked structural concrete elements. The most common questions were: “Have the steel bars been damaged in correspondence to the concrete cracks?”, “How much plastic deformation have the steel bars undergone?”, and “What is the residual strain capacity of the damaged bars?” Minimally invasive techniques capable of quantifying the level and extent of plastic deformation and residual strain capacity are not yet available. Although some studies had been recently conducted, a validated method is yet to be widely accepted. In this thesis, a least-invasive method for the damage-assessment of steel reinforcement is developed. Based on the information obtained from hardness testing and a single tensile test, it is possible to estimate the mechanical properties of earthquake-damaged rebars. The reduction in the low-cycle fatigue life due to strain ageing is also quantified. The proposed damage assessment methodology is based on empirical relationships between hardness and strain and residual strain capacity. If damage is suspected from in situ measurements, visual inspection or computer analysis, a bar may be removed and more accurate hardness measurements can be obtained using the lab-based Vickers hardness methodology. The Vickers hardness profile of damaged bars is then compared with calibration curves (Vickers hardness versus strain and residual strain capacity) previously developed for similar steel reinforcement bars extracted from undamaged locations. Experimental tests demonstrated that the time- and temperature-dependent strain-ageing phenomenon causes changes in the mechanical properties of plastically deformed steels. In particular, yield strength and hardness increases, whereas ductility decreases. The changes in mechanical properties are quantified and their implications on the hardness method are highlighted. Low-cycle fatigue (LCF) failures of steel reinforcing bars have been observed in laboratory testing and post-earthquake damage inspections. Often, failure might not occur during a first seismic event. However, damage is accumulated and the remaining fatigue life is reduced. Failure might therefore occur in a subsequent seismic event. Although numerous studies exist on the LCF behaviour of steel rebars, no studies had been conducted on the strain-ageing effects on the remaining fatigue life. In this thesis, the reduction in fatigue life due to this phenomenon is determined through a number of experimental tests.
Over the last six years, Canterbury residents have lived through two major earthquakes and thousands of aftershocks, with such events negatively impacting psychological health. Research shows rates of post-traumatic stress symptoms in children have doubled post-quake, and a classroom containing children who are experiencing chronically high physiological arousal has been shown to be a stressful environment for teachers. Such stress therefore negatively impacts teachers’ ability to sleep well, meaning many Christchurch teachers may suffer from insomnia, a debilitating condition leading to psychological distress and often comorbid with other mental health conditions. The present research sought to investigate the use of a broadspectrum micronutrient formula called EMPowerplus (EMP+) for chronic insomnia in teachers. This study examined the effect of EMP+ over an 8-10 week period using a multiple-baseline design with placebo. Seventeen teachers were randomized to one of three baseline sequences where they completed a one week baseline period, before receiving five, nine, or 14 days, of placebo as well as 8-10 weeks of the micronutrient formula. After completion of the trial, a three-month follow up was conducted. All participants completed the trial, and results showed a statistically reliable and clinically significant decrease in insomnia severity (Cohen’s dav = - 1.37), on at least one or more aspects of the sleep diary, and on emotional exhaustion (Cohen’s dav = -1.08). EMP+ also statistically significantly reduced insomnia severity compared to placebo (Cohen’s dav = -0.66). Statistically significant reduction was not seen in stress, anxiety and depression scores as compared to placebo, and these levels were not generally clinically raised to begin with. Sixteen out of 17 participants were compliant, and side effects were generally mild and transitory. The current study provides evidence for the beneficial effect of micronutrient supplementation on chronic insomnia in Christchurch teachers working in a stressful environment. Future research incorporating measurement of nutritional intake and proinflammatory biomarkers, as well as conducting comparisons to other conventional treatments, is recommended.
This dissertation addresses a diverse range of topics in the area of physics-based ground motion simulation with particular focus on the Canterbury, New Zealand region. The objectives achieved provide the means to perform hybrid broadband ground motion simulation and subsequently validates the simulation methodology employed. In particu- lar, the following topics are addressed: the development of a 3D seismic velocity model of the Canterbury region for broadband ground motion simulation; the development of a 3D geologic model of the interbedded Quaternary formations to provide insight on observed ground motions; and the investigation of systematic effects through ground motion sim- ulation of small-to-moderate magnitude earthquakes. The paragraphs below outline each contribution in more detail. As a means to perform hybrid broadband ground motion simulation, a 3D model of the geologic structure and associated seismic velocities in the Canterbury region is devel- oped utilising data from depth-converted seismic reflection lines, petroleum and water well logs, cone penetration tests, and implicitly guided by existing contour maps and geologic cross sections in data sparse subregions. The model explicitly characterises five significant and regionally recognisable geologic surfaces that mark the boundaries between geologic units with distinct lithology and age, including the Banks Peninsula volcanics, which are noted to strongly influence seismic wave propagation. The Basement surface represents the base of the Canterbury sedimentary basin, where a large impedance contrast exists re- sulting in basin-generated waves. Seismic velocities for the lithological units between the geologic surfaces are derived from well logs, seismic reflection surveys, root mean square stacking velocities, empirical correlations, and benchmarked against a regional crustal model, thus providing the necessary information for a Canterbury velocity model for use in broadband seismic wave propagation. A 3D high-resolution model of the Quaternary geologic stratigraphic sequence in the Canterbury region is also developed utilising datasets of 527 high-quality water well logs, and 377 near-surface cone penetration test records. The model, developed using geostatistical Kriging, represents the complex interbedded regional Quaternary geology by characterising the boundaries between significant interbedded geologic formations as 3D surfaces including explicit modelling of the formation unconformities resulting from the Banks Peninsula volcanics. The stratigraphic layering present can result in complex wave propagation. The most prevalent trend observed in the surfaces was the downward dip from inland to the eastern coastline as a result of the dominant fluvial depositional environment of the terrestrial gravel formations. The developed model provides a benefi- cial contribution towards developing a comprehensive understanding of recorded ground motions in the region and also providing the necessary information for future site char- acterisation and site response analyses. To highlight the practicality of the model, an example illustrating the role of the model in constraining surface wave analysis-based shear wave velocity profiling is illustrated along with the calculation of transfer functions to quantify the effect of the interbedded geology on wave propagation. Lastly, an investigation of systematic biases in the (Graves and Pitarka, 2010, 2015) ground motion simulation methodology and the specific inputs used for the Canterbury region is presented considering 144 small-to-moderate magnitude earthquakes. In the simulation of these earthquakes, the 3D Canterbury Velocity Model, developed as a part of this dissertation, is used for the low-frequency simulation, and a regional 1D velocity model for the high-frequency simulation. Representative results for individual earthquake sources are first presented to highlight the characteristics of the small-to-moderate mag- nitude earthquake simulations through waveforms, intensity measure scaling with source- to-site distance, and spectral bias of the individual events. Subsequently, a residual de- composition is performed to examine the between- and within-event residuals between observed data, and simulated and empirical predictions. By decomposing the residuals into between- and within-event residuals, the biases in source, path and site effects, and their causes, can be inferred. The residuals are comprehensively examined considering their aggregated characteristics, dependence on predictor variables, spatial distribution, and site-specific effects. The results of the simulation are also benchmarked against empir- ical ground motion models, where their similarities manifest from common components in their prediction. Ultimately, suggestions to improve the predictive capability of the simulations are presented as a result of the analysis.
This thesis explores the lived experiences of a group of young Bhutanese former refugees between the ages of 18 to 24 years who were resettled in Christchurch between 2008 and 2010 – prior to the first major earthquake. The main goal of the thesis was to gain an understanding of their ways of coping and a second goal was to explore whether their participation in up to five mindfulness infused counselling sessions had influenced their ways of coping. A qualitative research methodology was used to guide the thesis. Participants were interviewed about the major events in their life and how they coped with them. They were then invited to participate in five sessions of mindfulness infused counselling. Approximately five weeks after their final session had ended they were invited to one final interview to explore the influence of the sessions on their ways of coping. Interviews were recorded and transcribed and research notes were taken of the mindfulness infused counselling sessions. Max van Manen’s method of phenomenology was adopted to interpret the narratives of the youth. Three main themes emerged from the data analysis and these are described as essences of lived coping experiences. The first captures their strong sense of community back in the refugee camp. The second presents the sense of resilience that exists among the Bhutanese former refugees. The third essence indicated the inner strengths of the participants which they said helped them deal with the challenging circumstances that life cast in their direction. This meant that their first experience of an earthquake was not considered the biggest event in their lives. After attending the mindfulness infused counselling sessions’ participants reported positive benefits from giving non-judgemental attention to their thoughts and feelings and they found themselves dealing with their issues proactively. For some participants their ‘accepting’ attitude facilitated better control over their emotions while others reported being able to form deeper connections with nature and other people as a result of being mindful. Other participants reported being able to make peace with the events in their past and even found that they were able to forgive those who tormented their community. However, in the absence of any major event in any of the participants’ lives in the time period following their final counselling session, the research was not able to definitely conclude that using mindful-based counselling facilitates better coping in the face extremely stressful events. There is currently very little research that focuses on the experiences of former refugee youth within New Zealand and how they utilize their capacities to deal with adversities. When this thesis commenced, the Bhutanese were the newest refugee community to be accepted for resettlement in New Zealand. This research partly addresses the limited voice of this community.
Post-traumatic stress symptoms are a common reaction to experiencing a traumatic event such as a natural disaster. Young children may be at an increased risk for such mental health problems as these catastrophic events may coincide with developmentally sensitive periods of development. Treatments currently recommended for children with post-traumatic stress symptoms insufficiently acknowledge the role of neurobiological stress related systems responsible for these symptoms. As such, alternative approaches to the treatment of posttraumatic symptoms have been explored, with nature-based interventions offering a potential alternative based on two different theories that uphold the stress reducing benefits of natural environments. To date, there are a limited number of experimental studies that have explored the use of nature-based interventions with children, and no known research that has used a simulated nature experience with child participants. The purpose of this study was to investigate the effects of a simulated nature experience on the physiological and behavioural responses of children with post-traumatic stress symptoms that experienced the Christchurch earthquakes. A single-case research design with repeated measures of heart rate and teacherreported behaviour was gathered across a 20-day period. Heart rate data was collected before and after participants watched a 10-minute nature video, while data from a teacher rating scale provided information about the participants’ behaviours in the 30-minute period after they watched the nature video. Comparisons made to data collected during two different baseline phases indicated that the nature video intervention had no recognisable effects on the participants’ physiological and behavioural stress responses. Limitations to the current study are discussed as possible reasons for the incompatibility between the current study’s results and the findings from previous research. Suggestions are made for any future replications of the study.
Research in the governance of urban tourist spaces is characterized by a lack of argumentative inquiry and scant use of critical theory. This is evident, particularly, in the study of tourism and post-disaster urban recovery, with very few contributions assessing the phenomenon from a social theory perspective. This thesis examines the complex phenomenon of planning and governance for urban tourism spaces in contexts facing physical recovery from natural disasters. It does so by looking at the governance dynamics and the mechanism of decision- making put in place before and after triggering events like earthquakes and tsunamis. This thesis provides evidence from Christchurch, New Zealand, by focusing on the policies and strategies for the regeneration of the city centre put in place before and after the disruptive earthquakes of 2010 and 2011. The thesis looks at power relations, structures and ideologies through a Lukesian appraisal of pre-and-post disaster governance from two relevant urban tourist spaces located in the Christchurch central city area: the Arts Centre of Christchurch and the Town Hall and Performing Arts Precinct. The research strategy adopted for the study combined archival research, interviews with key stakeholders and fieldwork notes over a period of two years. The research deployed a comparative case study methodology that focuses on projects taking place within a spatially defined area of the city centre where special legislation was enacted as result of the earthquakes. The findings from the interviews and their triangulation with documents retrieved from national and local authorities suggest that the earthquakes affected the engagement among stakeholders and the mechanisms of decision-making. Also, the findings show patterns of disaster capitalism in post-earthquake governance for urban tourist spaces in the Christchurch CBD, with episodes of exclusion, lobbying and amendment of rules and legislation that directly benefited the interests of a narrow group of privileged stakeholders. Overall, the study shows that the earthquakes of 2010 and 2011 accelerated neoliberal practices of site development in Christchurch, with the seismic events used as a pretext to implement market-oriented site projects in the CBD area.
After a disaster, cities experience profound social and environmental upheaval. Current research on disasters describes this social disruption along with collective community action to provide support. Pre-existing social capital is recognised as fundamental to this observed support. This research examines the relationship between sense of place for neighbourhood, social connectedness and resilience. Canterbury residents experienced considerable and continued disruption following a large and protracted sequence of earthquakes starting in September 2010. A major aftershock on 22 February 2011 caused significant loss of life, destruction of buildings and infrastructure. Following this earthquake some suburbs of Christchurch showed strong collective action. This research examines the features of the built environment that helped to form this cooperative support. Data were collected through semi-structured interviews with 20 key informants followed by 38 participants from four case study suburbs. The objectives were to describe the community response of suburbs, to identify the key features of the built environment and the role of social infrastructure in fostering social connectedness. The last objective was to contribute to future planning for community resilience. The findings from this research indicated that social capital and community competence are significant resources to be called upon after a disaster. Features of the local environment facilitated the formation of neighbourhood connections that enabled participants to cope, manage and to collectively solve problems. These features also strengthened a sense of belonging and attachment to the home territory. Propinquity was important; the bumping and gathering places such as schools, small local shops and parks provided the common ground for meaningful pre-existing local interaction. Well-defined geography, intimate street typology, access to quality natural space and social infrastructure helped to build the local social connections and develop a sense of place. Resourceful individuals and groups were also a factor, and many are drawn to live near the inner city or more natural places. The features are the same well understood attributes that contribute to health and wellbeing. The policy and planning framework needs to consider broader social outcomes, including resilience in new and existing urban developments. The socio-political structures that provide access to secure and stable housing and local education should also be recognised and incorporated into local planning for resilience and the everyday.
In September 2010 and February 2011, the Canterbury region experienced devastating earthquakes with an estimated economic cost of over NZ$40 billion (Parker and Steenkamp, 2012; Timar et al., 2014; Potter et al., 2015). The insurance market played an important role in rebuilding the Canterbury region after the earthquakes. Homeowners, insurance and reinsurance markets and New Zealand government agencies faced a difficult task to manage the rebuild process. From an empirical and theoretic research viewpoint, the Christchurch disaster calls for an assessment of how the insurance market deals with such disasters in the future. Previous studies have investigated market responses to losses in global catastrophes by focusing on the insurance supply-side. This study investigates both demand-side and supply-side insurance market responses to the Christchurch earthquakes. Despite the fact that New Zealand is prone to seismic activities, there are scant previous studies in the area of earthquake insurance. This study does offer a unique opportunity to examine and document the New Zealand insurance market response to catastrophe risk, providing results critical for understanding market responses after major loss events in general. A review of previous studies shows higher premiums suppress demand, but how higher premiums and a higher probability of risk affect demand is still largely unknown. According to previous studies, the supply of disaster coverage is curtailed unless the market is subsidised, however, there is still unsettled discussion on why demand decreases with time from the previous disaster even when the supply of coverage is subsidised by the government. Natural disaster risks pose a set of challenges for insurance market players because of substantial ambiguity associated with the probability of such events occurring and high spatial correlation of catastrophe losses. Private insurance market inefficiencies due to high premiums and spatially concentrated risks calls for government intervention in the provision of natural disaster insurance to avert situations of noninsurance and underinsurance. Political economy considerations make it more likely for government support to be called for if many people are uninsured than if few people are uninsured. However, emergency assistance for property owners after catastrophe events can encourage most property owners to not buy insurance against natural disaster and develop adverse selection behaviour, generating larger future risks for homeowners and governments. On the demand-side, this study has developed an intertemporal model to examine how demand for insurance changes post-catastrophe, and how to model it theoretically. In this intertemporal model, insurance can be sought in two sequential periods of time, and at the second period, it is known whether or not a loss event happened in period one. The results show that period one demand for insurance increases relative to the standard single period model when the second period is taken into consideration, period two insurance demand is higher post-loss, higher than both the period one demand and the period two demand without a period one loss. To investigate policyholders experience from the demand-side perspective, a total of 1600 survey questionnaires were administered, and responses from 254 participants received representing a 16 percent response rate. Survey data was gathered from four institutions in Canterbury and is probably not representative of the entire population. The results of the survey show that the change from full replacement value policy to nominated replacement value policy is a key determinant of the direction of change in the level of insurance coverage after the earthquakes. The earthquakes also highlighted the plight of those who were underinsured, prompting policyholders to update their insurance coverage to reflect the estimated cost of re-building their property. The survey has added further evidence to the existing literature, such as those who have had a recent experience with disaster loss report increased risk perception if a similar event happens in future with females reporting a higher risk perception than males. Of the demographic variables, only gender has a relationship with changes in household cover. On the supply-side, this study has built a risk-based pricing model suitable to generate a competitive premium rate for natural disaster insurance cover. Using illustrative data from the Christchurch Red-zone suburbs, the model generates competitive premium rates for catastrophe risk. When the proposed model incorporates the new RMS high-definition New Zealand Earthquake Model, for example, insurers can find the model useful to identify losses at a granular level so as to calculate the competitive premium. This study observes that the key to the success of the New Zealand dual insurance system despite the high prevalence of catastrophe losses are; firstly the EQC’s flat-rate pricing structure keeps private insurance premiums affordable and very high nationwide homeowner take-up rates of natural disaster insurance. Secondly, private insurers and the EQC have an elaborate reinsurance arrangement in place. By efficiently transferring risk to the reinsurer, the cost of writing primary insurance is considerably reduced ultimately expanding primary insurance capacity and supply of insurance coverage.
Recently developed performance-based earthquake engineering framework, such as one provided by PEER (Deierlein et al. 2003), assist in the quantification in terms of performance such as casualty, monetary losses and downtime. This opens up the opportunity to identify cost-effective retrofit/rehabilitation strategies by comparing upfront costs associated with retrofit with the repair costs that can be expected over time. This loss assessment can be strengthened by learning from recent earthquakes, such as the 2010 Canterbury and 2016 Kaikoura earthquakes. In order to investigate which types of retrofit/rehabilitation strategies may be most cost-effective, a case study building was chosen for this research. The Pacific Tower, a 22-storey EBF apartment located within the Christchurch central business district (CBD), was damaged and repaired during the 2010 Canterbury earthquake series. As such, by taking hazard levels accordingly (i.e. to correspond to the Christchurch CBD), modelling and analysing the structure, and considering the vulnerability and repair costs of its different components, it is possible to predict the expected losses of the aforementioned building. Using this information, cost-effective retrofit/rehabilitation strategy can be determined. This research found that more often than not, it would be beneficial to improve the performance of valuable non-structural components, such as partitions. Although it is true that improving such elements will increase the initial costs, over time, the benefits gained from reduced losses should be expected to overcome the initial costs. Aftershocks do increase the predicted losses of a building even in lower intensities due to the fact that non-structural components can get damaged at such low intensities. By comparing losses computed with and without consideration of aftershocks for a range of historical earthquakes, it was found that the ratio between losses due to main shock with aftershocks to the losses due to the main shock only tended to increase with increasing main shock magnitude. This may be due to the fact that larger magnitude earthquakes tend to generate larger magnitude aftershocks and as those aftershocks happen within a region around the main shock, they are more likely to cause intense shaking and additional damage. In addition to this observation, it was observed that the most significant component of loss of the case study building was the non-structural partition walls.
This research examines the connection between accessibility and resilience in post-earthquake Christchurch. This research will provide my community partner with a useful evidence base to help show that increased accessibility does create a more resilient environment. This research uses an in-depth literature review along with qualitative interview approach discussing current levels of accessibility and resilience in Christchurch and whether or not the interview participants believe that increased accessibility in Christchurch will make our city more resilient to future disasters. This research is important because it helps to bridge the connection between accessibility and resilience by showing how accessibility is an important aspect of making a city resilient. In Christchurch specifically, it is a great time to create an accessible and inclusive environment in the post-earthquake rebuild state the city is currently in. Showing that an accessible environment will lead to a more resilient city is important will potentially lead to accessible design being included in the rebuild of places and spaces in Christchurch. In theory, the results of this research show that having an accessible environment leads to universal inclusiveness which in turn, leads to a resilient city. An overarching theme that arose during this research is that accessibility is a means to inclusion and without inclusion a society cannot be resilient. In practice, the results show that for Christchurch to become more accessible and inclusive for people with disabilities, there needs to not only be an increase the accessibility of places and spaces but accessibility to the community as well. Having accessible infrastructure and communities will lead to increased social and urban resilience, especially for individuals with disabilities. This research is beneficial because it helps to bridge the connection between accessibility and resilience. Resilience is important because it help cities prepare for, respond to and recover from disasters and this research helps to show that accessibility is an important part of creating resilience. Some questions still remain unresolved mainly looking into normalising accessibility and deciphering how to prove that accessibility is an issue that effects everybody, not just individuals with disabilities.
This report provides an initial overview and gap analysis of the multi-hazards interactions that might affect fluvial and pluvial flooding (FPF) hazard in the Ōpāwaho Heathcote catchment. As per the terms of reference, this report focuses on a one-way analysis of the potential effects of multi-hazards on FPF hazard, as opposed to a more complex multi-way analysis of interactions between all hazards. We examined the relationship between FPF hazard and hazards associated with the phenomena of tsunamis; coastal erosion; coastal inundation; groundwater; earthquakes; and mass movements. Tsunamis: Modelling research indicates the worst-case tsunami scenarios potentially affecting the Ōpāwaho Heathcote catchment are far field. Under low probability, high impact tsunami scenarios waves could travel into Pegasus Bay and the Avon-Heathcote Estuary Ihutai, reaching the mouth and lower reaches of the Heathcote catchment and river, potentially inundating and eroding shorelines in sub-catchments 1 to 5, and temporarily blocking fluvial drainage more extensively. Any flooding infrastructure or management actions implemented in the area of tsunami inundation would ideally be resilient to tsunami-induced inundation and erosion. Model results currently available are a first estimate of potential tsunami inundation under contemporary sea and land level conditions. In terms of future large tsunami events, these models likely underestimate effects in riverside sub-catchments, as well as effects under future sea level, shoreline and other conditions. Also of significance when considering different FPF management structures, it is important to be mindful that certain types of flood structures can ‘trap’ inundating water coming from ocean directions, leading to longer flood durations and salinization issues. Coastal erosion: Model predictions indicate that sub-catchments 1 to 3 could potentially be affected by coastal erosion by the timescale of 2065, with sub-catchments 1-6 predicted to be potentially affected by coastal erosion by the time scale of 2115. In addition, the predicted open coast effects of this hazard should not be ignored since any significant changes in the New Brighton Spit open coast would affect erosion rates and exposure of the landward estuary margins, including the shorelines of the Ōpāwaho Heathcote catchment. Any FPF flooding infrastructure or management activities planned for the potentially affected sub-catchments needs to recognise the possibility of coastal erosion, and to have a planned response to the predicted potential shoreline translation. Coastal inundation: Model predictions indicate coastal inundation hazards could potentially affect sub-catchments 1 to 8 by 2065, with a greater area and depth of inundation possible for these same sub-catchments by 2115. Low-lying areas of the Ōpāwaho Heathcote catchment and river channel that discharge into the estuary are highly vulnerable to coastal inundation since elevated ocean and estuary water levels can block the drainage of inland systems, compounding FPF hazards. Coastal inundation can overwhelm stormwater and other drainage network components, and render river dredging options ineffective at best, flood enhancing at worst. A distinction can be made between coastal inundation and coastal erosion in terms of the potential impacts on affected land and assets, including flood infrastructure, and the implications for acceptance, adaptation, mitigation, and/or modification options. That is, responding to inundation could include structural and/or building elevation solutions, since unlike erosion, inundation does not necessarily mean the loss of land. Groundwater: Groundwater levels are of significant but variable concern when examining flooding hazards and management options in the Ōpāwaho Heathcote catchment due to variability in soils, topographies, elevations and proximities to riverine and estuarine surface waterbodies. Much of the Canterbury Plains part of the Ōpāwaho Heathcote catchment has a water table that is at a median depth of <1m from the surface (with actual depth below surface varying seasonally, inter-annually and during extreme meteorological events), though the water table depth rapidly shifts to >6m below the surface in the upper Plains part of the catchment (sub-catchments 13 to 15). Parts of Waltham/Linwood (sub-catchments 5 & 6) and Spreydon (sub-catchment 10) have extensive areas with a particularly high water table, as do sub-catchments 18, 19 and 20 south of the river. In all of the sub-catchments where groundwater depth below surface is shallow, it is necessary to be mindful of cascading effects on liquefaction hazard during earthquake events, including earthquake-induced drainage network and stormwater infrastructure damage. In turn, subsidence induced by liquefaction and other earthquake processes during the CES directly affected groundwater depth below surface across large parts of the central Ōpāwaho Heathcote catchment. The estuary margin of the catchment also faces increasing future challenges with sea level rise, which has the potential to elevate groundwater levels in these areas, compounding existing liquefaction and other earthquake associated multi-hazards. Any increases in subsurface runoff due to drainage system, development or climate changes are also of concern for the loess covered hill slopes due to the potential to enhance mass movement hazards. Earthquakes: Earthquake associated vertical ground displacement and liquefaction have historically affected, or are in future predicted to affect, all Ōpāwaho Heathcote sub-catchments. During the CES, these phenomena induced a significant cascades of changes in the city’s drainage systems, including: extensive vertical displacement and liquefaction induced damage to stormwater ‘greyware’, reducing functionality of the stormwater system; damage to the wastewater system which temporarily lowered groundwater levels and increased stormwater drainage via the wastewater network on the one hand, creating a pollution multi-hazard for FPF on the other hand; liquefaction and vertical displacement induced river channel changes affected drainage capacities; subsidence induced losses in soakage and infiltration capacities; changes occurred in topographic drainage conductivity; estuary subsidence (mainly around the Ōtākaro Avon rivermouth) increased both FPF and coastal inundation hazards; estuary bed uplift (severe around the Ōpāwaho Heathcote margins), reduced tidal prisms and increased bed friction, producing an overall reduction the waterbody’s capacity to efficiently flush catchment floodwaters to sea; and changes in estuarine and riverine ecosystems. All such possible effects need to be considered when evaluating present and future capacities of the Ōpāwaho Heathcote catchment FPF management systems. These phenomena are particularly of concern in the Ōpāwaho Heathcote catchment since stormwater networks must deal with constraints imposed by stream and river channels (past and present), estuarine shorelines and complex hill topography. Mass movements: Mass movements are primarily a risk in the Port Hills areas of the Ōpāwaho Heathcote catchment (sub-catchments 1, 2, 7, 9, 11, 16, 21), though there are one or two small but susceptible areas on the banks of the Ōpāwaho Heathcote River. Mass movements in the form of rockfalls and debris flows occurred on the Port Hills during the CES, resulting in building damage, fatalities and evacuations. Evidence has also been found of earthquake-triggered tunnel gully collapsesin all Port Hill Valleys. Follow-on effects of these mass movements are likely to occur in major future FPF and other hazard events. Of note, elevated groundwater levels, coastal inundation, earthquakes (including liquefaction and other effects), and mass movement exhibit the most extensive levels of multi-hazard interaction with FPF hazard. Further, all of the analysed multi-hazard interactions except earthquakes were found to consistently produce increases in the FPF hazard. The implications of these analyses are that multihazard interactions generally enhance the FPF hazard in the Ōpāwaho Heathcote catchment. Hence, management plans which exclude adjustments for multi-hazard interactions are likely to underestimate the FPF hazard in numerous different ways. In conclusion, although only a one-way analysis of the potential effects of selected multi-hazards on FPF hazard, this review highlights that the Ōpāwaho Heathcote catchment is an inherently multi- hazard prone environment. The implications of the interactions and process linkages revealed in this report are that several significant multi-hazard influences and process interactions must be taken into account in order to design a resilient FPF hazard management strategy.
This thesis explores the discussions and perspectives of Christchurch secondary school students in regards to their particular experiences and engagement with Anzac. In this thesis I seek to rigorously and robustly examine these viewpoints through semi-structured focus group interviews and thematic analysis. I seek to situate these youth perspectives within wider debates around Anzac mythology and Anzac resurgence in New Zealand which often do not represent the youth outlook. These debates are seen, on the one hand, to present a resurgence of youth engagement with Anzac and, on the other hand, to present the idea that Anzac has become an exclusionary myth which distorts Australians’ and New Zealanders’ understanding of wider Anzac experiences and educates them in a narrow, militarised way. Youth engagement with Anzac was not something which could be solely situated under either of these debates and, instead, it was seen to be multifaceted and made up of unique ideas and elements. The youth in my study acknowledged that their Anzac education did have mythic elements which made it hard for them to engage with Anzac despite the fact that they were actually interested in learning and understanding it. These mythic elements were the idea that Anzac is taught as a ‘simple narrative’ which does not allow room for critique, that it emphasises a link between Anzac and national identity, that it disregards many alternative Anzac experiences and that it presents a particular New Zealand identity to internalise. These students responded to their mythic Anzac education in a very active way, and instead of accepting it as truth, they were able to have constructive and critical conversations about their education and push against parts of it which they found to be too narrow or skewed in particular directions based on gender, ethnicity and national identity. The students were not passive vessels which internalised their Anzac education as fact; instead, they were able to acknowledge the mythic elements of their education and its negative influence in the classroom. This thesis went further in exploring what factors were seen to enhance this active process of critique and provide students with alternative knowledge and perspectives about Anzac. These factors were ancestral ties to Anzac, research into personal Anzac stories and experiences, unassessed educational units, centenary discussions, an understanding of hardship through the earthquakes and alternative perspectives of the Anzac experience through access to the internet. These factors presented a broader understanding of Anzac perspectives and experiences and students believed that if the mythic elements of their education could be revised and these elements encouraged then their engagement with Anzac would continue long into the future.