Search

found 713 results

Research papers, University of Canterbury Library

Post-earthquake cordons have been used after seismic events around the world. However, there is limited understanding of cordons and how contextual information of place such as geography, socio-cultural characteristics, economy, institutional and governance structure etc. affect decisions, operational procedures as well as spatial and temporal attributes of cordon establishment. This research aims to fill that gap through a qualitative comparative case study of two cities: Christchurch, New Zealand (Mw 6.2 earthquake, February 2011) and L’Aquila, Italy (Mw 6.3 earthquake, 2009). Both cities suffered comprehensive damage to its city centre and had cordons established for extended period. Data collection was done through purposive and snowball sampling methods whereby 23 key informants were interviewed in total. The interviewee varied in their roles and responsibilities i.e. council members, emergency managers, politicians, business/insurance representatives etc. We found that cordons were established to ensure safety of people and to maintain security of place in both the sites. In both cities, the extended cordon was met with resistance and protests. The extent and duration of establishment of cordon was affected by recovery approach taken in the two cities i.e. in Christchurch demolition was widely done to support recovery allowing for faster removal of cordons where as in L’Aquila, due to its historical importance, the approach to recovery was based on saving all the buildings which extended the duration of cordon. Thus, cordons are affected by site specific needs. It should be removed as soon as practicable which could be made easier with preplanning of cordons.

Research papers, University of Canterbury Library

Light timber framed (LTF) structures provide a cost-effective and structurally efficient solution for low-rise residential buildings. This paper studies seismic performance of single-storey LTF buildings sheathed by gypsum-plasterboards (GPBs) that are a typical lining product in New Zealand houses. Compared with wood-based structural panels, GPBs tend to be more susceptible to damage when they are used in bracing walls to resist earthquake loads. This study aims to provide insights on how the bracing wall irregularity allowed by the current New Zealand standard NZS 3604 and the in-plane rigidity of ceiling diaphragms affect the overall seismic performance of these GPB-braced LTF buildings. Nonlinear time-history analyses were conducted on a series of single-storey baseline buildings with different levels of bracing wall irregularities and ceiling diaphragm rigidity. The results showed significant torsional effect caused by the eccentric bracing wall layout with semi-rigid/rigid ceiling diaphragms. On average, bracing wall drift demand caused by the extreme bracing wall irregularities was three times of that in the regular bracing wall layout under the rigid diaphragm assumption. This finding agreed well with the house survey after the 2011 Canterbury Earthquake in which significantly more damage was observed in the houses with irregular bracing wall layouts and relatively rigid diaphragms. Therefore, it is recommended to limit the level of bracing wall eccentricity and ensure the sufficiently rigid diaphragms to avoid excessive damage in these LTF buildings in future events.

Research papers, University of Canterbury Library

Many buildings with relatively low damage from the 2010-2011 Canterbury were deemed uneconomic to repair and were replaced [1,2]. Factors that affected commercial building owners’ decisions to replace rather than repair, included capital availability, uncertainty with regards to regional recovery, local market conditions and ability to generate cash flow, and repair delays due to limited property access (cordon). This poster provides a framework for modeling decision-making in a case where repair is feasible but replacement might offer greater economic value – a situation not currently modeled in engineering risk analysis.

Research papers, University of Canterbury Library

Home address-based school zoning regulations are widely used in many countries as one means of selecting pupils and estimating future enrolment. However, there is little research regarding an alternative system of zoning for parents’ place of employment. Previous research has failed to analyse potential impacts from workplace-based zoning, including negating the effects of chain migration theory and settlement patterns to facilitate cultural integration, promoting the physical and mental wellbeing of families by enabling their close proximity during the day, as well as positive results concerning a volatile real estate market. As the modern family more often consists of one or both parents working full-time, the requirement of children to attend school near their home may not be as reasonably convenient as near their parents’ workplace. A case study was performed on one primary school in Christchurch, consisting of surveys and interviews of school stakeholders, including parents and staff, along with GIS mapping of school locations. This found deeper motivations for choosing a primary school, including a preference for cultural integration and the desire to school children under 14 years near their parents’ place of employment in case of illness or earthquake. These data suggest that the advantages of workplace-based zoning may be worth considering, and this thesis creates a framework for the Ministry of Education to implement this initiative in a pilot programme for primary schools in Christchurch.

Research papers, University of Canterbury Library

1. INTRODUCTION. Earthquakes and geohazards, such as liquefaction, landslides and rock falls, constitute a major risk for New Zealand communities and can have devastating impacts as the Canterbury 2010/2011 experience shows. Development patterns expose communities to an array of natural hazards, including tsunamis, floods, droughts, and sea level rise amongst others. Fostering community resilience is therefore vitally important. As the rhetoric of resilience is mainstreamed into the statutory framework, a major challenge emerges: how can New Zealand operationalize this complex and sometimes contested concept and build ‘community capitals’? This research seeks to provide insights to this question by critically evaluating how community capitals are conceptualized and how they can contribute to community resilience in the context of the Waimakariri District earthquake recovery and regeneration process.

Research papers, University of Canterbury Library

Nowadays the telecommunication systems’ performance has a substantial impact on our lifestyle. Their operationality becomes even more substantial in a post-disaster scenario when these services are used in civil protection and emergency plans, as well as for the restoration of all the other critical infrastructure. Despite the relevance of loss of functionality of telecommunication networks on seismic resilience, studies on their performance assessment are few in the literature. The telecommunication system is a distributed network made up of several components (i.e. ducts, utility holes, cabinets, major and local exchanges). Given that these networks cover a large geographical area, they can be easily subjected to the effects of a seismic event, either the ground shaking itself, or co-seismic events such as liquefaction and landslides. In this paper, an analysis of the data collected after the 2010-2011 Canterbury Earthquake Sequence (CES) and the 2016 Kaikoura Earthquake in New Zealand is conducted. Analysing these data, information gaps are critically identified regarding physical and functional failures of the telecommunication components, the timeline of repair/reconstruction activities and service recovery, geotechnical tests and land planning maps. Indeed, if these missing data were presented, they could aid the assessment of the seismic resilience. Thus, practical improvements in the post-disaster collection from both a network and organisational viewpoints are proposed through consultation of national and international researchers and highly experienced asset managers from Chorus. Finally, an outline of future studies which could guide towards a more resilient seismic performance of the telecommunication network is presented.

Research papers, University of Canterbury Library

Seismic isolation is an effective technology for significantly reducing damage to buildings and building contents. However, its application to light-frame wood buildings has so far been unable to overcome cost and technical barriers such as susceptibility of light-weight buildings to movement under high-wind loading. The 1994 Northridge Earthquake (6.7 MW) in the United States, 1995 Kobe Earthquake (6.9 MW) in Japan and 2011 Christchurch Earthquake (6.7 Mw) all highlighted significant loss to light-frame wood buildings with over half of earthquake recovery costs allocated to their repair and reconstruction. This poster presents a value case to highlight the benefits of seismically isolated residential buildings compared to the standard fixed-base dwellings for the Wellington region. Loss data generated by insurance claim information from the 2011 Christchurch Earthquake has been used to determine vulnerability functions for the current light-frame wood building stock. By using a simplified single degree of freedom (SDOF) building model, methods for determining vulnerability functions for seismic isolated buildings are developed. Vulnerability functions are then applied directly in a loss assessment to determine the Expected Annual Loss. Vulnerability was shown to dramatically reduce for isolated buildings compared to an equivalent fixed-base building resulting in significant monetary savings, justifying the value case. A state-of-the-art timber modelling software, Timber3D, is then used to model a typical residential building with and without seismic isolation to assess the performance of a proposed seismic isolation system which addresses the technical and cost issues.

Research papers, University of Canterbury Library

In the wake of the Canterbury earthquakes, one of the biggest threats to our heritage buildings is the risk of earthquakes and the associated drive to strengthen or demolish buildings. Can Small Town NZ balance the requirements of the EQPB legislation and economic realities of their places? The government’s priority is on safety of building occupants and citizens in the streets. However, maintaining and strengthening privately-owned heritage buildings is often cost prohibitive. Hence, heritage regulation has frequently been perceived as interfering with private property rights, especially when heritage buildings occupy a special place in the community becoming an important place for people (i.e. public benefits are larger than private). We investigate several case studies where building owners have been given green light to demolish heritage listed buildings to make way for modern developments. In two of the case studies developers provided evidence of unaffordable strengthening costs. A new trend that has emerged is a voluntary offer of contributing to an incentive fund to assist with heritage preservation of other buildings. This is a unique example where private owners offer incentives (via council controlled organisations) instead of it being purely the domain of the central or local governments.

Research papers, University of Canterbury Library

This research investigates the validation of simulated ground motions on complex structural systems. In this study, the seismic responses of two buildings are compared when they are subjected to as-recorded ground motions and simulated ones. The buildings have been designed based on New Zealand codes and physically constructed in Christchurch, New Zealand. The recorded ground motions are selected from 40 stations database of the historical 22 Feb. 2011 Christchurch earthquake. The Graves and Pitarka (2015) methodology is used to generate the simulated ground motions. The geometric mean of maximum inter-story drift and peak floor acceleration are selected as the main seismic responses. Also, the variation of these parameters due to record to record variability are investigated. Moreover, statistical hypothesis testing is used to investigate the similarity of results between observed and simulated ground motions. The results indicate a general agreement between the peak floor acceleration calculated by simulated and recorded ground motions for two buildings. While according to the hypothesis tests result, the difference in drift can be significant for the building with a shorter period. The results will help engineers and researchers to use or revise the procedure by using simulated ground motions for obtaining seismic responses.

Research papers, University of Canterbury Library

Background and methodology The Mw 7.8, 14th November 2016 earthquake centred (item b, figure 1) in the Hurunui District of the South Island, New Zealand, damaged critical infrastructure across North Canterbury and Marlborough. We investigate the impacts to infrastructure and adaptations to the resulting service disruption in four small rural towns (figure 1): Culverden (a), Waiau (c), Ward (d) and Seddon (e). This is accomplished though literary research, interviews and geospatial analysis. Illustrating our methods, we have displayed here a Hurunui District hazard map (figure 2b) and select infrastructure inventories (figures 2a, 3).

Research papers, University of Canterbury Library

The last few years have seen the emergence of a range of Digital Humanities projects concerned with archiving material related to traumatic events and disasters. The 9/11 Digital Archive, The Hurricane Memory Bank and the CEISMIC Canterbury Earthquakes Digital Archive are a few such projects committed to collecting, curating and making available disaster-related images, stories and media for the purposes of commemoration, teaching and research. In this paper Paul Millar 1. examines the value of such projects in preserving post-disaster memories, 2. explores some differences between passive and active digital memory projects, and 3. asks whether even the most determinedly open and inclusive digital memory project can preserve its values when issues of race, class, gender, politics and economics impact upon its activities.

Research papers, University of Canterbury Library

A building boom in the 1980s allowed pre-stressed hollow-core floor construction to be widely adopted in New Zealand, even though the behaviour of these prefabricated elements within buildings was still uncertain. Inspections following the Canterbury and Kaikōura earthquakes has provided evidence of web-splitting, transverse cracking and longitudinal splitting on hollow-core units, confirming the susceptibility of these floors to undesirable failure modes. Hollow-core slabs are mainly designed to resist bending and shear. However, there are many applications in which they are also subjected to torsion. In New Zealand, hollow-core units contain no transverse reinforcement in the soffit concrete below the cells and no web reinforcement. Consequently, their dependable performance in torsion is limited to actions that they can resist before torsional cracking occurs. In previous work by the present authors, a three-dimensional FE modelling approach to study the shear flexural behaviour of precast pre-stressed hollow core units was developed and validated by full-scale experiments. This paper shows how the FE analyses have been extended to investigate the response of HC units subjected to torsional actions. Constitutive models, based on nonlinear fracture mechanics, have been used to numerically predict the torsional capacity of HC units and have been compared with experimental results. The results indicate that the numerical approach is promising and should be developed further as part of future research.

Research papers, University of Canterbury Library

This paper presents on-going challenges in the present paradigm shift of earthquakeinduced ground motion prediction from empirical to physics-based simulation methods. The 2010-2011 Canterbury and 2016 Kaikoura earthquakes are used to illustrate the predictive potential of the different methods. On-going efforts on simulation validation and theoretical developments are then presented, as well as the demands associated with the need for explicit consideration of modelling uncertainties. Finally, discussion is also given to the tools and databases needed for the efficient utilization of simulated ground motions both in specific engineering projects as well as for near-real-time impact assessment.

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading during the 2011 Christchurch earthquake in New Zealand was severe and extensive, and data regarding the displacements associated with the lateral spreading provides an excellent opportunity to better understand the factors that influence these movements. Horizontal displacements measured from optical satellite imagery and subsurface data from the New Zealand Geotechnical Database (NZGD) were used to investigate four distinct lateral spread areas along the Avon River in Christchurch. These areas experienced displacements between 0.5 and 2 m, with the inland extent of displacement ranging from 100 m to over 600 m. Existing empirical and semi-empirical displacement models tend to under estimate displacements at some sites and over estimate at others. The integrated datasets indicate that the areas with more severe and spatially extensive displacements are associated with thicker and more laterally continuous deposits of liquefiable soil. In some areas, the inland extent of displacements is constrained by geologic boundaries and geomorphic features, as expressed by distinct topographic breaks. In other areas the extent of displacement is influenced by the continuity of liquefiable strata or by the presence of layers that may act as vertical seepage barriers. These observations demonstrate the need to integrate geologic/geomorphic analyses with geotechnical analyses when assessing the potential for lateral spreading movements.

Research papers, University of Canterbury Library

The question of whether forced relocation is beneficial or detrimental to the displaced households is a controversial and important policy question. After the 2011 earthquake in Christchurch, the government designated some of the worst affected areas as Residential Red Zones. Around 20,000 people were forced to move out of these Residential Red Zone areas, and were compensated for that. The objective of this paper is twofold. First, we aim to estimate the impact of relocation on the displaced households in terms of their income, employment, and their mental and physical health. Second, we evaluate whether the impact of relocation varies by the timing of to move, the destination (remaining within the Canterbury region or moving out of it) and demographic factors (gender, age, ethnicity). StatisticsNZ’s Integrated Data Infrastructure (IDI) from 2008 to 2017, which includes data on all households in Canterbury, and a difference-in-difference (DID) technique is used to answer these questions. We find that relocation has a negative impact on the income of the displaced household group. This adverse impact is more severe for later movers. Compared to the control group (that was not relocated), the income of relocated households was reduced by 3% for people who moved immediately after the earthquake in 2011, and 14% for people who moved much later in 2015.

Research papers, University of Canterbury Library

Timber-based hybrid structures provide a prospective solution for utilizing environmentally friendly timber material in the construction of mid-rise or high-rise structures. This study mainly focuses on structural damage evaluation for a type of timber-steel hybrid structures, which incorporate prefabricated light wood frame shear walls into steel moment-resisting frames (SMRFs). The structural damage of such a hybrid structure was evaluated through shake table tests on a four-story large-scale timber-steel hybrid structure. Four ground motion records (i.e., Wenchuan earthquake, Canterbury earthquake, El-Centro earthquake, and Kobe earthquake) were chosen for the tests, with the consideration of three different probability levels (i.e., minor, moderate and major earthquakes) for each record. During the shake table tests, the hybrid structure performed quite well with visual damage only to wood shear walls. No visual damage in SMRF and the frame-to-wall connections was observed. The correlation of visual damage to seismic intensity, modal-based damage index and inter-story drift was discussed. The reported work provided a basis of knowledge for performance-based seismic design (PBSD) for such timber-based hybrid structures.

Research papers, University of Canterbury Library

This study explores the nature of smaller businesses’ resilience following two major earthquakes that severely disrupted their place of doing business. Data from the owners of ten smaller businesses are qualitative and longitudinal, spanning the period 2011 through 2018, providing first-hand narrative accounts of their responses in the earthquakes’ aftermath. All ten owners showed some individual resilience; six businesses survived through to 2018, of which three have recovered strongly. All three owned their premises; operated business-tobusiness models; and were able to adapt and continue to follow path-extension strategies. All the other businesses had direct business-to-customer models operating from leased premises, typically in major retail malls. Four eventually recognised path-exhaustion at different times and so did not survive through to 2018. We conclude however that post-disaster recovery is best explained in terms of business model resilience. Even the most resilient of individual owners will struggle to survive if their business model is either not resilient or cannot be made so. Individual resilience is necessary but not sufficient.

Research papers, University of Canterbury Library

New Zealand has a long tradition of using light timber frame for construction of its domestic dwellings. After the most recent earthquakes (e.g. Canterbury earthquakes sequence), wooden residential houses showed satisfactory life safety performance. However, poor performance was reported in terms of their seismic resilience. Although numerous innovative methods to mitigate damage have been introduced to the New Zealand community in order to improve wooden house performance, these retrofit options have not been readily taken up. The low number of retrofitted wooden-framed houses leads to questions about whether homeowners are aware of the necessity of seismic retrofitting their houses to achieve a satisfactory seismic performance. This study aims to explore different retrofit technologies that can be applied to wooden-framed houses in Wellington, taking into account the need of homeowners to understand the risk, likelihood and extent of damage expected after an event. A survey will be conducted in Wellington about perceptions of homeowners towards the expected performance of their wooden-framed houses. The survey questions were designed to gain an understanding of homeowners' levels of safety and awareness of possible damage after a seismic event. Afterwards, a structural review of a sample of the houses will be undertaken to identify common features and detail potential seismic concerns. The findings will break down barriers to making improvements in the performance of wooden-framed houses and lead to enhancements in the confidence of homeowners in the event of future seismic activity. This will result in increased understanding and contribute towards an accessible knowledge base, which will possibly increase significantly the use of these technologies and avoid unnecessary economic and social costs after a seismic event.

Research papers, University of Canterbury Library

The ultimate goal of this study is to develop a model representing the in-plane behaviour of plasterboard ceiling diaphragms, as part of the efforts towards performance-based seismic engineering of low-rise light timber-framed (LTF) residential buildings in New Zealand (NZ). LTF residential buildings in NZ are constructed according to a prescriptive standard – NZS 3604 Timberframed buildings [1]. With regards to seismic resisting systems, LTF buildings constructed to NZS3604 often have irregular bracing arrangements within a floor plane. A damage survey of LTF buildings after the Canterbury earthquake revealed that structural irregularity (irregular bracing arrangement within a plane) significantly exacerbated the earthquake damage to LTF buildings. When a building has irregular bracing arrangements, the building will have not only translational deflections but also a torsional response in earthquakes. How effectively the induced torsion can be resolved depends on the stiffness of the floors/roof diaphragms. Ceiling and floor diaphragms in LTF buildings in NZ have different construction details from the rest of the world and there appears to be no information available on timber diaphragms typical of NZ practice. This paper presents experimental studies undertaken on plasterboard ceiling diaphragms as typical of NZ residential practice. Based on the test results, a mathematical model simulating the in-plane stiffness of plasterboard ceiling diaphragms was developed, and the developed model has a similar format to that of plasterboard bracing wall elements presented in an accompany paper by Liu [2]. With these two models, three-dimensional non-linear push-over studies of LTF buildings can be undertaken to calculate seismic performance of irregular LTF buildings.

Research papers, University of Canterbury Library

There has been little discussion of what archival accounting evidence can contribute to an understanding of a society’s response to a natural disaster. This article focuses on two severe earthquakes which struck New Zealand in 1929 and 1931 and makes two main contributions to accounting history. First, by discussing evidence from archival sources, it contributes to the literature on accounting in a disaster. This provides a basis for future theory building and for future comparative research related to the response to more recent natural disasters such as the 2010–11 Canterbury earthquakes. Secondly, it questions the conclusions of recently published research concerning the role of central and local government in this and recent earthquakes.

Research papers, University of Canterbury Library

Validating dynamic responses of engineered systems subjected to simulated ground motions is essential in scrutinising the applicability of simulated ground motions for engineering demand analyses. This paper compares the responses of two 3D building models subjected to recorded and simulated ground motions scaled to the NZS1170.5 design response spectrum, in order to evaluate the applicability of simulated ground motions for use in conventional engineering practice in New Zealand. The buildings were designed according to the NZS1170.5 and physically constructed in Christchurch prior to the 2010-2011 Canterbury earthquakes. 40 recorded ground motions from the 22 February 2011 Christchurch earthquake, along with the simulated ground motions for this event from Razafindrakoto et al. (2018) are considered. The seismic responses of the structures are principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, the results indicate a general agreement in seismic demands obtained using the recorded and simulated ensembles of ground motions and provide further evidence that simulated ground motions using state-of-the-art methods can be used in code-based structural performance assessments inplace of, or in combination with, ensembles of recorded ground motions.

Research papers, University of Canterbury Library

Nel presente articolo si illustra una procedura per il processamento automatizzato di prove CPT, il calcolo di vari indici di liquefazione e la rappresentazione dei dati su mappa. La procedura è applicata al caso studio del terremoto di Christchurch, Nuova Zelanda, del 22 febbraio 2011 (magnitudo momento, Mw = 6.2). Dall’analisi spaziale dei risultati emerge una buona correlazione tra le mappe ottenute per l’indicatore degli effetti al suolo e i danni osservati (su terreni e strutture). Tuttavia, per confermare la validità di tale procedura, sarà necessario esaminare ulteriori casi studio nel mondo.

Research papers, University of Canterbury Library

One of the failure modes that got the attention of researchers in the 2011 February New Zealand earthquake was the collapse of a key supporting structural wall of Grand Chancellor Hotel in Christchurch which failed in a brittle manner. However, until now this failure mode has been still a bit of a mystery for the researchers in the field of structural engineering. Moreover, there is no method to identify, assess and design the walls prone to such failure mode. Following the recent break through regarding the mechanism of this failure mode based on experimental observations (out-of-plane shear failure), a numerical model that can capture this failure was developed using the FE software DIANA. A comprehensive numerical parametric study was conducted to identify the key parameters contributing to the development of out-of-plane shear failure in reinforced concrete (RC) walls. Based on the earthquake observations, experimental and numerical studies conducted by the authors of this paper, an analytical method to identify walls prone to out-of-plane shear failure that can be used in practice by engineers is proposed. The method is developed based on the key parameters affecting the seismic performance of RC walls prone to out-of-plane shear failure and can be used for both design and assessment purposes

Research papers, University of Canterbury Library

This article presents a quantitative case study on the site amplification effect observed at Heathcote Valley, New Zealand, during the 2010-2011 Canterbury earthquake sequence for 10 events that produced notable ground acceleration amplitudes up to 1.4g and 2.2g in the horizontal and vertical directions, respectively. We performed finite element analyses of the dynamic response of the valley, accounting for the realistic basin geometry and the soil non-linear response. The site-specific simulations performed significantly better than both empirical ground motion models and physics based regional-scale ground motion simulations (which empirically accounts for the site effects), reducing the spectral acceleration prediction bias by a factor of two in short vibration periods. However, our validation exercise demonstrated that it was necessary to quantify the level of uncertainty in the estimated bedrock motion using multiple recorded events, to understand how much the simplistic model can over- or under-estimate the ground motion intensities. Inferences from the analyses suggest that the Rayleigh waves generated near the basin edge contributed significantly to the observed high frequency (f>3Hz) amplification, in addition to the amplification caused by the strong soil-rock impedance contrast at the site fundamental frequency. Models with and without considering soil non-linear response illustrate, as expected, that the linear elastic assumption severely overestimates ground motions in high frequencies for strong earthquakes, especially when the contribution of basin edge-generated Rayleigh waves becomes significant. Our analyses also demonstrate that the effect of pressure-dependent soil velocities on the high frequency ground motions is as significant as the amplification caused by the basin edge-generated Rayleigh waves.

Research papers, University of Canterbury Library

Observations of out-of-plane (OOP) instability in the 2010 Chile earthquake and in the 2011 Christchurch earthquake resulted in concerns about the current design provisions of structural walls. This mode of failure was previously observed in the experimental response of some wall specimens subjected to in-plane loading. Therefore, the postulations proposed for prediction of the limit states corresponding to OOP instability of rectangular walls are generally based on stability analysis under in-plane loading only. These approaches address stability of a cracked wall section when subjected to compression, thereby considering the level of residual strain developed in the reinforcement as the parameter that prevents timely crack closure of the wall section and induces stability failure. The New Zealand code requirements addressing the OOP instability of structural walls are based on the assumptions used in the literature and the analytical methods proposed for mathematical determination of the critical strain values. In this study, a parametric study is conducted using a numerical model capable of simulating OOP instability of rectangular walls to evaluate sensitivity of the OOP response of rectangular walls to variation of different parameters identified to be governing this failure mechanism. The effects of wall slenderness (unsupported height-to-thickness) ratio, longitudinal reinforcement ratio of the boundary regions and length on the OOP response of walls are evaluated. A clear trend was observed regarding the influence of these parameters on the initiation of OOP displacement, based on which simple equations are proposed for prediction of OOP instability in rectangular walls.

Research papers, University of Canterbury Library

Earthquakes cause significant damage to buildings due to strong vibration of the ground. Levitating houses using magnets and electromagnets would provide a complete isolation of ground motion for protecting buildings from seismic damage. Two types of initial configuration for the electromagnet system were proposed with the same air gap (10mm) between the electromagnet and reluctance plate. Both active and passive controller are modelled to investigate the feasibility of using a vibration control system for stabilizing the magnetic system within the designed air gap (10mm) in the vertical direction. A nonlinear model for the magnetic system is derived to implement numerical simulation of structural response under the earthquake record in Christchurch Botanic Gardens on 21 February 2011. The performance of the uncontrolled and the controlled systems are compared and the optimal combination of control gains are determined for the PID active controller. Simulation results show both active PID controller with constant and nonlinear attracting force are able to provide an effective displacement control within the required air gap (+/-5mm). The maximum control force demand for the PID controller in the presence of nonlinear attracting force is 4.1kN, while the attracting force in equilibrium position is 10kN provided by the electromagnet. These results show the feasibility of levitating a house using the current electromagnet and PID controller. Finally, initial results of passive control using two permanent magnets or dampers show the structural responses can be effectively reduced and centralized to +/-1mm using a nonlinear centring barrier function.

Research papers, University of Canterbury Library

The performance of buildings in recent New Zealand earthquakes (Canterbury, Seddon and Kaikōura), delivered stark lessons on seismic resilience. Most of our buildings, with a few notable exceptions, performed as our Codes intended them to, that is, to safeguard people from injury. Many buildings only suffered minor structural damage but were unable to be reused and occupied for significant periods of time due to the damage and failure of non-structural elements. This resulted in substantial economic losses and major disruptions to our businesses and communities. Research has attributed the damage to poor overall design coordination, inadequate or lack of seismic restraints for non structural elements and insufficient clearances between building components to cater for the interaction of non structural elements under seismic actions. Investigations have found a clear connection between the poor performance of non-structural elements and the issues causing pain in the industry (procurement methods, risk aversion, the lack of clear understanding of design and inspection responsibility and the need for better alignment of the design codes to enable a consistent integrated design approach). The challenge to improve the seismic performance of non structural elements in New Zealand is a complex one that cuts across a diverse construction industry. Adopting the key steps as recommended in this paper is expected to have significant co-benefits to the New Zealand construction industry, with improvements in productivity alongside reductions in costs and waste, as the rework which plagues the industry decreases.

Research papers, University of Canterbury Library

Following the 2010/2011 Canterbury earthquakes, approximately 60% of multi-story buildings with reinforced concrete walls required demolition. Both practitioners and researchers have increasingly realized that low-damage structural systems could be an alternative to improve the seismic behaviour of concrete buildings and to reduce the economic and social impact of structural damage in future earthquakes. To verify the seismic response of a low-damage concrete wall building representing state-of-art design practice, a shake table test on a two-story concrete building was recently conducted as part of an ILEE-QuakeCoRE collaborative research program. The building utilized flexible wall-to-floor connections in the long span direction and isolating wall-to-floor devices in the short span direction to provide a comparison of their respective behaviour. Additionally, the wall-to-floor interaction such as effects of wall uplift on the link slab, and force transfer mechanism from floor to the wall will be discussed in this paper.

Research papers, University of Canterbury Library

Motivation This poster aims to present fragility functions for pipelines buried in liquefaction-prone soils. Existing fragility models used to quantify losses can be based on old data or use complex metrics. Addressing these issues, the proposed functions are based on the Christchurch network and soil and utilizes the Canterbury earthquake sequence (CES) data, partially represented in Figure 1. Figure 1 (a) presents the pipe failure dataset, which describes the date, location and pipe on which failures occurred. Figure 1 (b) shows the simulated ground motion intensity median of the 22nd February 2011 earthquake. To develop the model, the network and soil characteristics have also been utilized.

Research papers, University of Canterbury Library

After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner’s insurance. Most people chose the second option. Using data from LINZ combined with data from StatNZ, this project empirically investigates what led people to choose this second option, and what were the implications of these choices for the owners’ wealth and income.