Christchurch earthquake events have raised questions on the adequacy of performance-based provisions in the current national building code. At present, in the building code the performance objectives are expressed in terms of safety and health criteria that could affect building occupants. In general, under the high intensity Christchurch events, buildings performed well in terms of life-safety (with a few exceptions) and it proved that the design practices adopted for those buildings could meet the performance objectives set by the building code. However, the damage incurred in those buildings resulted in unacceptably high economic loss. It is timely and necessary to revisit the objectives towards building performance in the building code and to include provisions for reducing economic implications in addition to the current requirements. Based on the observed performance of some buildings, a few specific issues in the current design practices that could have contributed to extensive damage have been identified and recommended for further research leading towards improved performance of structures. In particular, efforts towards innovative design/construction solutions with low-damage concepts are encouraged. New Zealand has been one of the leading countries in developing many innovative technologies. However, such technically advanced research findings usually face challenges towards implementation. Some of the reasons include: (i) lack of policy requirements; (iii) absence of demonstrated performance of new innovations to convince stakeholders; and (iv) non-existence of design guidelines. Such barriers significantly affect implementation of low damage construction and possible strategies to overcome those issues are discussed in this paper.
Background: There has been a psychopathology focus in disaster research examining adolescent mental health and wellbeing, but recently studies have begun to also examine wellbeing-related constructs. Although an increased risk of posttraumatic stress disorder has been established in disaster-exposed adolescents, comparatively little is known about how disasters impact adolescent wellbeing, nor how factors within the post-disaster environment interact to influence holistic adolescent mental health and wellbeing. Objective: The objective of this study was to describe the holistic mental health and wellbeing of adolescents living in an earthquake-struck city by considering a range of mental health and wellbeing indicators, as well as risk and protective factors hypothesised to influence mental health and wellbeing. The dual-factor model of mental health was used as a framework to guide this study. Method: A survey of Christchurch secondary school students was used to gather data about their subjective wellbeing, risk of low wellbeing, psychological distress, quality of life, exposure to Adverse Childhood Experiences, social support from friends and family, school connectedness, and expectations about future quality of life. Results: A slim majority of students reported good subjective wellbeing (52.3%) and high current quality of life (56.4%), whereas a larger majority reported low risk of psychological distress (79%). An equal proportion of students reported high and low risk of low wellbeing. There were no statistically significant differences in any of the variables measured between adolescents who did and did not live through the Christchurch earthquakes. Regression analyses identified that school connectedness, social support from friends and family, and future expectations of quality of life significantly predicted subjective wellbeing, risk of low wellbeing, risk of psychological distress, and current quality of life. The number of Adverse Childhood Experiences significantly predicted only risk of psychological distress when the effects of other variables were controlled for. Conclusion: The findings of this study indicate that there is a low mean level of wellbeing and quality of life in this sample of adolescents living in a severely earthquake- affected community. School connectedness, social support from family and friends, and expectations about future quality of life were shown to significantly predict variance in subjective wellbeing, quality of life, and psychological distress. This suggests that there are social and environmental factors that can be targeted to improve holistic mental health and wellbeing in disaster-affected adolescents who have experienced high levels of trauma. Conclusions in this study are limited by the representativeness of the sample, the cross- sectional nature of the study, and potential sampling bias.
Background: There has been a psychopathology focus in disaster research examining adolescent mental health and wellbeing, but recently studies have begun to also examine wellbeing-related constructs. Although an increased risk of posttraumatic stress disorder has been established in disaster-exposed adolescents, comparatively little is known about how disasters impact adolescent wellbeing, nor how factors within the post-disaster environment interact to influence holistic adolescent mental health and wellbeing. Objective: The objective of this study was to describe the holistic mental health and wellbeing of adolescents living in an earthquake-struck city by considering a range of mental health and wellbeing indicators, as well as risk and protective factors hypothesised to influence mental health and wellbeing. The dual-factor model of mental health was used as a framework to guide this study. Method: A survey of Christchurch secondary school students was used to gather data about their subjective wellbeing, risk of low wellbeing, psychological distress, quality of life, exposure to Adverse Childhood Experiences, social support from friends and family, school connectedness, and expectations about future quality of life. Results: A slim majority of students reported good subjective wellbeing (52.3%) and high current quality of life (56.4%), whereas a larger majority reported low risk of psychological distress (79%). An equal proportion of students reported high and low risk of low wellbeing. There were no statistically significant differences in any of the variables measured between adolescents who did and did not live through the Christchurch earthquakes. Regression analyses identified that school connectedness, social support from friends and family, and future expectations of quality of life significantly predicted subjective wellbeing, risk of low wellbeing, risk of psychological distress, and current quality of life. The number of Adverse Childhood Experiences significantly predicted only risk of psychological distress when the effects of other variables were controlled for. Conclusion: The findings of this study indicate that there is a low mean level of wellbeing and quality of life in this sample of adolescents living in a severely earthquake-affected community. School connectedness, social support from family and friends, and expectations about future quality of life were shown to significantly predict variance in subjective wellbeing, quality of life, and psychological distress. This suggests that there are social and environmental factors that can be targeted to improve holistic mental health and wellbeing in disaster-affected adolescents who have experienced high levels of trauma. Conclusions in this study are limited by the representativeness of the sample, the cross-sectional nature of the study, and potential sampling bias.
Background: There has been a psychopathology focus in disaster research examining adolescent mental health and wellbeing, but recently studies have begun to also examine wellbeing-related constructs. Although an increased risk of posttraumatic stress disorder has been established in disaster-exposed adolescents, comparatively little is known about how disasters impact adolescent wellbeing, nor how factors within the post-disaster environment interact to influence holistic adolescent mental health and wellbeing. Objective: The objective of this study was to describe the holistic mental health and wellbeing of adolescents living in an earthquake-struck city by considering a range of mental health and wellbeing indicators, as well as risk and protective factors hypothesised to influence mental health and wellbeing. The dual-factor model of mental health was used as a framework to guide this study. Method: A survey of Christchurch secondary school students was used to gather data about their subjective wellbeing, risk of low wellbeing, psychological distress, quality of life, exposure to Adverse Childhood Experiences, social support from friends and family, school connectedness, and expectations about future quality of life. Results: A slim majority of students reported good subjective wellbeing (52.3%) and high current quality of life (56.4%), whereas a larger majority reported low risk of psychological distress (79%). An equal proportion of students reported high and low risk of low wellbeing. There were no statistically significant differences in any of the variables measured between adolescents who did and did not live through the Christchurch earthquakes. Regression analyses identified that school connectedness, social support from friends and family, and future expectations of quality of life significantly predicted subjective wellbeing, risk of low wellbeing, risk of psychological distress, and current quality of life. The number of Adverse Childhood Experiences significantly predicted only risk of psychological distress when the effects of other variables were controlled for. Conclusion: The findings of this study indicate that there is a low mean level of wellbeing and quality of life in this sample of adolescents living in a severely earthquake- affected community. School connectedness, social support from family and friends, and expectations about future quality of life were shown to significantly predict variance in subjective wellbeing, quality of life, and psychological distress. This suggests that there are social and environmental factors that can be targeted to improve holistic mental health and wellbeing in disaster-affected adolescents who have experienced high levels of trauma. Conclusions in this study are limited by the representativeness of the sample, the cross- sectional nature of the study, and potential sampling bias.
In September 2010 and February 2011, the Canterbury region experienced devastating earthquakes with an estimated economic cost of over NZ$40 billion (Parker and Steenkamp, 2012; Timar et al., 2014; Potter et al., 2015). The insurance market played an important role in rebuilding the Canterbury region after the earthquakes. Homeowners, insurance and reinsurance markets and New Zealand government agencies faced a difficult task to manage the rebuild process. From an empirical and theoretic research viewpoint, the Christchurch disaster calls for an assessment of how the insurance market deals with such disasters in the future. Previous studies have investigated market responses to losses in global catastrophes by focusing on the insurance supply-side. This study investigates both demand-side and supply-side insurance market responses to the Christchurch earthquakes. Despite the fact that New Zealand is prone to seismic activities, there are scant previous studies in the area of earthquake insurance. This study does offer a unique opportunity to examine and document the New Zealand insurance market response to catastrophe risk, providing results critical for understanding market responses after major loss events in general. A review of previous studies shows higher premiums suppress demand, but how higher premiums and a higher probability of risk affect demand is still largely unknown. According to previous studies, the supply of disaster coverage is curtailed unless the market is subsidised, however, there is still unsettled discussion on why demand decreases with time from the previous disaster even when the supply of coverage is subsidised by the government. Natural disaster risks pose a set of challenges for insurance market players because of substantial ambiguity associated with the probability of such events occurring and high spatial correlation of catastrophe losses. Private insurance market inefficiencies due to high premiums and spatially concentrated risks calls for government intervention in the provision of natural disaster insurance to avert situations of noninsurance and underinsurance. Political economy considerations make it more likely for government support to be called for if many people are uninsured than if few people are uninsured. However, emergency assistance for property owners after catastrophe events can encourage most property owners to not buy insurance against natural disaster and develop adverse selection behaviour, generating larger future risks for homeowners and governments. On the demand-side, this study has developed an intertemporal model to examine how demand for insurance changes post-catastrophe, and how to model it theoretically. In this intertemporal model, insurance can be sought in two sequential periods of time, and at the second period, it is known whether or not a loss event happened in period one. The results show that period one demand for insurance increases relative to the standard single period model when the second period is taken into consideration, period two insurance demand is higher post-loss, higher than both the period one demand and the period two demand without a period one loss. To investigate policyholders experience from the demand-side perspective, a total of 1600 survey questionnaires were administered, and responses from 254 participants received representing a 16 percent response rate. Survey data was gathered from four institutions in Canterbury and is probably not representative of the entire population. The results of the survey show that the change from full replacement value policy to nominated replacement value policy is a key determinant of the direction of change in the level of insurance coverage after the earthquakes. The earthquakes also highlighted the plight of those who were underinsured, prompting policyholders to update their insurance coverage to reflect the estimated cost of re-building their property. The survey has added further evidence to the existing literature, such as those who have had a recent experience with disaster loss report increased risk perception if a similar event happens in future with females reporting a higher risk perception than males. Of the demographic variables, only gender has a relationship with changes in household cover. On the supply-side, this study has built a risk-based pricing model suitable to generate a competitive premium rate for natural disaster insurance cover. Using illustrative data from the Christchurch Red-zone suburbs, the model generates competitive premium rates for catastrophe risk. When the proposed model incorporates the new RMS high-definition New Zealand Earthquake Model, for example, insurers can find the model useful to identify losses at a granular level so as to calculate the competitive premium. This study observes that the key to the success of the New Zealand dual insurance system despite the high prevalence of catastrophe losses are; firstly the EQC’s flat-rate pricing structure keeps private insurance premiums affordable and very high nationwide homeowner take-up rates of natural disaster insurance. Secondly, private insurers and the EQC have an elaborate reinsurance arrangement in place. By efficiently transferring risk to the reinsurer, the cost of writing primary insurance is considerably reduced ultimately expanding primary insurance capacity and supply of insurance coverage.
In this paper Paul Millar outlines the development of the University of Canterbury Quakebox project, a collaborative venture between the UC CEISMIC Canterbury Earthquakes Digital Archive and the New Zealand Institute of Language Brain and Behaviour to preserve people’s earthquake stories for the purposes of research, teaching and commemoration. The project collected over 700 stories on high definition video, and Millar is now looking at using the corpus to underpin a longitudinal study of post-quake experience.
In recent Canterbury earthquakes, structures have performed well in terms of life safety but the estimated total cost of the rebuild was as high as $40 billion. The major contributors to this cost are repair/demolition/rebuild cost, the resulting downtime and business interruption. For this reason, the authors are exploring alternate building systems that can minimize the downtime and business interruption due to building damage in an earthquake; thereby greatly reducing the financial implications of seismic events. In this paper, a sustainable and demountable precast reinforced concrete (RC) frame system in which the precast members are connected via steel tubes/plates or steel angles/plates and high strength friction grip (HSFG) bolts is introduced. In the proposed system, damaged structural elements in seismic frames can be easily replaced with new ones; thereby making it an easily and quickly repairable and a low-loss system. The column to foundation connection in the proposed system can be designed either as fixed or pinned depending on the requirement of strength and stiffness. In a fixed base frame system, ground storey columns will also be damaged along with beams in seismic events, which are to be replaced after seismic events; whereas in a pin base frame only beams (which are easy to replace) will be damaged. Low to medium rise (3-6 storey) precast RC frame buildings with fixed and pin bases are analyzed in this paper; and their lateral capacity, lateral stiffness and natural period are scrutinized to better understand the pros and cons of the demountable precast frame system with fixed and pin base connections.
Despite the relatively low seismicity, a large earthquake in the Waikato region is expected to have a high impact, when the fourth-largest regional population and economy and the high density critical infrastructure systems in this region are considered. Furthermore, Waikato has a deep soft sedimentary basin, which increases the regional seismic hazard due to trapping and amplification of seismic waves and generation of localized surface waves within the basin. This phenomenon is known as the “Basin Effect”, and has been attributed to the increased damage in several historic earthquakes, including the 2010-2011 Canterbury earthquakes. In order to quantitatively model the basin response and improve the understanding of regional seismic hazard, geophysical methods will be used to develop shear wave velocity profiles across the Waikato basin. Active surface wave methods involve the deployment of linear arrays of geophones to record the surface waves generated by a sledge hammer. Passive surface wave methods involve the deployment of two-dimensional seismometer arrays to record ambient vibrations. At each site, the planned testing includes one active test and two to four passive arrays. The obtained data are processed to develop dispersion curves, which describe surface wave propagation velocity as a function of frequency (or wavelength). Dispersion curves are then inverted using the Geopsy software package to develop a suite of shear wave velocity profiles. Currently, more than ten sites in Waikato are under consideration for this project. This poster presents the preliminary results from the two sites that have been tested. The shear wave velocity profiles from all sites will be used to produce a 3D velocity model for the Waikato basin, a part of QuakeCoRE flagship programme 1.
Heathcote Valley school strong motion station (HVSC) consistently recorded ground motions with higher intensities than nearby stations during the 2010-2011 Canterbury earthquakes. For example, as shown in Figure 1, for the 22 February 2011 Christchurch earthquake, peak ground acceleration at HVSC reached 1.4 g (horizontal) and 2 g (vertical), the largest ever recorded in New Zealand. Strong amplification of ground motions is expected at Heathcote Valley due to: 1) the high impedance contrast at the soil-rock interface, and 2) the interference of incident and surface waves within the valley. However, both conventional empirical ground motion prediction equations (GMPE) and the physics-based large scale ground motions simulations (with empirical site response) are ineffective in predicting such amplification due to their respective inherent limitations.
This paper summarizes the development of a region-wide surficial shear wave velocity model based on the combination of the large high-spatial-density database of cone penetration test (CPT) logs in and around Christchurch, New Zealand and a recently-developed Christchurch-specific empirical correlation between soil shear wave velocity and CPT. The ongoing development of this near-surface shear wave velocity model has applications for site characterization efforts via the development of maps of time-averaged shear wave velocities over specific depths, and the identification of regional similarities and differences in soil shear stiffness.
The Avon River and the Avon-Heathcote Estuary/Ihutai are features of the urban environment of Christchurch City and are popular for recreational and tourist activities. These include punting, rowing, organized yachting, water skiing, shoreline walking, bird watching, recreational fishing and aesthetic appreciation. The Canterbury earthquakes of 2010 and 2011 significantly affected the estuarine and river environments, affecting both the valued urban recreation resources and infrastructure. The aim of the research is to evaluate recreational opportunities using a questionnaire, assess levels of public participation in recreation between winter 2014 and summer 2014-2015 and evaluate the quality of recreational resources. The objective is to determine the main factors influencing recreational uses before and after the February 2011 earthquake and to identify future options for promoting recreational activities. Resource evaluation includes water quality, wildlife values, habitats, riparian strip and the availability of facilities and infrastructure. High levels of recreational participation usually occurred at locations that provided many facilities along with their suitability for family activities, scenic beauty, relaxation, amenities and their proximity to residences. Some locations included more land-based activities, while some included more water-based activities. There were greater opportunities for recreation in summer compared to winter. Activities that were negatively affected by the earthquake such as rowing, kayaking and sailing have resumed. But activities at some places may be limited due to the lack of proper tracks, jetty, public toilets and other facilities and infrastructure. Also, some locations had high levels of bacterial pollution, excessive growth of aquatic plants and a low number of amenity values. These problems need to be solved to facilitate recreational uses. In recovering from the earthquake, the enhancement of recreation in the river and the Estuary will lead to a better quality of life and the improved well-being and psychological health of Christchurch residents. It was concluded that the Avon River and the Avon-Heathcote Estuary/Ihutai continue to provide various opportunities of recreation for users.
Geospatial liquefaction models aim to predict liquefaction using data that is free and readily-available. This data includes (i) common ground-motion intensity measures; and (ii) geospatial parameters (e.g., among many, distance to rivers, distance to coast, and Vs30 estimated from topography) which are used to infer characteristics of the subsurface without in-situ testing. Since their recent inception, such models have been used to predict geohazard impacts throughout New Zealand (e.g., in conjunction with regional ground-motion simulations). While past studies have demonstrated that geospatial liquefaction-models show great promise, the resolution and accuracy of the geospatial data underlying these models is notably poor. As an example, mapped rivers and coastlines often plot hundreds of meters from their actual locations. This stems from the fact that geospatial models aim to rapidly predict liquefaction anywhere in the world and thus utilize the lowest common denominator of available geospatial data, even though higher quality data is often available (e.g., in New Zealand). Accordingly, this study investigates whether the performance of geospatial models can be improved using higher-quality input data. This analysis is performed using (i) 15,101 liquefaction case studies compiled from the 2010-2016 Canterbury Earthquakes; and (ii) geospatial data readily available in New Zealand. In particular, we utilize alternative, higher-quality data to estimate: locations of rivers and streams; location of coastline; depth to ground water; Vs30; and PGV. Most notably, a region-specific Vs30 model improves performance (Figs. 3-4), while other data variants generally have little-to-no effect, even when the “standard” and “high-quality” values differ significantly (Fig. 2). This finding is consistent with the greater sensitivity of geospatial models to Vs30, relative to any other input (Fig. 5), and has implications for modeling in locales worldwide where high quality geospatial data is available.
SeisFinder is an open-source web service developed by QuakeCoRE and the University of Canterbury, focused on enabling the extraction of output data from computationally intensive earthquake resilience calculations. Currently, SeisFinder allows users to select historical or future events and retrieve ground motion simulation outputs for requested geographical locations. This data can be used as input for other resilience calculations, such as dynamic response history analysis. SeisFinder was developed using Django, a high-level python web framework, and uses a postgreSQL database. Because our large-scale computationally-intensive numerical ground motion simulations produce big data, the actual data is stored in file systems, while the metadata is stored in the database.
Overview of SeisFinder SeisFinder is an open-source web service developed by QuakeCoRE and the University of Canterbury, focused on enabling the extraction of output data from computationally intensive earthquake resilience calculations. Currently, SeisFinder allows users to select historical or future events and retrieve ground motion simulation outputs for requested geographical locations. This data can be used as input for other resilience calculations, such as dynamic response history analysis. SeisFinder was developed using Django, a high-level python web framework, and uses a postgreSQL database. Because our large-scale computationally-intensive numerical ground motion simulations produce big data, the actual data is stored in file systems, while the metadata is stored in the database. The basic SeisFinder architecture is shown in Figure 1.
Beach ridge stratigraphy can provide an important record of both sustained coastal progradation and responses to events such as extreme storms, as well as evidence of earthquake induced sediment pulses. This study is a stratigraphic investigation of the late Holocene mixed sand gravel (MSG) beach ridge plain on the Canterbury coast, New Zealand. The subsurface was imaged along a 370 m shore-normal transect using 100 and 200 MHz ground penetrating radar (GPR) antennae, and cored to sample sediment textures. Results show that, seaward of a back-barrier lagoon, the Pegasus Bay beach ridge plain prograded almost uniformly, under conditions of relatively stable sea level. Nearshore sediment supply appears to have created a sustained sediment surplus, perhaps as a result of post-seismic sediment pulses, resulting in a flat, morphologically featureless beach ridge plain. Evidence of a high magnitude storm provides an exception, with an estimated event return period in excess of 100 years. Evidence from the GPR sequence combined with modern process observations from MSG beaches indicates that a paleo storm initially created a washover fan into the back-barrier lagoon, with a large amount of sediment simultaneously moved off the beach face into the nearshore. This erosion event resulted in a topographic depression still evident today. In the subsequent recovery period, sediment was reworked by swash onto the beach as a sequence of berm deposit laminations, creating an elevated beach ridge that also has a modern-day topographic signature. As sediment supply returned to normal, and under conditions of falling sea level, a beach ridge progradation sequence accumulated seaward of the storm feature out to the modern-day beach as a large flat, uniform progradation plain. This study highlights the importance of extreme storm events and earthquake pulses on MSG coastlines in triggering high volume beach ridge formation during the subsequent recovery period.
The 22 February 2011, Mw6.2 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing an estimated 181 fatalities and severely damaging thousands of residential and commercial buildings. This paper presents a summary of some of the observations made by the NSF-sponsored GEER Team regarding the geotechnical/geologic aspects of this earthquake. The Team focused on documenting the occurrence and severity of liquefaction and lateral spreading, performance of building and bridge foundations, buried pipelines and levees, and significant rockfalls and landslides. Liquefaction was pervasive and caused extensive damage to residential properties, water and wastewater networks, high-rise buildings, and bridges. Entire neighborhoods subsided, resulting in flooding that caused further damage. Additionally, liquefaction and lateral spreading resulted in damage to bridges and to stretches of levees along the Waimakariri and Kaiapoi Rivers. Rockfalls and landslides in the Port Hills damaged several homes and caused several fatalities.
High-Force-to-Volume lead dampers (HF2V) have been recently developed through an experimental research program at University of Canterbury – New Zealand. Testing of the device and applications on beam column joints have demonstrated stable hysteretic behaviour with almost no damage. This paper reports testing of HF2V devices with straight, bulged and constricted shaft configurations subjected to velocities of 0.15 - 5.0mm/s. The effect of the shaft configuration on the hysteresis loop shape, design relationships and the effect of the velocity on the resistive force of the device are described. Results show that hysteresis loop shape of the device is almost square regardless of the shaft configuration, and that devices are characterized by noticeable velocity dependence in the range of 0.15-1.0mm/s.
The 2010–2011 Canterbury earthquake sequence began with the 4 September 2010, Mw7.1 Darfield earthquake and includes up to ten events that induced liquefaction. Most notably, widespread liquefaction was induced by the Darfield and Mw6.2 Christchurch earthquakes. The combination of well-documented liquefaction response during multiple events, densely recorded ground motions for the events, and detailed subsurface characterization provides an unprecedented opportunity to add well-documented case histories to the liquefaction database. This paper presents and applies 50 high-quality cone penetration test (CPT) liquefaction case histories to evaluate three commonly used, deterministic, CPT-based simplified liquefaction evaluation procedures. While all the procedures predicted the majority of the cases correctly, the procedure proposed by Idriss and Boulanger (2008) results in the lowest error index for the case histories analyzed, thus indicating better predictions of the observed liquefaction response.
Natural disasters are increasingly disruptive events that affect livelihoods, organisations, and economies worldwide. Research has identified the impacts and responses of organisations to different types of natural disasters, and have outlined factors, such as industry sector, that are important to organisational vulnerability and resilience. One of the most costly types of natural disasters in recent years has been earthquakes, and yet to date, the majority of studies have focussed on the effects of earthquakes in urban areas, while rural organisational impact studies have primarily focused on the effects of meteorological and climatic driven hazards. As a result, the likely impacts of an earthquake on rural organisations in a developed context is unconstrained in the literature. In countries like New Zealand, which have major earthquakes and agricultural sectors that are significant contributors to the economy, it is important to know what impacts an earthquake event would have on the rural industries, and how these impacts compare to that of a more commonly analysed, high-frequency event. In September of 2010, rural organisations in Canterbury experienced the 4 September 2010 Mw 7.1 `Darfield' earthquake and the associated aftershocks, which came to be known as the Canterbury earth- quake sequence. The earthquake sequence caused intense ground shaking, creating widespread critical service outages, structural and non-structural damage to built infrastructure, as well as ground surface damage from ooding, liquefaction and surface rupture. Concurrently on September 18 2010, rural organisations in Southland experienced an unseasonably late snowstorm and cold weather snap that brought prolonged sub-zero temperatures, high winds and freezing rain, damaging structures in the City of Invercargill and causing widespread livestock losses and production decreases across the region. This thesis documents the effects of the Canterbury earthquake sequence and Southland snowstorm on farming and rural non-farming organisations, utilizing comparable methodologies to analyse rural organisational impacts, responses and recovery strategies to natural disasters. From the results, a short- term impact assessment methodology is developed for multiple disasters. Additionally, a regional asset repair cost estimation model is proposed for farming organisations following a major earthquake event, and the use of social capital in rural organisational recovery strategies following natural disasters is analysed.
The UC CEISMIC Canterbury Earthquakes Digital Archive contains tens of thousands of high value cultural heritage items related to a long series of earthquakes that hit Canterbury, New Zealand, from 2010 - 2012. The archive was built by a Digital Humanities team located at the center of the disaster in New Zealand's second largest city, Christchurch. The project quickly became complex, not only in its technical aspects but in its governance and general management. This talk will provide insight into the national and international management and governance frameworks used to successfully build and deliver the archive into operation. Issues that needed to be managed included human ethics, research ethics, stakeholder management, communications, risk management, curation and ingestion policy, copyright and content licensing, and project governance. The team drew heavily on industry-standard project management methods for the basic approach, but built their ecosystem and stakeholder trust on principles derived directly form the global digital humanities community.
Unreinforced masonry (URM) structures comprise a majority of the global built heritage. The masonry heritage of New Zealand is comparatively younger to its European counterparts. In a country facing frequent earthquakes, the URM buildings are prone to extensive damage and collapse. The Canterbury earthquake sequence proved the same, causing damage to over _% buildings. The ability to assess the severity of building damage is essential for emergency response and recovery. Following the Canterbury earthquakes, the damaged buildings were categorized into various damage states using the EMS-98 scale. This article investigates machine learning techniques such as k-nearest neighbors, decision trees, and random forests, to rapidly assess earthquake-induced building damage. The damage data from the Canterbury earthquake sequence is used to obtain the forecast model, and the performance of each machine learning technique is evaluated using the remaining (test) data. On getting a high accuracy the model is then run for building database collected for Dunedin to predict expected damage during the rupture of the Akatore fault.
This paper concerns the explicit consideration of near-fault directivity in conventional ground motion prediction models, and its implication for probabilistic seismic hazard analysis (PSHA) in New Zealand. The proposed approach utilises recently developed models by Shahi & Baker (2011), which account for both the 'narrowband' nature of the directivity pulse on spectral ordinates, and the probability of pulse occurrence at the site of interest. Furthermore, in order to correctly consider directivity, distributed seismicity sources are considered as finite-faults, as opposed to their (incorrect) conventional treatment as point-sources. The significance of directivity on hazard analysis results is illustrated for various vibration periods at generic sites located in Christchurch and Otira, two locations whose seismic hazard is comprised of notably different seismic sources. When compared to the PSHA results considering directivity and distributed seismicity as finite faults, it is shown that the NZS1170.5:2004 directivity factor is notably unconservative for all vibration periods in Otira (i.e. high seismic hazard region); and unconservative for Christchurch at short-to-moderate vibration periods ( < 3s); but conservative at long periods ( > 4s).
Elevated levels of trace elements in the environment are of great concern because of their persistence, and their high potential to harm living organisms. The exposure of aquatic biota to trace elements can lead to bioaccumulation, and toxicity can result. Furthermore, the transfer of these elements through food chains can result in exposure to human consumers. Sea-fill or coastal fill sites are among the major anthropogenic sources of trace elements to the surrounding marine environment. For example, in the Maldives, Thilafushi Island is a sea-fill site consisting of assorted municipal solid waste, with multiple potential sources of trace elements. However, there is limited data on environmental trace element levels in the Maldives, and although seafood is harvested from close to this site, there is no existing data regarding trace element levels in Maldivian diets. Following the Christchurch earthquakes of 2011,
During the 2010 - 2011 Canterbury earthquake sequence, extensive liquefaction was observed in many areas of Christchurch city and its surroundings, causing widespread damage to buildings and infrastructure. While existing simplified methods were found to work well in some areas of the city, there were also large areas where these methods did not perform satisfactorily. In some of these cases, researchers have proposed that layers of fine grained material within the soil profile may be responsible for preventing the manifestation of liquefaction. This paper presents preliminary findings on the mechanisms at play when pressure differentials exist across a clay layer. It is found that if the clay layer is unable to distort, then pore fluid is unable to break-through the layer even with relatively high pressures, resulting in dissipation of excess pore pressures by seepage. If the layers are however able to distort, then it is possible for the pore fluid to break through the clay layer, potentially resulting in adverse effects in terms of the severity of liquefaction.
The research is funded by Callaghan Innovation (grant number MAIN1901/PROP-69059-FELLOW-MAIN) and the Ministry of Transport New Zealand in partnership with Mainfreight Limited. Need – The freight industry is facing challenges related to climate change, including natural hazards and carbon emissions. These challenges impact the efficiency of freight networks, increase costs, and negatively affect delivery times. To address these challenges, freight logistics modelling should consider multiple variables, such as natural hazards, sustainability, and emission reduction strategies. Freight operations are complex, involving various factors that contribute to randomness, such as the volume of freight being transported, the location of customers, and truck routes. Conventional methods have limitations in simulating a large number of variables. Hence, there is a need to develop a method that can incorporate multiple variables and support freight sustainable development. Method - A minimal viable model (MVM) method was proposed to elicit tacit information from industrial clients for building a minimally sufficient simulation model at the early modelling stages. The discrete-event simulation (DES) method was applied using Arena® software to create simulation models for the Auckland and Christchurch corridor, including regional pick-up and delivery (PUD) models, Christchurch city delivery models, and linehaul models. Stochastic variables in freight operations such as consignment attributes, customer locations, and truck routes were incorporated in the simulation. The geographic information system (GIS) software ArcGIS Pro® was used to identify and analyse industrial data. The results obtained from the GIS software were applied to create DES models. Life cycle assessment (LCA) models were developed for both diesel and battery electric (BE) trucks to compare their life cycle greenhouse gas (GHG) emissions and total cost of ownership (TCO) and support GHG emissions reduction. The line-haul model also included natural hazards in several scenarios, and the simulation was used to forecast the stock level of Auckland and Christchurch depots in response to each corresponding scenario. Results – DES is a powerful technique that can be employed to simulate and evaluate freight operations that exhibit high levels of variability, such as regional pickup and delivery (PUD) and linehaul. Through DES, it becomes possible to analyse multiple factors within freight operations, including transportation modes, routes, scheduling, and processing times, thereby offering valuable insights into the performance, efficiency, and reliability of the system. In addition, GIS is a useful tool for analysing and visualizing spatial data in freight operations. This is exemplified by their ability to simulate the travelling salesman problem (TSP) and conduct cluster analysis. Consequently, the integration of GIS into DES modelling is essential for improving the accuracy and reliability of freight operations analysis. The outcomes of the simulation were utilised to evaluate the ecological impact of freight transport by performing emission calculations and generating low-carbon scenarios to identify approaches for reducing the carbon footprint. LCA models were developed based on simulation results. Results showed that battery-electric trucks (BE) produced more greenhouse gas (GHG) emissions in the cradle phase due to battery manufacturing but substantially less GHG emissions in the use phase because of New Zealand's mostly renewable energy sources. While the transition to BE could significantly reduce emissions, the financial aspect is not compelling, as the total cost of ownership (TCO) for the BE truck was about the same for ten years, despite a higher capital investment for the BE. Moreover, external incentives are necessary to justify a shift to BE trucks. By using simulation methods, the effectiveness of response plans for natural hazards can be evaluated, and the system's vulnerabilities can be identified and mitigated to minimize the risk of disruption. Simulation models can also be utilized to simulate adaptation plans to enhance the system's resilience to natural disasters. Novel contributions – The study employed a combination of DES and GIS methods to incorporate a large number of stochastic variables and driver’s decisions into freight logistics modelling. Various realistic operational scenarios were simulated, including customer clustering and PUD truck allocation. This showed that complex pickup and delivery routes with high daily variability can be represented using a model of roads and intersections. Geographic regions of high customer density, along with high daily variability could be represented by a two-tier architecture. The method could also identify delivery runs for a whole city, which has potential usefulness in market expansion to new territories. In addition, a model was developed to address carbon emissions and total cost of ownership of battery electric trucks. This showed that the transition was not straightforward because the economics were not compelling, and that policy interventions – a variety were suggested - could be necessary to encourage the transition to decarbonised freight transport. A model was developed to represent the effect of natural disasters – such as earthquake and climate change – on road travel and detour times in the line haul freight context for New Zealand. From this it was possible to predict the effects on stock levels for a variety of disruption scenarios (ferry interruption, road detours). Results indicated that some centres rather than others may face higher pressure and longer-term disturbance after the disaster subsided. Remedies including coastal shipping were modelled and shown to have the potential to limit the adverse effects. A philosophical contribution was the development of a methodology to adapt the agile method into the modelling process. This has the potential to improve the clarification of client objectives and the validity of the resulting model.
Bulk rock strength is greatly dependent on fracture density, so that reductions in rock strength associated with faulting and fracturing should be reflected by reduced shear coupling and hence S-wave velocity. This study is carried out along the Canterbury rangefront and in Otago. Both lie within the broader plate boundary deformation zone in the South Island of New Zealand. Therefore built structures are often, , located in areas where there are undetected or poorly defined faults with associated rock strength reduction. Where structures are sited near to, or across, such faults or fault-zones, they may sustain both shaking and ground deformation damage during an earthquake. Within this zone, management of seismic hazards needs to be based on accurate identification of the potential fault damage zone including the likely width of off-plane deformation. Lateral S-wave velocity variability provides one method of imaging and locating damage zones and off-plane deformation. This research demonstrates the utility of Multi-Channel Analysis of Surface Waves (MASW) to aid land-use planning in such fault-prone settings. Fundamentally, MASW uses surface wave dispersive characteristics to model a near surface profile of S-wave velocity variability as a proxy for bulk rock strength. The technique can aid fault-zone planning not only by locating and defining the extent of fault-zones, but also by defining within-zone variability that is readily correlated with measurable rock properties applicable to both foundation design and the distribution of surface deformation. The calibration sites presented here have well defined field relationships and known fault-zone exposure close to potential MASW survey sites. They were selected to represent a range of progressively softer lithologies from intact and fractured Torlesse Group basement hard rock (Dalethorpe) through softer Tertiary cover sediments (Boby’s Creek) and Quaternary gravels. This facilitated initial calibration of fracture intensity at a high-velocity-contrast site followed by exploration of the limits of shear zone resolution at lower velocity contrasts. Site models were constructed in AutoCAD in order to demonstrate spatial correlations between S-wave velocity and fault zone features. Site geology was incorporated in the models, along with geomorphology, river profiles, scanline locations and crosshole velocity measurement locations. Spatial data were recorded using a total-station survey. The interpreted MASW survey results are presented as two dimensional snapshot cross-sections of the three dimensional calibration-site models. These show strong correlations between MASW survey velocities and site geology, geomorphology, fluvial profiles and geotechnical parameters and observations. Correlations are particularly pronounced where high velocity contrasts exist, whilst weaker correlations are demonstrated in softer lithologies. Geomorphic correlations suggest that off-plane deformation can be imaged and interpreted in the presence of suitable topographic survey data. A promising new approach to in situ and laboratory soft-rock material and mass characterisation is also presented using a Ramset nail gun. Geotechnical investigations typically involve outcrop and laboratory scale determination of rock mass and material properties such as fracture density and unconfined compressive strength (UCS). This multi-scale approach is espoused by this study, with geotechnical and S-wave velocity data presented at multiple scales, from survey scale sonic velocity measurements, through outcrop scale scanline and crosshole sonic velocity measurements to laboratory scale property determination and sonic velocity measurements. S-wave velocities invariably increased with decreasing scale. These scaling relationships and strategies for dealing with them are investigated and presented. Finally, the MASW technique is applied to a concealed fault on the Taieri Ridge in Macraes Flat, Central Otago. Here, high velocity Otago Schist is faulted against low velocity sheared Tertiary and Quaternary sediments. This site highlights the structural sensitivity of the technique by apparently constraining the location of the principal fault, which had been ambiguous after standard processing of the seismic reflection data. Processing of the Taieri Ridge dataset has further led to the proposal of a novel surface wave imaging technique termed Swept Frequency Imaging (SFI). This inchoate technique apparently images the detailed structure of the fault-zone, and is in agreement with the conventionally-determined fault location and an existing partial trench. Overall, the results are promising and are expected to be supported by further trenching in the near future.
This dissertation addresses a diverse range of topics in the area of physics-based ground motion simulation with particular focus on the Canterbury, New Zealand region. The objectives achieved provide the means to perform hybrid broadband ground motion simulation and subsequently validates the simulation methodology employed. In particu- lar, the following topics are addressed: the development of a 3D seismic velocity model of the Canterbury region for broadband ground motion simulation; the development of a 3D geologic model of the interbedded Quaternary formations to provide insight on observed ground motions; and the investigation of systematic effects through ground motion sim- ulation of small-to-moderate magnitude earthquakes. The paragraphs below outline each contribution in more detail. As a means to perform hybrid broadband ground motion simulation, a 3D model of the geologic structure and associated seismic velocities in the Canterbury region is devel- oped utilising data from depth-converted seismic reflection lines, petroleum and water well logs, cone penetration tests, and implicitly guided by existing contour maps and geologic cross sections in data sparse subregions. The model explicitly characterises five significant and regionally recognisable geologic surfaces that mark the boundaries between geologic units with distinct lithology and age, including the Banks Peninsula volcanics, which are noted to strongly influence seismic wave propagation. The Basement surface represents the base of the Canterbury sedimentary basin, where a large impedance contrast exists re- sulting in basin-generated waves. Seismic velocities for the lithological units between the geologic surfaces are derived from well logs, seismic reflection surveys, root mean square stacking velocities, empirical correlations, and benchmarked against a regional crustal model, thus providing the necessary information for a Canterbury velocity model for use in broadband seismic wave propagation. A 3D high-resolution model of the Quaternary geologic stratigraphic sequence in the Canterbury region is also developed utilising datasets of 527 high-quality water well logs, and 377 near-surface cone penetration test records. The model, developed using geostatistical Kriging, represents the complex interbedded regional Quaternary geology by characterising the boundaries between significant interbedded geologic formations as 3D surfaces including explicit modelling of the formation unconformities resulting from the Banks Peninsula volcanics. The stratigraphic layering present can result in complex wave propagation. The most prevalent trend observed in the surfaces was the downward dip from inland to the eastern coastline as a result of the dominant fluvial depositional environment of the terrestrial gravel formations. The developed model provides a benefi- cial contribution towards developing a comprehensive understanding of recorded ground motions in the region and also providing the necessary information for future site char- acterisation and site response analyses. To highlight the practicality of the model, an example illustrating the role of the model in constraining surface wave analysis-based shear wave velocity profiling is illustrated along with the calculation of transfer functions to quantify the effect of the interbedded geology on wave propagation. Lastly, an investigation of systematic biases in the (Graves and Pitarka, 2010, 2015) ground motion simulation methodology and the specific inputs used for the Canterbury region is presented considering 144 small-to-moderate magnitude earthquakes. In the simulation of these earthquakes, the 3D Canterbury Velocity Model, developed as a part of this dissertation, is used for the low-frequency simulation, and a regional 1D velocity model for the high-frequency simulation. Representative results for individual earthquake sources are first presented to highlight the characteristics of the small-to-moderate mag- nitude earthquake simulations through waveforms, intensity measure scaling with source- to-site distance, and spectral bias of the individual events. Subsequently, a residual de- composition is performed to examine the between- and within-event residuals between observed data, and simulated and empirical predictions. By decomposing the residuals into between- and within-event residuals, the biases in source, path and site effects, and their causes, can be inferred. The residuals are comprehensively examined considering their aggregated characteristics, dependence on predictor variables, spatial distribution, and site-specific effects. The results of the simulation are also benchmarked against empir- ical ground motion models, where their similarities manifest from common components in their prediction. Ultimately, suggestions to improve the predictive capability of the simulations are presented as a result of the analysis.
Active faults capable of generating highly damaging earthquakes may not cause surface rupture (i.e., blind faults) or cause surface ruptures that evade detection due to subsequent burial or erosion by surface processes. Fault populations and earthquake frequency-‐magnitude distributions adhere to power laws, implying that faults too small to cause surface rupture but large enough to cause localized strong ground shaking densely populate continental crust. The rupture of blind, previously undetected faults beneath Christchurch, New Zealand in a suite of earthquakes in 2010 and 2011, including the fatal 22 February 2011 moment magnitude (Mw) 6.2 Christchurch earthquake and other large aftershocks, caused a variety of environmental impacts, including major rockfall, severe liquefaction, and differential surface uplift and subsidence. All of these effects occurred where geologic evidence for penultimate effects of the same nature existed. To what extent could the geologic record have been used to infer the presence of proximal, blind and / or unidentified faults near Christchurch? In this instance, we argue that phenomena induced by high intensity shaking, such as rock fragmentation and rockfall, revealed the presence of proximal active faults in the Christchurch area prior to the recent earthquake sequence. Development of robust earthquake shaking proxy datasets should become a higher scientific priority, particularly in populated regions.
1. Background and Objectives This poster presents results from ground motion simulations of small-to-moderate magnitude (3.5≤Mw≤5.0) earthquake events in the Canterbury, New Zealand region using the Graves and Pitarka (2010,2015) methodology. Subsequent investigation of systematic ground motion effects highlights the prediction bias in the simulations which are also benchmarked against empirical ground motion models (e.g. Bradley (2013)). In this study, 144 earthquake ruptures, modelled as point sources, are considered with 1924 quality-assured ground motions recorded across 45 strong motion stations throughout the Canterbury region, as shown in Figure 1. The majority of sources are Mw≥4.0 and have centroid depth (CD) 10km or shallower. Earthquake source descriptions were obtained from the GeoNet New Zealand earthquake catalogue. The ground motion simulations were performed within a computational domain of 140km x 120km x 46km with a finite difference grid spacing of 0.1km. The low-frequency (LF) simulations utilize the 3D Canterbury Velocity Model while the high-frequency (HF) simulations utilize a generic regional 1D velocity model. In the LF simulations, a minimum shear wave velocity of 500m/s is enforced, yielding a maximum frequency of 1.0Hz.
© 2018 Springer Nature B.V. This study compares seismic losses considering initial construction costs and direct-repair costs for New Zealand steel moment-resisting frame buildings with friction connections and those with extended bolted-end-plate connections. A total of 12 buildings have been designed and analysed considering both connection types, two building heights (4-storey and 12-storey), and three locations around New Zealand (Auckland, Christchurch, and Wellington). It was found that buildings with friction connections required design to a higher design ductility, yet are generally stiffer due to larger beams being required to satisfy higher connection overstrength requirements. This resulted in the frames with friction connections experiencing lower interstorey drifts on most floors but similar peak total floor accelerations, and subsequently incurring lower drift-related seismic repair losses. Frames with friction connections tended to have lower expected net-present-costs within 50 years of the building being in service for shorter buildings and/or if located in regions of high seismicity. None of the frames with friction connections in Auckland showed any benefits due to the low seismicity of the region.