Search

found 103 results

Research papers, University of Canterbury Library

Recent surface-rupturing earthquakes in New Zealand have highlighted significant exposure and vulnerability of the road network to fault displacement. Understanding fault displacement hazard and its impact on roads is crucial for mitigating risks and enhancing resilience. There is a need for regional-scale assessments of fault displacement to identify vulnerable areas within the road network for the purposes of planning and prioritising site-specific investigations. This thesis employs updated analysis of data from three historical surface-rupturing earthquakes (Edgecumbe 1987, Darfield 2010, and Kaikoūra 2016) to develop an empirical model that addresses the gap in regional fault displacement hazard analysis. The findings contribute to understanding of • How to use seismic hazard model inputs for regional fault displacement hazard analysis • How faulting type and sediment cover affects the magnitude and spatial distribution of fault displacement • How the distribution of displacement and regional fault displacement hazard is impacted by secondary faulting • The inherent uncertainties and limitations associated with employing an empirical approach at a regional scale • Which sections of New Zealand’s roading network are most susceptible to fault displacement hazard and warrant site-specific investigations • Which regions should prioritise updating emergency management plans to account for post-event disruptions to roading. I used displacement data from the aforementioned historical ruptures to generate displacement versus distance-to-fault curves for various displacement components, fault types, and geological characteristics. Using those relationships and established relationships for along-strike displacement, displacement contours were generated surrounding active faults within the NZ Community Fault Model. Next, I calculated a new measure of 1D strain along roads as well as relative hazard, which integrated 1D strain and normalised slip rate data. Summing these values at the regional level identified areas of heightened relative hazard across New Zealand, and permits an assessment of the susceptibility of road networks using geomorphon land classes as proxies for vulnerability. The results reveal that fault-parallel displacements tend to localise near the fault plane, while vertical and fault-perpendicular displacements sustain over extended distances. Notably, no significant disparities were observed in off-fault displacement between the hanging wall and footwall sides of the fault, or among different surface geology types, potentially attributed to dataset biases. The presence of secondary faulting in the dataset contributes to increased levels of tectonic displacement farther from the fault, highlighting its significance in hazard assessments. Furthermore, fault displacement contours delineate broader zones around dip-slip faults compared to strike-slip faults, with correlations identified between fault length and displacement width. Road ‘strain’ values are higher around dip-slip faults, with notable examples observed in the Westland and Buller Districts. As expected, relative hazard analysis revealed elevated values along faults with high slip rates, notably along the Alpine Fault. A regional-scale analysis of hazard and exposure reveals heightened relative hazard in specific regions, including Wellington, Southern Hawke’s Bay, Central Bay of Plenty, Central West Coast, inland Canterbury, and the Wairau Valley of Marlborough. Notably, the Central West Coast exhibits the highest summed relative hazard value, attributed to the fast-slipping Alpine Fault. The South Island generally experiences greater relative hazard due to larger and faster-slipping faults compared to the North Island, despite having fewer roads. Central regions of New Zealand face heightened risk compared to Southern or Northern regions. Critical road links intersecting high-slipping faults, such as State Highways 6, 73, 1, and 2, necessitate prioritisation for site-specific assessments, emergency management planning and targeted mitigation strategies. Roads intersecting with the Alpine Fault are prone to large parallel displacements, requiring post-quake repair efforts. Mitigation strategies include future road avoidance of nearby faults, modification of road fill and surface material, and acknowledgement of inherent risk, leading to prioritised repair efforts of critical roads post-quake. Implementing these strategies enhances emergency response efforts by improving accessibility to isolated regions following a major surface-rupturing event, facilitating faster supply delivery and evacuation assistance. This thesis contributes to the advancement of understanding fault displacement hazard by introducing a novel regional, empirical approach. The methods and findings highlight the importance of further developing such analyses and extending them to other critical infrastructure types exposed to fault displacement hazard in New Zealand. Enhancing our comprehension of the risks associated with fault displacement hazard offers valuable insights into various mitigation strategies for roading infrastructure and informs emergency response planning, thereby enhancing both national and global infrastructure resilience against geological hazards.

Research papers, University of Canterbury Library

Prior to the devastating 2010 and 2011 earthquakes in Christchurch, New Zealand, the University of Canterbury (UC) was renowned for its graduates’ academic preparation and its staff’s research outputs. The town/gown relationship was aloof and strained due to UC’s move from the CBD in the 1970s and students being seen as troublemakers. Despite its vision of people prepared to make a difference, the University’s students and staff were not seen as making a difference in the local community or as being engaged citizens. 
This changed when over 9,000 UC students mobilized themselves into the Student Volunteer Army to provide immediate relief across Christchurch following the four major quakes of 2010 and 2011. Suddenly, UC students were seen as saviors, not miscreants and a focus on citizenship education as part of the University’s strategic direction began to take shape. 
Based on qualitative and quantitative research conducted at UC over the past four years, this interactive presentation will highlight the findings, conclusions, and implications of how the University has been transformed into a recognized, international leader in citizenship education. By integrating students’ community service into their academic studies, the University has changed its persona while students have gained academically, civically, and personally.

Research papers, University of Canterbury Library

1. Background and Objectives This poster presents results from ground motion simulations of small-to-moderate magnitude (3.5≤Mw≤5.0) earthquake events in the Canterbury, New Zealand region using the Graves and Pitarka (2010,2015) methodology. Subsequent investigation of systematic ground motion effects highlights the prediction bias in the simulations which are also benchmarked against empirical ground motion models (e.g. Bradley (2013)). In this study, 144 earthquake ruptures, modelled as point sources, are considered with 1924 quality-assured ground motions recorded across 45 strong motion stations throughout the Canterbury region, as shown in Figure 1. The majority of sources are Mw≥4.0 and have centroid depth (CD) 10km or shallower. Earthquake source descriptions were obtained from the GeoNet New Zealand earthquake catalogue. The ground motion simulations were performed within a computational domain of 140km x 120km x 46km with a finite difference grid spacing of 0.1km. The low-frequency (LF) simulations utilize the 3D Canterbury Velocity Model while the high-frequency (HF) simulations utilize a generic regional 1D velocity model. In the LF simulations, a minimum shear wave velocity of 500m/s is enforced, yielding a maximum frequency of 1.0Hz.

Research papers, University of Canterbury Library

Over 6.3 million waste tyres are produced annually in New Zealand (Tyrewise, 2021), leading to socioeconomic and environmental concerns. The 2010-11 Canterbury Earthquake Sequence inflicted extensive damage to ~6,000 residential buildings, highlighting the need to improve the seismic resilience of the residential housing sector. A cost-effective and sustainable eco-rubber geotechnical seismic isolation (ERGSI) foundation system for new low-rise buildings was developed by the authors. The ERGSI system integrates a horizontal geotechnical seismic isolation (GSI) layer i.e., a deformable seismic energy dissipative filter made of granulated tyre rubber (GTR) and gravel (G) – and a flexible rubberised concrete raft footing. Geotechnical experimental and numerical investigations demonstrated the effectiveness of the ERGSI system in reducing the seismic demand at the foundation level (i.e., reduced peak ground acceleration) (Hernandez et al., 2019; Tasalloti et al., 2021). However, it is essential to ensure that the ERGSI system has minimal leaching attributes and does not result in long-term negative impacts on the environment.

Research papers, University of Canterbury Library

Generalized conditional intensity measure (GCIM) method is extended to ground motion selection for scenario ruptures. Using different rupture scenarios and site conditions, various aspects of the GCIM methodology are scrutinized, including: (i) implementation of different weight vectors and the composition of the IM vector; (ii) quantifying the importance of replicate selections for different number of desired ground motions; and (iii) the effect of considering bounds on the implicit causal parameters of the prospective ground motions. Using the extended methodology, representative ground motion ensembles for several major earthquake scenarios in New Zealand are developed. Cases considered include representative ground motions for the occurrence of Alpine, Hope, and Porters Pass earthquakes in Christchurch city, and the occurrence of Wellington, Wairarapa, and Ohariu fault ruptures in Wellington city. Challenges in the development of ground motion ensembles for subduction zone earthquakes are also highlighted. The selected scenario-based ground motion sets can be used to complement ground motions which are often selected in conjunction with probabilistic seismic hazard analysis, in order to understand the performance of structures for the question “what if this fault ruptures?”

Research papers, University of Canterbury Library

Generalized conditional intensity measure (GCIM) method is extended to ground motion selection for scenario ruptures. Using different rupture scenarios and site conditions, various aspects of the GCIM methodology are scrutinized, including: (i) implementation of different weight vectors and the composition of the IM vector; (ii) quantifying the importance of replicate selections for different number of desired ground motions; and (iii) the effect of considering bounds on the implicit causal parameters of the prospective ground motions. Using the extended methodology, representative ground motion ensembles for several major earthquake scenarios in New Zealand are developed. Cases considered include representative ground motions for the occurrence of Alpine, Hope, and Porters Pass earthquakes in Christchurch city, and the occurrence of Wellington, Wairarapa, and Ohariu fault ruptures in Wellington city. Challenges in the development of ground motion ensembles for subduction zone earthquakes are also highlighted. The selected scenario-based ground motion sets can be used to complement ground motions which are often selected in conjunction with probabilistic seismic hazard analysis, in order to understand the performance of structures for the question “what if this fault ruptures?”

Research papers, University of Canterbury Library

This paper presents an overview of the soil profile characteristics at strong motion station (SMS) locations in the Christchurch Central Business District (CBD) based on recently completed geotechnical site investigations. Given the variability of Christchurch soils, detailed investigations were needed in close vicinity to each SMS. In this regard, CPT, SPT and borehole data, and shear wave velocity (Vs) profiles from surface wave dispersion data in close vicinity to the SMSs have been used to develop detailed representative soil profiles at each site and to determine site classes according to the New Zealand standard NZS1170.5. A disparity between the NZS1170.5 site classes based on Vs and SPT N60 investigation techniques is highlighted, and additional studies are needed to harmonize site classification based on these techniques. The short period mode of vibration of soft deposits above gravels, which are found throughout Christchurch, are compared to the long period mode of vibration of the entire soil profile to bedrock. These two distinct modes of vibration require further investigation to determine their impact on the site response. According to current American and European approaches to seismic site classification, all SMSs were classified as problematic soil sites due to the presence of liquefiable strata, soils which are not directly accounted for by the NZS1170.5 approach.

Research papers, University of Canterbury Library

This research aims to explore how business models of SMEs revolve in the face of a crisis to be resilient. The business model canvas was used as a tool to analyse business models of SMEs in Greater Christchurch. The purpose was to evaluate the changes SMEs brought in their business models after hit by a series of earthquake in 2010 and 2011. The idea was to conduct interviews of business owners and analyse using grounded theory methods. Because this method is iterative, a tentative theoretical framework was proposed, half way through the data collection. It was realised that owner specific characteristics were more prominent in the data than the elements business model. Although, SMEs in this study experienced several operational changes in their business models such as change of location and modification of payment terms. However, the suggested framework highlights how owner specific attributes influence the survival of a small business. Small businesses and their owners are extremely interrelated that the business models personify the owner specific characteristics. In other words, the adaptation of the business model reflects the extent to which the owner possess these attributes. These attributes are (a) Mindsets – the attitude and optimism of business owner; (b) Adaptive coping – the ability of business owner to take corrective actions; and (c) Social capital – the network of a business owner, including family, friends, neighbours and business partners.

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence (CES), induced extensive damage in residential buildings and led to over NZ$40 billion in total economic losses. Due to the unique insurance setting in New Zealand, up to 80% of the financial losses were insured. Over the CES, the Earthquake Commission (EQC) received more than 412,000 insurance claims for residential buildings. The 4 September 2010 earthquake is the event for which most of the claims have been lodged with more than 138,000 residential claims for this event only. This research project uses EQC claim database to develop a seismic loss prediction model for residential buildings in Christchurch. It uses machine learning to create a procedure capable of highlighting critical features that affected the most buildings loss. A future study of those features enables the generation of insights that can be used by various stakeholders, for example, to better understand the influence of a structural system on the building loss or to select appropriate risk mitigation measures. Previous to the training of the machine learning model, the claim dataset was supplemented with additional data sourced from private and open access databases giving complementary information related to the building characteristics, seismic demand, liquefaction occurrence and soil conditions. This poster presents results of a machine learning model trained on a merged dataset using residential claims from the 4 September 2010.

Research papers, University of Canterbury Library

On 15 August 1868, a great earthquake struck off the coast of the Chile-Peru border generating a tsunami that travelled across the Pacific. Wharekauri-Rekohu-Chatham Islands, located 800 km east of Christchurch, Aotearoa-New Zealand (A-NZ) was one of the worst affected locations in A-NZ. Tsunami waves, including three over 6 metres high, injured and killed people, destroyed buildings and infrastructure, and impacted the environment, economy and communities. While experience of disasters, and advancements in disaster risk reduction systems and technology have all significantly advanced A-NZ’s capacity to be ready for and respond to future earthquakes and tsunami, social memory of this event and other tsunamis during our history has diminished. In 2018, a team of scientists, emergency managers and communication specialists collaborated to organise a memorial event on the Chatham Islands and co-ordinate a multi-agency media campaign to commemorate the 150th anniversary of the 1868 Arica tsunami. The purpose was to raise awareness of the disaster and to encourage preparedness for future tsunami. Press releases and science stories were distributed widely by different media outlets and many attended the memorial event indicating public interest for commemorating historical disasters. We highlight the importance of commemorating disaster anniversaries through memorial events, to raise awareness of historical disasters and increase community preparedness for future events – “lest we forget and let us learn.”

Research papers, University of Canterbury Library

Capacity design and hierarchy of strength philosophies at the base of modern seismic codes allow inelastic response in case of severe earthquakes and thus, in most traditional systems, damage develops at well-defined locations of reinforced concrete (RC) structures, known as plastic hinges. The 2010 and 2011 Christchurch earthquakes have demonstrated that this philosophy worked as expected. Plastic hinges formed in beams, in coupling beams and at the base of columns and walls. Structures were damaged permanently, but did not collapse. The 2010 and 2011 Christchurch earthquakes also highlighted a critical issue: the reparability of damaged buildings. No methodologies or techniques were available to estimate the level of subsequent earthquakes that RC buildings could still sustain before collapse. No repair techniques capable of restoring the initial condition of buildings were known. Finally, the cost-effectiveness of an eventual repair intervention, when compared with a new building, was unknown. These aspects, added to nuances of New Zealand building owners’ insurance coverage, encouraged the demolition of many buildings. Moreover, there was a perceived strong demand from government and industry to develop techniques for assessing damage to steel reinforcement bars embedded in cracked structural concrete elements. The most common questions were: “Have the steel bars been damaged in correspondence to the concrete cracks?”, “How much plastic deformation have the steel bars undergone?”, and “What is the residual strain capacity of the damaged bars?” Minimally invasive techniques capable of quantifying the level and extent of plastic deformation and residual strain capacity are not yet available. Although some studies had been recently conducted, a validated method is yet to be widely accepted. In this thesis, a least-invasive method for the damage-assessment of steel reinforcement is developed. Based on the information obtained from hardness testing and a single tensile test, it is possible to estimate the mechanical properties of earthquake-damaged rebars. The reduction in the low-cycle fatigue life due to strain ageing is also quantified. The proposed damage assessment methodology is based on empirical relationships between hardness and strain and residual strain capacity. If damage is suspected from in situ measurements, visual inspection or computer analysis, a bar may be removed and more accurate hardness measurements can be obtained using the lab-based Vickers hardness methodology. The Vickers hardness profile of damaged bars is then compared with calibration curves (Vickers hardness versus strain and residual strain capacity) previously developed for similar steel reinforcement bars extracted from undamaged locations. Experimental tests demonstrated that the time- and temperature-dependent strain-ageing phenomenon causes changes in the mechanical properties of plastically deformed steels. In particular, yield strength and hardness increases, whereas ductility decreases. The changes in mechanical properties are quantified and their implications on the hardness method are highlighted. Low-cycle fatigue (LCF) failures of steel reinforcing bars have been observed in laboratory testing and post-earthquake damage inspections. Often, failure might not occur during a first seismic event. However, damage is accumulated and the remaining fatigue life is reduced. Failure might therefore occur in a subsequent seismic event. Although numerous studies exist on the LCF behaviour of steel rebars, no studies had been conducted on the strain-ageing effects on the remaining fatigue life. In this thesis, the reduction in fatigue life due to this phenomenon is determined through a number of experimental tests.

Research papers, University of Canterbury Library

Recent global tsunami events have highlighted the importance of effective tsunami risk management strategies (including land-use planning, structural and natural defences, warning systems, education and evacuation measures). However, the rarity of tsunami means that empirical data concerning reactions to tsunami warnings and tsunami evacuation behaviour is rare when compared to findings about evacuations to avoid other sources of hazard. To date empirical research into tsunami evacuations has focused on evacuation rates, rather than other aspects of the evacuation process. More knowledge is required about responses to warnings, pre-evacuation actions, evacuation dynamics and the return home after evacuations. Tsunami evacuation modelling has the potential to inform evidence-based tsunami risk planning and response. However to date tsunami evacuation models have largely focused on timings of evacuations, rather than evacuation behaviours. This Masters research uses a New Zealand case study to reduce both of these knowledge gaps. Qualitative survey data was gathered from populations across coastal communities in Banks Peninsula and Christchurch, New Zealand, required to evacuate due to the tsunami generated by the November 14th 2016 Kaikōura Earthquake. Survey questions asked about reactions to tsunami warnings, actions taken prior to evacuating and movements during the 2016 tsunami evacuation. This data was analysed to characterise trends and identify factors that influenced evacuation actions and behaviour. Finally, it was used to develop an evacuation model for Banks Peninsula. Where appropriate, the modelling inputs were informed by the survey data. Three key findings were identified from the results of the evacuation behaviour survey. Although 38% of the total survey respondents identified the earthquake shaking as a natural cue for the tsunami, most relied on receiving official warnings, including sirens, to prompt evacuations. Respondents sought further official information to inform their evacuation decisions, with 39% of respondents delaying their evacuation in order to do so. Finally, 96% of total respondents evacuated by car. This led to congestion, particularly in more densely populated Christchurch city suburbs. Prior to this research, evacuation modelling had not been completed for Banks Peninsula. The results of the modelling showed that if evacuees know how to respond to tsunami warnings and where and how to evacuate, there are no issues. However, if there are poor conditions, including if people do not evacuate immediately, if there are issues with the roading network, or if people do not know where or how to evacuate, evacuation times increase with there being more bottlenecks leading out of the evacuation zones. The results of this thesis highlight the importance of effective tsunami education and evacuation planning. Reducing exposure to tsunami risk through prompt evacuation relies on knowledge of how to interpret tsunami warnings, and when, where and how to evacuate. Recommendations from this research outline the need for public education and engagement, and the incorporation of evacuation signage, information boards and evacuation drills. Overall these findings provide more comprehensive picture of tsunami evacuation behaviour and decision making based on empirical data from a recent evacuation, which can be used to improve tsunami risk management strategies. This empirical data can also be used to inform evacuation modelling to improve the accuracy and realism of the evacuation models.

Research papers, University of Canterbury Library

Lake Taupō in New Zealand is associated with frequent unrest and small to moderate eruptions. It presents a high consequence risk scenario with immense potential for destruction to the community and the surrounding environment. Unrest associated with eruptions may also trigger earthquakes. While it is challenging to educate people about the hazards and risks associated with multiple eruptive scenarios, effective education of students can lead to better mitigation strategies and risk reduction. Digital resources with user-directed outcomes have been successfully used to teach action oriented skills relevant for communication during volcanic crisis [4]. However, the use of choose your own adventure strategies to enhance low probability risk literacy for Secondary school outreach has not been fully explored. To investigate how digital narrative storytelling can mediate caldera risk literacy, a module “The Kid who cried Supervolcano” will be introduced in two secondary school classrooms in Christchurch and Rotorua. The module highlights four learning objectives: (a) Super-volcanoes are beautiful but can be dangerous (b) earthquake (unrest) activity is normal for super-volcanoes (c) Small eruptions are possible from super-volcanoes and can be dangerous in our lifetimes (d) Super-eruptions are unlikely in our lifetimes. Students will create their digital narrative using the platform Elementari (www.elementari.io). The findings from this study will provide clear understanding of students’ understanding of risk perceptions of volcanic eruption scenarios and associated hazards and inform the design of educational resources geared towards caldera risk literacy.

Research papers, University of Canterbury Library

The need for a simple but rigorous seismic assessment procedure to predict damage to reinforced concrete buildings during a seismic event has been highlighted following the Canterbury Earthquake sequence. Such simplified assessment procedure, applied to individual structure or large building inventory, should not only have low requirement in terms of input information and involve straightforward analyses, but also should be capable to provide reliable predictive results within short timeframe. This research provides a general overview and critical comparison of alternative simplified assessment procedures adopted in NZSEE 2006 Guidelines (Assessment and Improvement of the Structural Performance of Buildings in Earthquakes), ASCE 41-13 (Seismic Evaluation and Retrofit of Existing Buildings), and EN: 1998-3: 2005 (Assessment and Retrofitting of Buildings). Particular focus is given to the evaluation of the capability of Simplified Lateral Mechanism Analysis (SLaMa), which is an analytical pushover method adopted in NZSEE 2006 Guidelines. The predictive results from SLaMa are compared to damages observed for a set of reinforced concrete buildings in Christchurch, as well as the results from more detailed assessment procedure based on numerical modelling. This research also suggests improvements to SLaMa, together with validation of the improvements, to include assessment of local mechanism by strength hierarchy evaluation, as well as to develop assessment of global mechanism including post-yield mechanism sequence based on local mechanism.

Research papers, University of Canterbury Library

At 00:02 on 14th November 2016, a Mw 7.8 earthquake occurred in and offshore of the northeast of the South Island of New Zealand. Fault rupture, ground shaking, liquefaction, and co-seismic landslides caused severe damage to distributed infrastructure, and particularly transportation networks; large segments of the country’s main highway, State Highway 1 (SH1), and the Main North Line (MNL) railway line, were damaged between Picton and Christchurch. The damage caused direct local impacts, including isolation of communities, and wider regional impacts, including disruption of supply chains. Adaptive measures have ensured immediate continued regional transport of goods and people. Air and sea transport increased quickly, both for emergency response and to ensure routine transport of goods. Road diversions have also allowed critical connections to remain operable. This effective response to regional transport challenges allowed Civil Defence Emergency Management to quickly prioritise access to isolated settlements, all of which had road access 23 days after the earthquake. However, 100 days after the earthquake, critical segments of SH1 and the MNL remain closed and their ongoing repairs are a serious national strategic, as well as local, concern. This paper presents the impacts on South Island transport infrastructure, and subsequent management through the emergency response and early recovery phases, during the first 100 days following the initial earthquake, and highlights lessons for transportation system resilience.

Research papers, University of Canterbury Library

At 00:02 on 14th November 2016, a Mw 7.8 earthquake occurred in and offshore of the northeast of the South Island of New Zealand. Fault rupture, ground shaking, liquefaction, and co-seismic landslides caused severe damage to distributed infrastructure, and particularly transportation networks; large segments of the country’s main highway, State Highway 1 (SH1), and the Main North Line (MNL) railway line, were damaged between Picton and Christchurch. The damage caused direct local impacts, including isolation of communities, and wider regional impacts, including disruption of supply chains. Adaptive measures have ensured immediate continued regional transport of goods and people. Air and sea transport increased quickly, both for emergency response and to ensure routine transport of goods. Road diversions have also allowed critical connections to remain operable. This effective response to regional transport challenges allowed Civil Defence Emergency Management to quickly prioritise access to isolated settlements, all of which had road access 23 days after the earthquake. However, 100 days after the earthquake, critical segments of SH1 and the MNL remain closed and their ongoing repairs are a serious national strategic, as well as local, concern. This paper presents the impacts on South Island transport infrastructure, and subsequent management through the emergency response and early recovery phases, during the first 100 days following the initial earthquake, and highlights lessons for transportation system resilience.

Research papers, University of Canterbury Library

Recent major earthquakes such as Northridge 1994 and Izmit Kocaeli 1999 highlighted the poor performance of existing buildings constructed prior to the early 1970’s. Low lateral seismic design coefficients and the adopted “working stress design” methodology (essentially an elastic design) lacked any inelastic design considerations, thus leading to inadequate detailing. Insufficient development lengths, lapping within potential plastic hinge regions, lack, or total absence of joint transverse reinforcement, and the use of plain round reinforcement and hooked end anchorages were common throughout the structure. The behaviour is generally dominated by brittle local failure mechanisms (e.g. joint or element shear failures) as well as possible soft-storey mechanisms at a global level. Amongst several possible retrofit interventions, a typical solution is to provide the structure with additional structural walls i.e. external buttressing or column in-fills. Extensive developments on precast, post-tensioned, dissipative systems have shown promise for the use of rocking wall systems to retrofit existing poorly detailed frame structures. In this contribution, the feasibility of such a retrofit intervention is investigated. A displacement-based retrofit procedure is developed and proposed, based on targeting pre-defined performance criteria, such as joint shear and/or column curvature deformation limits. A design example, using the proposed retrofit strategy on a prototype frame is presented. A brief overview on experimental work ongoing at the University of Canterbury investigating the dynamic response of advanced rocking walls for retrofit purposes will be provided.

Research papers, University of Canterbury Library

At 4.35am on Saturday 4 September 2010, a magnitude 7.1 earthquake struck near the township of Darfield in Canterbury leading to widespread damage in Christchurch and the wider central Canterbury region. Though it was reported no lives were lost, that was not entirely correct. Over 3,000 animals perished as a result of the earthquake and 99% of these deaths would have been avoidable if appropriate mitigation measures had been in place. Deaths were predominantly due to zoological vulnerability of birds in captive production farms. Other problems included lack of provision of animal welfare at evacuation centres, issues associated with multiple lost and found pet services, evacuation failure due to pet separation and stress impact on dairy herds and associated milk production. The Canterbury Earthquake has highlighted concerns over a lack of animal emergency welfare planning and capacity in New Zealand, an issue that is being progressed by the National Animal Welfare Emergency Management Group. As animal emergency management becomes better understood by emergency management and veterinary professionals, it is more likely that both sectors will have greater demands placed upon them by national guidelines and community expectations to ensure provisions are made to afford protection of animals in times of disaster. A subsequent and more devastating earthquake struck the region on Monday 22 February 2011; this article however is primarily focused on the events pertaining to the September 4 event.

Research papers, University of Canterbury Library

Natural hazard reviews reveal increases in disaster impacts nowhere more pronounced than in coastal settlements. Despite efforts to enhance hazard resilience, the common trend remains to keep producing disaster prone places. This paper explicitly explores hazard versus multi-hazard concepts to illustrate how different conceptualizations can enhance or reduce settlement resilience. Understandings gained were combined with onthe-ground lessons from earthquake and flooding experiences to develop of a novel ‘first cut’ approach for analyzing key multi-hazard interconnections, and to evaluate resilience enhancing opportunities. Traditional disaster resilience efforts often consider different hazard types discretely. However, recent events in Christchurch, a New Zealand city that is part of the 100 Resilient Cities network, highlight the need to analyze the interrelated nature of different hazards, especially for enhancing lifelines system resilience. Our overview of the Christchurch case study demonstrates that seismic, hydrological, shallow-earth, and coastal hazards can be fundamentally interconnected, with catastrophic results where such interconnections go unrecognized. In response, we have begun to develop a simple approach for use by different stakeholders to support resilience planning, pre and post disaster, by: drawing attention to natural and built environment multi-hazard links in general; illustrating a ‘first cut’ tool for uncovering earthquake-flooding multi-hazard links in particular; and providing a basis for reviewing resilience strategy effectiveness in multi-hazard prone environments. This framework has particular application to tectonically active areas exposed to climate-change issues.

Research papers, University of Canterbury Library

The greater Wellington region, New Zealand, is highly vulnerable to large earthquakes. While attention has been paid to the consequences of earthquake damage to road, electricity and water supply networks, the consequences of wastewater network damage for public health, environmental health and habitability of homes remain largely unknown for Wellington City. The Canterbury and Kaikōura earthquakes have highlighted the vulnerability of sewerage systems to disruption during a disaster. Management of human waste is one of the critical components of disaster planning to reduce faecal-oral transmission of disease and exposure to disease-bearing vectors. In Canterbury and Kaikōura, emergency sanitation involved a combination of Port-a-loos, chemical toilets and backyard long-drops. While many lessons may be learned from experiences in Canterbury earthquakes, it is important to note that isolation is likely to be a much greater factor for Wellington households, compared to Christchurch, due to the potential for widespread landslides in hill suburbs affecting road access. This in turn implies that human waste may have to be managed onsite, as options such as chemical toilets and Port-a-loos rely completely on road access for delivering chemicals and collecting waste. While some progress has been made on options such as emergency composting toilets, significant knowledge gaps remain on how to safely manage waste onsite. In order to bridge these gaps, laboratory tests will be conducted through the second half of 2019 to assess the pathogen die-off rates in the composting toilet system with variables being the type of carbon bulking material and the addition of a Bokashi composting activator.

Research papers, University of Canterbury Library

Seismic isolation is an effective technology for significantly reducing damage to buildings and building contents. However, its application to light-frame wood buildings has so far been unable to overcome cost and technical barriers such as susceptibility to movement during high-wind loading. The precursor to research in the field of isolation of residential buildings was the 1994 Northridge Earthquake (6.7 MW) in the United States and the 1995 Kobe Earthquake (6.9 MW) in Japan. While only a small number of lives were lost in residential buildings in these events, the economic impact was significant with over half of earthquake recovery costs given to repair and reconstruction of residential building damage. A value case has been explored to highlight the benefits of seismically isolated residential buildings compared to a standard fixed-base dwellings for the Wellington region. Loss data generated by insurance claim information from the 2011 Christchurch Earthquake has been used by researchers to determine vulnerability functions for the current light-frame wood building stock. By further considering the loss attributed to drift and acceleration sensitive components, and a simplified single degree of freedom (SDOF) building model, a method for determining vulnerability functions for seismic isolated buildings was developed. Vulnerability functions were then applied directly in a loss assessment using the GNS developed software, RiskScape. Vulnerability was shown to dramatically reduce for isolated buildings compared to an equivalent fixed-base building and as a result, the monetary savings in a given earthquake scenario were significant. This work is expected to drive further interest for development of solutions for the seismic isolation of residential dwellings, of which one option is further considered and presented herein.

Research papers, University of Canterbury Library

On February 22, 2011, a magnitude Mw 6.2 earthquake affected the Canterbury region, New Zealand, resulting in many fatalities. Liquefaction occurred across many areas, visible on the surface as ‘‘sand volcanoes’’, blisters and subsidence, causing significant damage to buildings, land and infrastructure. Liquefaction occurred at a number of sites across the Christchurch Boys High School sports grounds; one area in particular contained a piston ground failure and an adjacent silt volcano. Here, as part of a class project, we apply near-surface geophysics to image these two liquefaction features and determine whether they share a subsurface connection. Hand auger results enable correlation of the geophysical responses with the subsurface stratigraphy. The survey results suggest that there is a subsurface link, likely via a paleo-stream channel. The anomalous responses of the horizontal loop electromagnetic survey and electrical resistivity imaging highlight the disruption of the subsurface electrical properties beneath and between the two liquefaction features. The vertical magnetic gradient may also show a subtle anomalous response in this area, however the results are inconclusive. The ground penetrating radar survey shows disruption of the subsurface stratigraphy beneath the liquefaction features, in particular sediment mounding beneath the silt ejection (‘‘silt volcano’’) and stratigraphic disruption beneath the piston failure. The results indicate how near-surface geophysics allow the characteristics of liquefaction in the subsurface to be better understood, which could aid remediation work following liquefaction-induced land damage and guide interpretation of geophysical surveys of paleoliquefaction features.

Research papers, University of Canterbury Library

We present initial results from a set of three-dimensional (3D) deterministic earthquake ground motion simulations for the northern Canterbury plains, Christchurch and the Banks Peninsula region, which explicitly incorporate the effects of the surface topography. The simu-lations are done using Hercules, an octree-based finite-element parallel software for solving 3D seismic wave propagation problems in heterogeneous media under kinematic faulting. We describe the efforts undertaken to couple Hercules with the South Island Velocity Model (SIVM), which included changes to the SIVM code in order to allow for single repetitive que-ries and thus achieve a seamless finite-element meshing process within the end-to-end ap-proach adopted in Hercules. We present our selection of the region of interest, which corre-sponds to an area of about 120 km × 120 km, with the 3D model reaching a depth of 60 km. Initial simulation parameters are set for relatively high minimum shear wave velocity and a low maximum frequency, which we are progressively scaling up as computing resources permit. While the effects of topography are typically more important at higher frequencies and low seismic velocities, even at this initial stage of our efforts (with a maximum of 2 Hz and a mini-mum of 500 m/s), it is possible to observe the importance of the topography in the response of some key locations within our model. To highlight these effects we compare the results of the 3D topographic model with respect to those of a flat (squashed) 3D model. We draw rele-vant conclusions from the study of topographic effects during earthquakes for this region and describe our plans for future work.

Research papers, University of Canterbury Library

Reconnaissance reports have highlighted the poor performance of non-ductile reinforced concrete buildings during the 2010-11 Canterbury earthquakes. These buildings are widely expected to result in significant losses under future earthquakes due to their seismic vulnerability and prevalence in densely populated urban areas. Wellington, for example, contains more than 70 pre-1970s multi-storey reinforced concrete buildings, ranging in height from 5 to 18 storeys. This study seeks to characterise the seismic performance and evaluate the likely failure modes of a typical pre-1970s reinforced concrete building in Wellington, by conducting advanced numerical simulations to evaluate its 3D nonlinear dynamic response. A representative 9-storey office building constructed in 1951 is chosen for this study and modelled in the finite element analysis programme DIANA, using a previously developed and validated approach to predict the failure modes of doubly reinforced walls with confined boundary regions. The structure consists of long walls and robust framing elements resulting in a stiff lateral load resisting system. Barbell-shaped walls are flanked by stiff columns with sufficient transverse reinforcement to serve as boundary regions. Curved shell elements are used to model the walls and their boundary columns, for which the steel reinforcement is explicitly modelled. Line elements are used to model the frame elements. The steel reinforcement in each member is explicitly modelled. The floor slabs are modelled using elastic shell elements. The model is analysed under short and long duration ground motions selected to match site specific targets in Wellington at the DBE and MCE intensity levels. The observed response of the building including drift profiles at each intesity level, strain localization effects around wall openings, and the influence of bidirectional loading are discussed.

Research papers, University of Canterbury Library

Recent tsunami events have highlighted the importance of effective tsunami risk management strategies (including land-use planning, structural and natural mitigation, warning systems, education and evacuation planning). However, the rarity of tsunami means that empirical data concerning reactions to tsunami warnings and evacuation behaviour is rare when compared to findings for evacuations from other hazards. More knowledge is required to document the full evacuation process, including responses to warnings, pre-evacuation actions, evacuation dynamics, and the return home. Tsunami evacuation modelling has the potential to inform evidence-based tsunami risk planning and response. However, to date, tsunami evacuation models have largely focused on the timings of evacuations, rather than behaviours of those evacuating. In this research, survey data was gathered from coastal communities in Banks Peninsula and Christchurch, New Zealand, relating to behaviours and actions during the November 14th 2016 Kaikōura earthquake tsunami. Survey questions asked about immediate actions following the earthquake shaking, reactions to tsunami warnings, pre-evacuation actions, evacuation dynamics and details on congestion. This data was analysed to characterise trends and identify factors that influenced evacuation actions and behaviour, and was further used to develop a realistic evacuation model prototype to evaluate the capacity of the roading network in Banks Peninsula during a tsunami evacuation. The evacuation model incorporated tsunami risk management strategies that have been implemented by local authorities, and exposure and vulnerability data, alongside the empirical data collected from the survey. This research enhances knowledge of tsunami evacuation behaviour and reactions to tsunami warnings, and can be used to refine evacuation planning to ensure that people can evacuate efficiently, thereby reducing their tsunami exposure and personal risk.

Research papers, University of Canterbury Library

Disaster recovery involves the restoration, repair and rejuvenation of both hard and soft infrastructure. In this report we present observationsfrom seven case studies of collaborative planning from post-earthquake Canterbury, each of which was selected as a means of better understanding ‘soft infrastructure for hard times’. Though our investigation is located within a disaster recovery context, we argue that the lessons learned are widely applicable. Our seven case studies highlighted that the nature of the planning process or journey is as important as the planning objective or destination. A focus on the journey can promote positive outcomes in and of itself through building enduring relationships, fostering diverse leaders, developing new skills and capabilities, and supporting translation and navigation. Collaborative planning depends as much upon emotional intelligence as it does technical competence, and we argue that having a collaborative attitude is more important than following prescriptive collaborative planning formulae. Being present and allowing plenty of time are also key. Although deliberation is often seen as an improvement on technocratic and expertdominated decision-making models, we suggest that the focus in the academic literature on communicative rationality and discursive democracy has led us to overlook other more active forms of planning that occur in various sites and settings. Instead, we offer an expanded understanding of what planning is, where it happens and who is involved. We also suggest more attention be given to values, particularly in terms of their role as a compass for navigating the terrain of decision-making in the collaborative planning process. We conclude with a revised model of a (collaborative) decision-making cycle that we suggest may be more appropriate when (re)building better homes, towns and cities.

Research papers, University of Canterbury Library

Tsunami events including the 2004 Indian Ocean Tsunami and the 2011 Tohoku Earthquake and Tsunami confirmed the need for Pacific-wide comprehensive risk mitigation and effective tsunami evacuation planning. New Zealand is highly exposed to tsunamis and continues to invest in tsunami risk awareness, readiness and response across the emergency management and science sectors. Evacuation is a vital risk reduction strategy for preventing tsunami casualties. Understanding how people respond to warnings and natural cues is an important element to improving evacuation modelling techniques. The relative rarity of tsunami events locally in Canterbury and also globally, means there is limited knowledge on tsunami evacuation behaviour, and tsunami evacuation planning has been largely informed by hurricane evacuations. This research aims to address this gap by analysing evacuation behaviour and movements of Kaikōura and Southshore/New Brighton (coastal suburb of Christchurch) residents following the 2016 Kaikōura earthquake. Stage 1 of the research is engaging with both these communities and relevant hazard management agencies, using a survey and community workshops to understand real-event evacuation behaviour during the 2016 Kaikōura earthquake and subsequent tsunami evacuations. The second stage is using the findings from stage 1 to inform an agent-based tsunami evacuation model, which is an approach that simulates of the movement of people during an evacuation response. This method improves on other evacuation modelling approaches to estimate evacuation times due to better representation of local population characteristics. The information provided by the communities will inform rules and interactions such as traffic congestion, evacuation delay times and routes taken to develop realistic tsunami evacuation models. This will allow emergency managers to more effectively prepare communities for future tsunami events, and will highlight recommended actions to increase the safety and efficiency of future tsunami evacuations.

Research papers, University of Canterbury Library

By closely examining the performance of a 22-storey steel framed building in Christchurch subject to various earthquakes over the past seven years, it is shown that a number of lessons can be learnt regarding the cost-effective consideration of non-structural elements. The first point in this work is that non-structural elements significantly affected the costs associated with repairing steel eccentrically braced frame (EBF) links. The decommissioning or rerouting of non-structural elements in the vicinity of damaged links in the case study building attributed to approximately half the total cost of their repair. Such costs could be significantly reduced if the original positioning of non-structural elements took account of the potential need to repair the EBF links. The second point highlighted is the role that pre-cast cladding apparently played on the distribution and type of damage in the building. Loss estimates obtained following the FEMA P-58 framework vary considerably when cladding is or isnt modelled, both because of changes to drift demands up the height of the building and because certain types of subsequent damage are likely to be cheaper to repair than others. Finally, costly repairs to non-structural partition walls were required not only after the moment magnitude 7.1 earthquake in 2010 but also in multiple aftershocks in the years that followed. Repair costs associated with aftershock events exceeded those from the main event, emphasizing the need to consider aftershocks within modern performance-based earthquake engineering and also the opportunity that exists to make more cost-effective repair strategies following damaging earthquakes.

Research papers, University of Canterbury Library

This thesis considers the presence and potential readings of graffiti and street art as part of the wider creative public landscape of Christchurch in the wake of the series of earthquakes that significantly disrupted the city physically and socially. While documenting a specific and unprecedented period of time in the city’s history, the prominence of graffiti and street art throughout the constantly changing landscape has also highlighted their popularity as increasingly entrenched additions to urban and suburban settings across the globe. In post-quake Christchurch, graffiti and street art have often displayed established tactics, techniques and styles while exploring and exposing the unique issues confronting this disrupted environment, illustrating both a transposable nature and the entwined relationship with the surrounding landscape evident in the conception of these art forms. The post-quake city has afforded graffiti and street art the opportunity to engage with a range of concepts: from the re-activation and re-population of the empty and abandoned spaces of the city, to commentaries on specific social and political issues, both angry and humorous, and notably the reconsideration of entrenched and evolving traditions, including the distinction between guerrilla and sanctioned work. The examples of graffiti and street art within this work range from the more immediate post-quake appearance of art in a group of affected suburbs, including the increasingly empty residential red-zone, to the use of the undefined spaces sweeping the central city, and even inside the Canterbury Museum, which housed the significant street art exhibition Rise in 2013-2014. These settings expose a number of themes, both distinctive and shared, that relate to both the post-disaster landscape and the concerns of graffiti and street art as art movements unavoidably entangled with public space.

Research papers, University of Canterbury Library

This poster presents work to date on ground motion simulation validation and inversion for the Canterbury, New Zealand region. Recent developments have focused on the collection of different earthquake sources and the verification of the SPECFEM3D software package in forward and inverse simulations. SPECFEM3D is an open source software package which simulates seismic wave propagation and performs adjoint tomography based upon the spectral-element method. Figure 2: Fence diagrams of shear wave velocities highlighting the salient features of the (a) 1D Canterbury velocity model, and (b) 3D Canterbury velocity model. Figure 5: Seismic sources and strong motion stations in the South Island of New Zealand, and corresponding ray paths of observed ground motions. Figure 3: Domain used for the 19th October 2010 Mw 4.8 case study event including the location of the seismic source and strong motion stations. By understanding the predictive and inversion capabilities of SPECFEM3D, the current 3D Canterbury Velocity Model can be iteratively improved to better predict the observed ground motions. This is achieved by minimizing the misfit between observed and simulated ground motions using the built-in optimization algorithm. Figure 1 shows the Canterbury Velocity Model domain considered including the locations of small-to-moderate Mw events [3-4.5], strong motion stations, and ray paths of observed ground motions. The area covered by the ray paths essentially indicates the area of the model which will be most affected by the waveform inversion. The seismic sources used in the ground motion simulations are centroid moment tensor solutions obtained from GeoNet. All earthquake ruptures are modelled as point sources with a Gaussian source time function. The minimum Mw limit is enforced to ensure good signal-to-noise ratio and well constrained source parameters. The maximum Mw limit is enforced to ensure the point source approximation is valid and to minimize off-fault nonlinear effects.