Search

found 129 results

Research papers, University of Canterbury Library

This paper provides a comparison between the strong ground motions observed in the Christchurch central business district in the 4 September 2010 Mw7.1 Darfield, and 22 February 2011 Mw6.3 Christchurch earthquakes with those observed in Tokyo during the 11 March 2011 Mw9.0 Tohoku earthquake. Despite Tokyo being located approximately 110km from the nearest part of the causative rupture, the ground motions observed from the Tohoku earthquake were strong enough to cause structural damage in Tokyo and also significant liquefaction to loose reclaimed soils in Tokyo bay. Comparisons include the strong motion time histories, response spectra, significant durations and arias intensity. The implications for large earthquakes in New Zealand are also briefly discussed.

Research papers, University of Canterbury Library

This article presents a subset of findings from a larger mixed methods CEISMIC1 funded study of twenty teachers’ earthquake experiences and post-earthquake adjustment eighteen months after a fatal earthquake struck Christchurch New Zealand, in the middle of a school day (Geonet Science, 2011; O’Toole & Friesen, 2016). This earthquake was a significant national and personal disaster with teachers’ emotional self-management as first responders being crucial to the students’ immediate safety (O’Toole & Friesen, 2016). At the beginning of their semi-structured interviews conducted eighteen months later, the teachers shared their earthquake stories (O’Toole & Friesen, 2016). They recalled the moment it struck in vivid detail, describing their experiences in terms of what they saw (destruction), heard (sonic boom, screaming children) and felt (fright and fear) as though they were back in that moment similar to flashbulb memory (Brown & Kulik, 1977). Their memories of the early aftermath were similarly vivid (Rubin & Kozin, 1984). This article focuses on how the mood meter (Brackett & Kremenitzer, 2011) was then used (with permission) to further explore the teachers’ perceived affect to enlighten their lived experiences.

Research papers, University of Canterbury Library

This paper describes the pounding damage sustained by buildings in the February 2011 Christchurch earthquake. Approximately 6% of buildings in Christchurch CBD were observed to have suffered some form of serious pounding damage. Typical and exceptional examples of building pounding damage are presented and discussed. Almost all building pounding damage occurred in unreinforced masonry buildings, highlighting their vulnerability to this phenomenon. Modern buildings were found to be vulnerable to pounding damage where overly stiff and strong ‘flashing’ components were installed in existing building separations. Soil variability is identified as a key aspect that amplifies the relative movement of buildings, and hence increases the likelihood of pounding damage. Building pounding damage is compared to the predicted critical pounding weaknesses that have been identified in previous analytical research.

Research papers, University of Canterbury Library

This paper describes the pounding damage sustained by buildings in the February 2011 Christchurch earthquake. Approximately 6% of buildings in Christchurch CBD were observed to have suffered some form of serious pounding damage. Typical and exceptional examples of building pounding damage are presented and discussed. Almost all building pounding damage occurred in unreinforced masonry buildings, highlighting their vulnerability to this phenomenon. Modern buildings were found to be vulnerable to pounding damage where overly stiff and strong ‘flashing’ components were installed in existing building separations. Soil variability is identified as a key aspect that amplifies the relative movement of buildings, and hence increases the likelihood of pounding damage. Building pounding damage is compared to the predicted critical pounding weaknesses that have been identified in previous analytical research.

Research papers, University of Canterbury Library

Heathcote Valley school strong motion station (HVSC) consistently recorded ground motions with higher intensities than nearby stations during the 2010-2011 Canterbury earthquakes. For example, as shown in Figure 1, for the 22 February 2011 Christchurch earthquake, peak ground acceleration at HVSC reached 1.4 g (horizontal) and 2 g (vertical), the largest ever recorded in New Zealand. Strong amplification of ground motions is expected at Heathcote Valley due to: 1) the high impedance contrast at the soil-rock interface, and 2) the interference of incident and surface waves within the valley. However, both conventional empirical ground motion prediction equations (GMPE) and the physics-based large scale ground motions simulations (with empirical site response) are ineffective in predicting such amplification due to their respective inherent limitations.

Research papers, University of Canterbury Library

The 4 September 2010 Darfield and 22 February 2011 Christchurch earthquakes caused significant damage to Christchurch and surrounding suburbs as a result of the widespread liquefaction and lateral spreading that occurred. Ground surveying-based field investigations were conducted following these two events in order to measure permanent ground displacements in areas significantly affected by lateral spreading. Data was analysed with respect to the distribution of lateral spreading vs. distance from the waterway, and the failure patterns observed. Two types of failure distribution patterns were observed, a typical distributed pattern and an atypical block failure. Differences in lateral spreading measurements along adjacent banks of the Avon River in the area of Dallington were also examined. The spreading patterns between the adjacent banks varied with the respective river geometry and/or geotechnical conditions at the banks.

Research papers, University of Canterbury Library

The magnitude 6.2 Christchurch earthquake struck the city of Christchurch at 12:51pm on February 22, 2011. The earthquake caused 186 fatalities, a large number of injuries, and resulted in widespread damage to the built environment, including significant disruption to lifeline networks and health care facilities. Critical facilities, such as public and private hospitals, government, non-government and private emergency services, physicians’ offices, clinics and others were severely impacted by this seismic event. Despite these challenges many systems were able to adapt and cope. This thesis presents the physical and functional impact of the Christchurch earthquake on the regional public healthcare system by analysing how it adapted to respond to the emergency and continued to provide health services. Firstly, it assesses the seismic performance of the facilities, mechanical and medical equipment, building contents, internal services and back-up resources. Secondly, it investigates the reduction of functionality for clinical and non-clinical services, induced by the structural and non-structural damage. Thirdly it assesses the impact on single facilities and the redundancy of the health system as a whole following damage to the road, power, water, and wastewater networks. Finally, it assesses the healthcare network's ability to operate under reduced and surged conditions. The effectiveness of a variety of seismic vulnerability preparedness and reduction methods are critically reviewed by comparing the observed performances with the predicted outcomes of the seismic vulnerability and disaster preparedness models. Original methodology is proposed in the thesis which was generated by adapting and building on existing methods. The methodology can be used to predict the geographical distribution of functional loss, the residual capacity and the patient transfer travel time for hospital networks following earthquakes. The methodology is used to define the factors which contributed to the overall resilence of the Canterbury hospital network and the areas which decreased the resilence. The results show that the factors which contributed to the resilence, as well as the factors which caused damage and functionality loss were difficult to foresee and plan for. The non-structural damage to utilities and suspended ceilings was far more disruptive to the provision of healthcare than the minor structural damage to buildings. The physical damage to the healthcare network reduced the capacity, which has further strained a health care system already under pressure. Providing the already high rate of occupancy prior to the Christchurch earthquake the Canterbury healthcare network has still provided adequate healthcare to the community.

Research papers, University of Canterbury Library

A magnitude 6.3 earthquake struck the city of Christchurch at 12:51pm on Tuesday 22 February 2011. The earthquake caused 182 fatalities, a large number of injuries, and resulted in widespread damage to the built environment, including significant disruption to the lifelines. The event created the largest lifeline disruption in a New Zealand city in 80 years, with much of the damage resulting from extensive and severe liquefaction in the Christchurch urban area. The Christchurch earthquake occurred when the Canterbury region and its lifelines systems were at the early stage of recovering from the 4 September 2010 Darfield (Canterbury) magnitude 7.1 earthquake. This paper describes the impact of the Christchurch earthquake on lifelines by briefly summarising the physical damage to the networks, the system performance and the operational response during the emergency management and the recovery phase. Special focus is given to the performance and management of the gas, electric and road networks and to the liquefaction ejecta clean-up operations that contributed to the rapid reinstatement of the functionality of many of the lifelines. The water and wastewater system performances are also summarized. Elements of resilience that contributed to good network performance or to efficient emergency and recovery management are highlighted in the paper.

Research papers, University of Canterbury Library

On Tuesday 22 February 2011, a 6.3 magnitude earthquake struck Christchurch, New Zealand’s second largest city. The ‘earthquake’ was in fact an aftershock to an earlier 7.1 magnitude earthquake that had occurred on Saturday 4 September 2010. There were a number of key differences between the two events that meant they had dramatically different results for Christchurch and its inhabitants. The 22 February 2011 event resulted in one of New Zealand’s worst natural disasters on record, with 185 fatalities occurring and hundreds more being injured. In addition, a large number of buildings either collapsed or were damaged to the point where they needed to be totally demolished. Since the initial earthquake in September 2010, a large amount of building-related research has been initiated in New Zealand to investigate the impact of the series of seismic events – the major focus of these research projects has been on seismic, structural and geotechnical engineering matters. One project, however, conducted jointly by the University of Canterbury, the Fire Protection Association of New Zealand and BRANZ, has focused on the performance of fire protection systems in the earthquakes and the effectiveness of the systems in the event of post-earthquake fires occurring. Fortunately, very few fires actually broke out following the series of earthquake events in Christchurch, but fire after earthquakes still has significant implications for the built environment in New Zealand, and the collaborative research has provided some invaluable insight into the potential threat posed by post-earthquake fires in buildings. As well as summarising the damage caused to fire protection systems, this paper discusses the flow-on effect for designing structures to withstand post-earthquake fires. One of the underlying issues that will be explored is the existing regulatory framework in New Zealand whereby structural earthquake design and structural design for fire are treated as discrete design scenarios.

Research papers, University of Canterbury Library

The Canterbury region of New Zealand experienced four earthquakes greater than MW 6.0 between September 2010 and December 2011. This study employs system dynamics as well as hazard, recovery and organisational literature and brings together data collected via surveys, case studies and interviews with organisations affected by the earthquakes. This is to show how systemic interactions and interdependencies within and between industry and geographic sectors affect their recovery post-disaster. The industry sectors in the study are: construction for its role in the rebuild, information and communication technology which is a regional high-growth industry, trucking for logistics, critical infrastructure, fast moving consumer goods (e.g. supermarkets) and hospitality to track recovery through non-discretionary and discretionary spend respectively. Also in the study are three urban centres including the region’s largest Central Business District, which has been inaccessible since the earthquake of 22 February 2011 to the time of writing in February 2013. This work also highlights how earthquake effects propagated between sectors and how sectors collaborated to mitigate difficulties such as product demand instability. Other interacting factors are identified that influence the recovery trajectories of the different industry sectors. These are resource availability, insurance payments, aid from central government, and timely and quality recovery information. This work demonstrates that in recovering from disaster it is crucial for organisations to identify what interacting factors could affect their operations. Also of importance are efforts to reduce the organisation’s vulnerability and increase their resilience to future crises and in day-to-day operations. Lastly, the multi-disciplinary approach to understanding the recovery and resilience of organisations and industry sectors after disaster, leads to a better understanding of effects as well as more effective recovery policy.

Research papers, University of Canterbury Library

This thesis is concerned with springs that appeared in the Hillsborough, Christchurch during the 2010-2011 Canterbury Earthquake Sequence, and which have continued to discharge groundwater to the surface to the present time. Investigations have evolved, measurements of discharge at selected sites, limited chemical data on anions and isotope analysis. The springs are associated with earthquake generated fissures (extensional) and compression zones, mostly in loess-colluvium soils of the valley floor and lower slopes. Extensive peat swamps are present in the Hillsborough valley, with a groundwater table at ~1m below ground. The first appearance of the ‘new’ springs took place following the Mw 7.1 Darfield Earthquake on 4 September 2010, and discharges increased both in volume and extent of the Christchurch Mw 6.3 Earthquake of 22 February 2011. Five monitored sites show flow rates in the range of 4.2-14.4L/min, which have remained effectively constant for the duration of the study (2014-2015). Water chemistry analysis shows that the groundwater discharges are sourced primarily from volcanic bedrocks which underlies the valley at depths ≤50m below ground level. Isotope values confirm similarities with bedrock-sourced groundwater, and the short term (hours-days) influence of extreme rainfall events. Cyclone Lusi (2013-2014) affects were monitored and showed recovery of the bedrock derived water signature within 72 hours. Close to the mouth of the valley sediments interfinger with Waimakiriri River derived alluvium bearing a distinct and different isotope signature. Some mixing is evident at certain locations, but it is not clear if there is any influence from the Huntsbury reservoir which failed in the Port Hills Earthquake (22 February 2011) and stored groundwater from the Christchurch artesian aquifer system (Riccarton Gravel).

Research papers, University of Canterbury Library

This paper discusses the seismic performance of the standard RC office building in Christchurch that is given as a structural design example in NZS3101, the concrete structures seismic standard in New Zealand. Firstly the push-over analysis was carried out to evaluate the lateral load carrying capacity of the RC building and then to compare that carrying capacity with the Japanese standard law. The estimated figures showed that the carrying capacity of the New Zealand standard RC office building of NZS3101:2006 was about one third of Japanese demanded carrying capacity. Secondly, time history analysis of the multi-mass system was performed to estimate the maximum response story drift angle using recorded ground motions. Finally, a three-dimensional analysis was carried out to estimate the response of the building to the 22nd February, 2011 Canterbury earthquake. The following outcomes were obtained. 1) The fundamental period of the example RC building is more than twice that of Japanese simplified calculation, 2) The example building’s maximum storey drift angle reached 2.5% under the recorded ground motions. The main purpose of this work is to provide background information of seismic design practice for the reconstruction of Christchurch.

Research papers, University of Canterbury Library

This article explores the scope of small-scale radio to create an auditory geography of place. It focuses on the short-term art radio project The Stadium Broadcast, which was staged in November 2014 in an earthquake-damaged sports stadium in Christchurch, New Zealand. Thousands of buildings and homes in Christchurch have been demolished since the February 22, 2011, earthquake, and by the time of the broadcast the stadium at Lancaster Park had been unused for three years and nine months, and its future was uncertain. The Stadium Broadcast constructed a radio memorial to the Park’s 130-year history through archival recordings, the memories of local people, observation of its current state, and a performed site-specificity. The Stadium Broadcast reflected on the spatiality of radio sounds and transmissions, memory, postdisaster transitionality, and the impermanence of place.

Research papers, University of Canterbury Library

The 2010-2011 Canterbury earthquake sequence was extremely damaging to structures in Christchurch and continues to have a large economic and social impact on the city and surrounding regions. In addition to strong ground shaking (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE), extensive liquefaction was observed, particularly in the 4 September 2010 Darfield earthquake and the 22 February 2011 Christchurch earthquake (Cubrinovski et al. 2010 BNZSEE; 2011 SRL). Large observed vertical ground motion amplitudes were recorded in the events in this sequence, with vertical peak ground accelerations of over 2.2g being observed at the Heathcote Valley Primary School during the Christchurch earthquake, and numerous other vertical motions exceeding 1.0g (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE; Fry et al 2011 SRL). Vertical peak ground accelerations of over 1.2g were observed in the Darfield earthquake.

Research papers, University of Canterbury Library

In February of 2011, an earthquake destroyed the only all-weather athletics track in the city of Christchurch (New Zealand). The track has yet to be replaced, and so since the loss of the track, local Christchurch athletes have only had a grass track for training and preparation for championship events. This paper considers what effect the loss of the training facility has had on the performance of athletes from Christchurch at national championship events. Not surprisingly, the paper finds that there has been a deterioration in the performance in events that are heavily dependent upon the all-weather surface. However, somewhat more surprisingly, the loss of the track appears to have caused a significant improvement in the performance of Christchurch athletes in events that, while on the standard athletics program, are not heavily track dependent.

Research papers, University of Canterbury Library

The extent of liquefaction in the eastern suburbs of Christchurch (Aranui, Bexley, Avonside, Avonhead and Dallington) from the February 22 2011 Earthquake resulted in extensive damage to in-ground waste water pipe systems. This caused a huge demand for portable toilets (or port-a-loos) and companies were importing them from outside Canterbury and in some instances from Australia. However, because they were deemed “assets of importance” under legislation, their allocation had to be coordinated by Civil Defence and Emergency Management (CDEM). Consequently, companies supplying them had to ignore requests from residents, businesses and rest homes; and commitments to large events outside of the city such as the Hamilton 400 V8 Supercars and the Pasifika Festival in Auckland were impacted. Frustrations started to show as neighbourhoods questioned the equity of the port-a-loos distribution. The Prime Minister was reported as reassuring citizens in the eastern suburbs in the first week of March that1 “a report about the distribution of port-a-loos and chemical toilets shows allocation has been fair. Key said he has asked Civil Defence about the distribution process and where the toilets been sent. He said there aren’t enough for the scale of the event but that is quickly being rectified and the need for toilets is being reassessed all the time.” Nonetheless, there still remained a deep sense of frustration and exclusion over the equity of the port-a-loos distribution. This study took the simple approach of mapping where those port-a-loos were on 11-12 March for several areas in the eastern suburbs and this suggested that their distribution was not equitable and was not well done. It reviews the predictive tools available for estimating damage to waste water pipes and asks the question could this situation have been better planned so that pot-a-loo locations could have been better prioritised? And finally it reviews the integral roles of communication and monitoring as part of disaster management strategy. The impression from this study is that other New Zealand urban centres could or would also be at risk and that work is need to developed more rational management approaches for disaster planning.

Research papers, University of Canterbury Library

This thesis explores how social entrepreneurship develops following a crisis. A review of literature finds that despite more than 15 years of academic attention, a common definition of social entrepreneurship remains elusive, with the field lacking the unified framework to set it apart as a specialised field of study. There are a variety of different conceptualisations of how social entrepreneurship works, and what it aims to achieve. The New Zealand context for social entrepreneurship is explored, finding that it receives little attention from the government and education sectors, despite its enormous potential. A lack of readily available information on social entrepreneurship leads most studies to investigate it as a phenomenon, and given the unique context of this research, it follows suit. Following from several authors’ recommendations that social entrepreneurship be subjected to further exploration, this is an exploratory, inductive study. A multiple case study is used to explore how social entrepreneurship develops following a natural disaster, using the example of the February 2011 earthquake in Christchurch, New Zealand. With little existing theory in this research area, this method is used to provide interesting examples of how the natural disaster, recognised as a crisis, can lead to business formation. Findings revealed the crisis initially triggered an altruistic response from social entrepreneurs, leading them to develop newly highlighted opportunities that were related to fields in which they had existing skills and expertise. In the process of developing these opportunities, initial altruistic motivations faded, with a new focus on the pursuit of a social mission and aims for survival and growth. The social missions addressed broad issues, and while they did address the crisis to differing extents, they were not confined to addressing its consequences. A framework is presented to explain how social entrepreneurship functions, once triggered in response to crisis. This framework supports existing literature that depicts social entrepreneurship as a continuous process, and illustrates the effects of a crisis as the catalyst for social business formation. In the aftermath of a crisis, when resources are likely to be scarce, social entrepreneurs play a significant role in the recovery process and their contributions should be highly valued both by government and relevant disaster response bodies. Policies that support social entrepreneurs and their ventures should be considered in the same way as commercial ventures.

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing an estimated 181 fatalities and severely damaging thousands of residential and commercial buildings. This paper presents a summary of some of the observations made by the NSF-sponsored GEER Team regarding the geotechnical/geologic aspects of this earthquake. The Team focused on documenting the occurrence and severity of liquefaction and lateral spreading, performance of building and bridge foundations, buried pipelines and levees, and significant rockfalls and landslides. Liquefaction was pervasive and caused extensive damage to residential properties, water and wastewater networks, high-rise buildings, and bridges. Entire neighborhoods subsided, resulting in flooding that caused further damage. Additionally, liquefaction and lateral spreading resulted in damage to bridges and to stretches of levees along the Waimakariri and Kaiapoi Rivers. Rockfalls and landslides in the Port Hills damaged several homes and caused several fatalities.

Research papers, University of Canterbury Library

The UC CEISMIC Canterbury Earthquakes Digital Archive was built following the devastating earthquakes that hit the Canterbury region in the South Island of New Zealand from 2010 – 2012. 185 people were killed in the 6.3 magnitude earthquake of February 22nd 2011, thousands of homes and businesses were destroyed, and the local community endured over 10,000 aftershocks. The program aims to document and protect the social, cultural, and intellectual legacy of the Canterbury community for the purposes of memorialization and enabling research. The nationally federated archive currently stores 75,000 items, ranging from audio and video interviews to images and official reports. Tens of thousands more items await ingestion. Significant lessons have been learned about data integration in post-disaster contexts, including but not limited to technical architecture, governance, ingestion process, and human ethics. The archive represents a model for future resilience-oriented data integration and preservation products.

Research papers, University of Canterbury Library

The Mw 6.2 February 22nd 2011 Christchurch earthquake (and others in the 2010-2011 Canterbury sequence) provided a unique opportunity to study the devastating effects of earthquakes first-hand and learn from them for future engineering applications. All major events in the Canterbury earthquake sequence caused widespread liquefaction throughout Christchurch’s eastern suburbs, particularly extensive and severe during the February 22nd event. Along large stretches of the Avon River banks (and to a lesser extent along the Heathcote) significant lateral spreading occurred, affecting bridges and the infrastructure they support. The first stage of this research involved conducting detailed field reconnaissance to document liquefaction and lateral spreading-induced damage to several case study bridges along the Avon River. The case study bridges cover a range of ages and construction types but all are reinforced concrete structures which have relatively short, stiff decks. These factors combined led to a characteristic deformation mechanism involving deck-pinning and abutment back-rotation with consequent damage to the abutment piles and slumping of the approaches. The second stage of the research involved using pseudo-static analysis, a simplified seismic modelling tool, to analyse two of the bridges. An advantage of pseudo-static analysis over more complicated modelling methods is that it uses conventional geotechnical data in its inputs, such as SPT blowcount and CPT cone resistance and local friction. Pseudo-static analysis can also be applied without excessive computational power or specialised knowledge, yet it has been shown to capture the basic mechanisms of pile behaviour. Single pile and whole bridge models were constructed for each bridge, and both cyclic and lateral spreading phases of loading were investigated. Parametric studies were carried out which varied the values of key parameters to identify their influence on pile response, and computed displacements and damages were compared with observations made in the field. It was shown that pseudo-static analysis was able to capture the characteristic damage mechanisms observed in the field, however the treatment of key parameters affecting pile response is of primary importance. Recommendations were made concerning the treatment of these governing parameters controlling pile response. In this way the future application of pseudo-static analysis as a tool for analysing and designing bridge pile foundations in liquefying and laterally spreading soils is enhanced.

Research papers, University of Canterbury Library

During 2010 and 2011, major earthquakes caused widespread damage and the deaths of 185 people in the city of Christchurch. Damaged school buildings resulted in state intervention which required amendment of the Education Act of 1989, and the development of ‘site sharing agreements’ in undamaged schools to cater for the needs of students whose schools had closed. An effective plan was also developed for student assessment through establishing an earthquake impaired derived grade process. Previous research into traditional explanations of educational inequalities in the United Kingdom, the United States of America, and New Zealand were reviewed through various processes within three educational inputs: the student, the school and the state. Research into the impacts of urban natural disasters on education and education inequalities found literature on post disaster education systems but nothing could be found that included performance data. The impacts of the Canterbury earthquakes on educational inequalities and achievement were analysed over 2009-2012. The baseline year was 2009, the year before the first earthquake, while 2012 is seen as the recovery year as no schools closed due to seismic events and there was no state intervention into the education of the region. National Certificate of Educational Achievement (NCEA) results levels 1-3 from thirty-four secondary schools in the greater Christchurch region were graphed and analysed. Regression analysis indicates; in 2009, educational inequalities existed with a strong positive relationship between a school’s decile rating and NCEA achievement. When schools were grouped into decile rankings (1-10) and their 2010 NCEA levels 1-3 results were compared with the previous year, the percentage of change indicates an overall lower NCEA achievement in 2010 across all deciles, but particularly in lower decile schools. By contrast, when 2011 NCEA results were compared with those of 2009, as a percentage of change, lower decile schools fared better. Non site sharing schools also achieved higher results than site sharing schools. State interventions, had however contributed towards student’s achieving national examinations and entry to university in 2011. When NCEA results for 2012 were compared to 2009 educational inequalities still exist, however in 2012 the positive relationship between decile rating and achievement is marginally weaker than in 2009. Human ethics approval was required to survey one Christchurch secondary school community of students (aged between 12 and 18), teachers and staff, parents and caregivers during October 2011. Participation was voluntary and without incentives, 154 completed questionnaires were received. The Canterbury earthquakes and aftershocks changed the lives of the research participants. This school community was displaced to another school due to the Christchurch earthquake on 22 February 2011. Research results are grouped under four geographical perspectives; spatial impacts, socio-economic impacts, displacement, and health and wellbeing. Further research possibilities include researching the lag effects from the Canterbury earthquakes on school age children.

Research papers, University of Canterbury Library

Novel Gel-push sampling was employed to obtain high quality samples of Christchurch sands from the Central Business District, at sites where liquefaction was observed in 22 February 2011, and 13 June 2011 earthquakes. The results of cyclic triaxial testing on selected undisturbed specimens of typical Christchurch sands are presented and compared to empirical procedures used by practitioners. This comparison suggests cyclic triaxial data may be conservative, and the Magnitude Scaling Factor used in empirical procedures may be unconservative for highly compressible soils during near source moderate to low magnitude events. Comparison to empirical triggering curves suggests the empirical method generally estimates the cyclic strength of Christchurch sands within a reasonable degree of accuracy as a screening evaluation tool for liquefaction hazard, however for sands with moderate to high fines content it may be significantly unconservative, highlighting the need for high quality sampling and testing on important projects where seismic performance is critical.

Research papers, University of Canterbury Library

This paper presents insights from recent advanced laboratory testing of undisturbed and reconstituted specimens of Christchurch silty-sands. The purpose of the testing was to establish the cyclic strength of silty-sands from sites in the Central Business District (CBD), where liquefaction was observed in 4 September 2010, 22 February 2011, and 13 June 2011. Similar overall strengths were obtained from undisturbed and reconstituted tests prepared at similar densities, albeit with higher variability for the reconstituted specimens. Reconstituted specimens exhibited distinctly different response in terms of lower compressibility during initial loading cycles, and exhibited a more brittle response when large strains were mobilised, particularly for samples with high fines content. Given the lower variability in natural sample response and the possibility of age-related strength to be significant for sites not subjected to earthquakes, high quality undisturbed samples are recommended over the use of reconstituted specimens to establish the cyclic strength of natural sands.

Research papers, University of Canterbury Library

On February 22, 2011, Christchurch-based journalists were jolted out of their normal work routine by a large 6.3 magnitude earthquake that killed 185 people, wrecked the city and forced reporters to reappraise their journalism. This study considers how the earthquake affected journalists’ relationship to the community, their use of sources and news selection. A theory of collective trauma is used to explain the changes that journalists made to their reporting practice. Specifically, Christchurch journalists had a greater identification and attachment to their audience post-earthquake. Journalists viewed themselves as part of the earthquake story, which prompted them to view sources differently, use those sources differently and see advocacy as a keystone of their news work after the disaster. This study adds to a growing scholarship about journalists and trauma, but focuses on what the event meant for local reporters’ choice of sources and news selection rather than measuring rates of psychological distress.

Research papers, University of Canterbury Library

The aim of this study is to explore the main contributors and obstacles to employee learning in the context of an alliance using the framework of a complex embedded multiple-case study. The two participant alliance partner organisations (APOs) are natural competitors that have joined to respond to urgent community needs of the city of Christchurch following the major earthquakes in September 2010 and February 2011. At the moment of the in-depth interviews, it had been about four years since those events occurred. There are continuous, unexpected circumstances that still require attention. However, the alliance has an expiry date, thus reinforcing the uncertain work environment. The main enablers found were participative, collaborative learning encouraged by leaders who embraced the alliance’s “learning organisational culture”. Employees generated innovations mostly in social interaction with others, while taking on responsibility for their learning by learning from mistakes. The main obstacle found is competition, as inhibitor of collaboratively sharing their knowledge out of fear of losing their competitiveness.

Research papers, University of Canterbury Library

This article argues that active coordination of research engagement after disasters has the potential to maximize research opportunities, improve research quality, increase end-user engagement, and manage escalating research activity to mitigate ethical risks posed to impacted populations. The focus is on the coordination of research activity after the 22nd February 2011 Mw6.2 Christchurch earthquake by the then newly-formed national research consortium, the Natural Hazards Research Platform, which included a social science research moratorium during the declared state of national emergency. Decisions defining this organisation’s functional and structural parameters are analyzed to identify lessons concerning the need for systematic approaches to the management of post disaster research, in collaboration with the response effort. Other lessons include the importance of involving an existing, broadly-based research consortium, ensuring that this consortium's coordination role is fully integrated into emergency management structures, and ensuring that all aspects of decision-making processes are transparent and easily accessed.

Research papers, University of Canterbury Library

The collapse of Redcliffs’ cliff in the 22 February 2011 and 13 June 2011 earthquakes were the first times ever a major failure incident occurred at Redcliffs in approximately 6000 years. This master’s thesis is a multidisciplinary engineering geological investigation sought to study these particular failure incidents, focusing on collecting the data necessary to explain the cause and effect of the cliff collapsing in the event of two major earthquakes. This study provides quantitative and qualitative data about the geotechnical attributes and engineering geological nature of the sea-cut cliff located at Redcliffs. Results from surveying the geology of Redcliffs show that the exposed lithology of the cliff face is a variably jointed rock body of welded and (relatively intact) unwelded ignimbrite, a predominantly massive unit of brecciated tuff, and a covering of wind-blown loess and soil deposit (commonly found throughout Canterbury) on top of the cliff. Moreover, detailing the external component of the slope profile shows that Redcliffs’ cliff is a 40 – 80 m cliff with two intersecting (NE and SE facing) slope aspects. The (remotely) measured geometry of the cliff face comprises of multiple outstanding gradients, averaging a slope angle of ~67 degrees (post-13 June 2011), where the steepest components are ~80 degrees, whereas the gentle sloping sections are ~44 degrees. The physical structure of Redcliffs’ cliff drastically changed after each collapse, whereby seismically induced alterations to the slope geometry resulted in material deposited on the talus at the base of the cliff. Prior to the first collapse, the variance of the gradient down the slope was minimal, with the SE Face being the most variable with up to three major gradients on one cross section. However, after each major collapse, the variability increased with more parts of the cliff face having more than one major gradient that is steeper or gentler than the remainder of the slope. The estimated volume of material lost as a result of the gradient changes was 28,267 m³ in February and 11,360 m³ in June 2011. In addition, surveys of the cliff top after the failure incidents revealed the development of fissures along the cliff edge. Monitoring 10 fissures over three months indicated that fissured by the cliff edge respond to intense seismicity (generally ≥ Mw 4) by widening. Redcliffs’ cliff collapsed on two separate occasions as a result of an accumulated amount of damage of the rock masses in the cliff (caused by weathering and erosion over time), and two Mw 6.2 trigger earthquakes which shook the Redcliffs and the surrounding area at a Peak Ground Acceleration (PGA) estimated to be around 2 g. The results of the theoretical study suggests that PGA levels felt on-site during both instances of failure are the result of three major factors: source of the quake and the site affected; topographic amplification of the ground movement; the short distance between the source and the cliff for both fault ruptures; the focus of seismic energy in the direction of thrust faulting along a path that intercepts Redcliffs (and the Port Hills). Ultimately, failure on the NE and SE Faces of Redcliffs’ cliff was concluded to be global as every part of the exposed cliff face deposited a significant volume of material on the talus at the base of the cliff, with the exception of one section on the NE Face. The cliff collapses was a concurrent process that is a single (non-monotonic) event that operated as a complex series of (primarily) toppling rock falls, some sliding of blocks, and slumping of the soil mantle on top of the cliff. The first collapse had a mixture of equivalent continua slope movement of the heavily weathered / damaged surface of the cliff face, and discontinuous slope movement of the jointed inner slope (behind the heavily weathered surface); whereas the second collapse resulted in only discontinuous slope movement on account of the freshly exposed cliff face that had damage to the rock masses, in the form of old and (relatively) new discontinuous fractures, induced by earthquakes and aftershocks leading up to the point of failure.

Research papers, University of Canterbury Library

The 4 September, 22 February, and 13 June earthquakes experienced in Canterbury, New Zealand would have been significant events individually. Together they present a complex and unprecedented challenge for Canterbury and New Zealand. The repetitive and protracted nature of these events has caused widespread building and infrastructure damage, strained organisations’ financial and human resources and challenged insurer and investor confidence. The impact of the earthquakes was even more damaging coming in the wake of the worst worldwide recession since the great depression of the 1930s. However, where there is disruption there is also opportunity. Businesses and other organisations will drive the physical, economic and social recovery of Canterbury, which will be a dynamic and long-term undertaking. Ongoing monitoring of the impacts, challenges and developments during the recovery is critical to maintaining momentum and making effective mid-course adjustments. This report provides a synthesis of research carried out by the Resilient Organisations (ResOrgs) Research Programme1 at the University of Canterbury and Recover Canterbury in collaboration with Opus Central Laboratories (part of Opus International Consultants). The report includes discussions on the general state of the economy as well as data from three surveys (two conducted by ResOrgs and one by Recover Canterbury) on business impacts of the earthquakes, population movements and related economic recovery issues. This research and report offers two primary benefits:

Research papers, University of Canterbury Library

Following exposure to trauma, stress reactions are initially adaptive. However, some individuals’ psychological response can become maladaptive with long-lasting impairment to functioning. Most people with initial symptoms of stress recover, and thus it is important to distinguish individuals who are at risk of continuing difficulties so that resources are allocated appropriately. Investigations of predictors of PTSD development have largely focused on relational and combat-related trauma, with very limited research looking at natural disasters. This study assessed the nature and severity of psychological difficulties experienced in 101 people seeking treatment following exposure to a significant earthquake that killed 185 people. Peritraumatic dissociation, posttraumatic stress symptoms, symptoms of anxiety, symptoms of depression, and social isolation were assessed. Descriptive analyses revealed the sample to be a highly impaired group, with particularly high levels of posttraumatic stress symptoms. Path analysis was used to determine whether the experience of some psychological difficulties predicted experience of others. As hypothesised, peritraumatic dissociation was found to predict posttraumatic stress symptoms and symptoms of anxiety. Posttraumatic stress symptoms then predicted symptoms of anxiety and symptoms of depression. Depression and anxiety were highly correlated. Contrary to expectations, social isolation was not significantly related to any other psychological variables. These findings justify the provision of psychological support following a natural disaster and suggest the benefit of assessing peritraumatic dissociation and posttraumatic stress symptoms soon after the event to identify people in need of monitoring and intervention.

Research papers, University of Canterbury Library

The potential for a gastroenteritis outbreak in a post-earthquake environment may increase because of compromised infrastructure services, contaminated liquefaction (lateral spreading and surface ejecta), and the presence of gastroenteritis agents in the drinking water network. A population in a post-earthquake environment might be seriously affected by gastroenteritis because it has a short incubation period (about 10 hours). The potential for a gastroenteritis outbreak in a post-earthquake environment may increase because of compromised infrastructure services, contaminated liquefaction (lateral spreading and surface ejecta), and the presence of gastroenteritis agents in the drinking water network. A population in a post-earthquake environment might be seriously affected by gastroenteritis because it has a short incubation period (about 10 hours). The aim of this multidisciplinary research was to retrospectively analyse the gastroenteritis prevalence following the February 22, 2011 earthquake in Christchurch. The first focus was to assess whether earthquake-induced infrastructure damage, liquefaction, and gastroenteritis agents spatially explained the recorded gastroenteritis cases over the period of 35 days following the February 22, 2011 earthquake in Christchurch. The gastroenteritis agents considered in this study were Escherichia coli found in the drinking water supply (MPN/100mL) and Non-Compliant Free Associated Chlorine (FAC-NC) (less than <0.02mg/L). The second focus was the protocols that averted a gastroenteritis outbreak at three Emergency Centres (ECs): Burnside High School Emergency Centre (BEC); Cowles Stadium Emergency Centre (CEC); and Linwood High School Emergency Centre (LEC). Using a mixed-method approach, gastroenteritis point prevalence and the considered factors were quantitatively analysed. The qualitative analysis involved interviewing 30 EC staff members. The data was evaluated by adopting the Grounded Theory (GT) approach. Spatial analysis of considered factors showed that highly damaged CAUs were statistically clustered as demonstrated by Moran’s I statistic and hot spot analysis. Further modelling showed that gastroenteritis point prevalence clustering could not be fully explained by infrastructure damage alone, and other factors influenced the recorded gastroenteritis point prevalence. However, the results of this research suggest that there was a tenuous, indirect relationship between recorded gastroenteritis point prevalence and the considered factors: earthquake-induced infrastructure damage, liquefaction and FAC-NC. Two ECs were opened as part of the post-earthquake response in areas with severe infrastructure damage and liquefaction (BEC and CEC). The third EC (CEC) provided important lessons that were learnt from the previous September 4, 2010 earthquake, and implemented after the February 22, 2011 earthquake. Two types of interwoven themes identified: direct and indirect. The direct themes were preventive protocols and indirect themes included type of EC building (school or a sports stadium), and EC staff. The main limitations of the research were Modifiable Areal Units (MAUP), data detection, and memory loss. This research provides a practical method that can be adapted to assess gastroenteritis risk in a post-earthquake environment. Thus, this mixed method approach can be used in other disaster contexts to study gastroenteritis prevalence, and can serve as an appendage to the existing framework for assessing infectious diseases. Furthermore, the lessons learnt from qualitative analysis can inform the current infectious disease management plans, designed for a post-disaster response in New Zealand and internationally Using a mixed-method approach, gastroenteritis point prevalence and the considered factors were quantitatively analysed. A damage profile was created by amalgamating different types of damage for the considered factors for each Census Area Unit (CAU) in Christchurch. The damage profile enabled the application of a variety of statistical methods which included Moran’s I , Hot Spot (HS) analysis, Spearman’s Rho, and Besag–York–Mollié Model using a range of software. The qualitative analysis involved interviewing 30 EC staff members. The data was evaluated by adopting the Grounded Theory (GT) approach. Spatial analysis of considered factors showed that highly damaged CAUs were statistically clustered as demonstrated by Moran’s I statistic and hot spot analysis. Further modelling showed that gastroenteritis point prevalence clustering could not be fully explained by infrastructure damage alone, and other factors influenced the recorded gastroenteritis point prevalence. However, the results of this research suggest that there was a tenuous, indirect relationship between recorded gastroenteritis point prevalence and the considered factors: earthquake-induced infrastructure damage, liquefaction and FAC-NC. Two ECs were opened as part of the post-earthquake response in areas with severe infrastructure damage and liquefaction (BEC and CEC). The third EC (CEC) provided important lessons that were learnt from the previous September 4, 2010 earthquake, and implemented after the February 22, 2011 earthquake. The ECs were selected to represent the Christchurch area, and were situated where potential for gastroenteritis was high. BEC represented the western side of Christchurch; whilst, CEC and LEC represented the eastern side, where the potential for gastroenteritis was high according to the outputs of the quantitative spatial modelling. Qualitative analysis from the interviews at the ECs revealed that evacuees were arriving at the ECs with gastroenteritis-like symptoms. Participants believed that those symptoms did not originate at the ECs. Two types of interwoven themes identified: direct and indirect. The direct themes were preventive protocols that included prolific use of hand sanitisers; surveillance; and the services offered. Indirect themes included the EC layout, type of EC building (school or a sports stadium), and EC staff. Indirect themes governed the quality and sustainability of the direct themes implemented, which in turn averted gastroenteritis outbreaks at the ECs. The main limitations of the research were Modifiable Areal Units (MAUP), data detection, and memory loss. It was concluded that gastroenteritis point prevalence following the February 22, 2011 earthquake could not be solely explained by earthquake-induced infrastructure damage, liquefaction, and gastroenteritis causative agents alone. However, this research provides a practical method that can be adapted to assess gastroenteritis risk in a post-earthquake environment. Creating a damage profile for each CAU and using spatial data analysis can isolate vulnerable areas, and qualitative data analysis provides localised information. Thus, this mixed method approach can be used in other disaster contexts to study gastroenteritis prevalence, and can serve as an appendage to the existing framework for assessing infectious diseases. Furthermore, the lessons learnt from qualitative analysis can inform the current infectious disease management plans, designed for a post-disaster response in New Zealand and internationally.