Search

found 713 results

Research papers, University of Canterbury Library

The city of Christchurch and its surrounds experienced widespread damage due to soil liquefaction induced by seismic shaking during the Canterbury earthquake sequence that began in September 2010 with the Mw7.1 Darfield earthquake. Prior to the start of this sequence, the city had a large network of strong motion stations (SMSs) installed, which were able to record a vast database of strong ground motions. This paper uses this database of strong ground motion recordings, observations of liquefaction manifestation at the ground surface, and data from a recently completed extensive geotechnical site investigation program at each SMS to assess a range of liquefaction evaluation procedures at the four SMSs in the Christchurch Central Business District (CBD). In general, the characteristics of the accelerograms recorded at each SMS correlated well with the liquefaction evaluation procedures, with low liquefaction factors of safety predicted at sites with clear liquefaction identifiers in the ground motions. However, at sites that likely liquefied at depth (as indicated by evaluation procedures and/or inferred from the characteristics of the recorded surface accelerograms), the presence of a non-liquefiable crust layer at many of the SMS locations prevented the manifestation of any surface effects. Because of this, there was not a good correlation between surface manifestation and two surface manifestation indices, the Liquefaction Potential Index (LPI) and the Liquefaction Severity Number (LSN).

Research papers, University of Canterbury Library

The Civil Defense understanding of the role of radio in disaster tends to focus on its value in providing essential information during and after the event. However this role is compromised when a station’s premises are destroyed, or rendered inaccessible by official cordons. The Radio Quake study examines how radio stations in Christchurch managed to resume broadcasting in the aftermath of the earthquake of February 22, 2011. In New Zealand’s heavily networked and commercialised radio environment there is a significant disparity between networked and independent stations’ broadcast commitments and resourcing. All Christchurch radio broadcasters were forced to improvise new locations, complex technical workarounds, and responsive styles of broadcasting after the February 22 earthquake, but the need to restore, or maintain, a full on air presence after the earthquake, rested entirely on often financially tenuous, locally owned and staffed independent radio: student, Iwi, community access, and local commercial stations. This paper will explore the resourcefulness and resilience of broadcasters riding out the aftershocks in hotels, motels, bedrooms, and a horse truck, using digital technologies in new ways to reimagine the practice of radio in Christchurch.

Research papers, University of Canterbury Library

We examined changes in psychological distress experienced by residents of Christchurch following two catastrophic earthquakes in late 2010 and early 2011, using data from the New Zealand Attitudes and Values Study (NZAVS), a national probability panel study of New Zealand adults. Analyses focused on the 267 participants (172 women, 95 men) who were living in central Christchurch in 2009 (i.e., before the Christchurch earthquakes), and who also provided complete responses to our yearly panel questionnaire conducted in late 2010 (largely between the two major earthquakes), late 2011, and late 2012. Levels of psychological distress were similar across the different regions of central Christchurch immediately following the September 2010 earthquake, and remained comparable across regions in 2011. By late 2012, however, average levels of psychological distress in the regions had diverged as a function of the amount of property damage experienced within each given region. Specifically, participants in the least damaged region (i.e., the Fendalton-Waimairi and Riccarton-Wigram wards) experienced greater drops in psychological distress than did those in the moderately damaged region (i.e., across the Spreydon-Heathcote and Hagley- Ferrymead wards). However, the level of psychological distress reported by participants in the most damaged region (i.e., across Shirley-Papanui and Burwood-Pegasus) were not significantly different to those in the least damaged region of central Christchurch. These findings suggest that different patterns of psychological recovery emerged across the different regions of Christchurch, with the moderately damaged region faring the worst, but only after the initial shock of the destruction had passed.

Research papers, University of Canterbury Library

War and natural disasters share many features including great loss of life, traumatised populations and haunting memories. The Christchurch earthquakes were the third most costly event of 2011 with total costs of up to $NZ30 billion. Many homes, communities, families and an established way of life have gone for ever. The paper comes from the Women’s Voices project that documents women’s narratives of earthquake trauma and loss and examines their profiles of emotional expression associated with coping. For these women in Christchurch, solace is not about talking experiences of suffering but by doing practical things that inform and are shaped by existing personal narratives. As they relayed this common arc, they also entered into national (and gendered) narrative themes of being practical, stoic, independent and resourceful in the face of tragedy and loss and so embody communal aspects of coping with loss and grief particular to the New Zealand even ‘the South Island settler’ identity narrative. These narratives suggest it useful to rethink key concepts that inform our understanding of coping with disaster and loss.

Research papers, University of Canterbury Library

This paper reports on a service-learning public journalism project in which postgraduate journalism students explore ways to engage with and report on diverse communities. Media scholars have argued that news media, and local newspapers in particular, must re-engage with their communities. Likewise, journalism studies scholars have urged educators to give journalism students greater opportunities to reflect on their work by getting out among journalism’s critics, often consumers or citizens concerned about content and the preparation of future journalists. The challenge for journalism educators is to prepare students for working in partnership with communities while also developing their ability to operate reflectively and critically within the expectations of the news media industry and wider society. The aim of this project has been to help students find ways to both listen and lead in a community, and also reflect on the challenges and critiques of community journalism practices. The project began in 2013 with stories about residents’ recovery following the devastating 2011 Canterbury earthquakes, and aimed to create stories that could contribute to community connection and engagement, and thereby resilience and recovery. The idea was inspired by research about post-disaster renewal that indicated that communities with strong social capital and social networks were more resilient and recovered more quickly and strongly. The project’s longer-term aim has been to explore community journalism practices that give greater power to citizens and communities by prioritising listening and processes of engagement. Over several months, students network with a community group to identify subjects with whom they will co-create a story, and then complete a story on which they must seek the feedback of their subject. Community leaders have described the project as a key example of how to do things “with people not to people”, and an outstanding contribution to the community-led component of Canterbury’s recovery. Analysis of student reflections, which are a key part of each year’s project, reveals the process of engaging with communities has helped students to map community dynamics, think more critically about source relationships, editorial choices and objectivity norms, and to develop a perspective on the diverse ways they can go about their journalism in the future. Each year, students partner with different groups and organisations, addressing different themes each time the project runs. For 2016, the programme proposes to develop the project in a new way, by not just exploring a community’s stories but also exploring its media needs and it aims to work with Christchurch’s new migrant Filipino community to develop the groundwork for a community media and/or communication platform, which Filipino community leaders say is a pressing need. For this iteration, journalism students will be set further research tasks aimed at deepening their ‘public listening’: they will conduct a survey of community members’ media use and needs as well as qualitative research interviews. It is hoped that the data collected will strengthen students’ understanding of their own journalism practice, as well as form the basis for work on developing media tools for minority groups who are generally poorly represented in mainstream media. In 2015, the journalism programme surveyed its community partners and held follow-up interviews with 13 of 18 story subjects to elicit further feedback on its news content and thereby deepen understanding of different community viewpoints. The survey and interview data revealed the project affected story subjects in a number of positive and interesting ways. Subjects said they appreciated the way student reporters took their time to build relationships and understand the context of the community groups with which they were involved, and contrasted this with their experience of professional journalists who had held pre-conceived assumptions about stories and/or rushed into interviews. As a direct consequence of the students’ approach, participants said they better trusted the student journalists to portray them accurately and fairly. Most were also encouraged by the positive recognition stories brought and several said the engagement process had helped their personal development, all of which had spin-offs for their community efforts. The presentation night that wraps up each year’s project, where community groups, story subjects and students come together to network and share the final stories, was cited as a significant positive aspect of the project and a great opportunity for community partners to connect with others doing similar work. Community feedback will be sought in future projects to inform and improve successive iterations.

Research papers, University of Canterbury Library

On 22 February 2011, the second day of the first semester, a devastating magnitude 6.2 earthquake struck the city of Christchurch forcing the campus of the University of Canterbury to close for several weeks. Here, we report on the sudden curriculum and assessment overhaul that needed to be implemented using two large, first-year introductory courses as case studies. We discuss the reasoning and justifications behind these changes, as well as the logistics of this process. We draw conclusions based on student feedback and assessments and formulate lessons learnt.

Research papers, University of Canterbury Library

Background and methodology The Mw 7.8, 14th November 2016 earthquake centred (item b, figure 1) in the Hurunui District of the South Island, New Zealand, damaged critical infrastructure across North Canterbury and Marlborough. We investigate the impacts to infrastructure and adaptations to the resulting service disruption in four small rural towns (figure 1): Culverden (a), Waiau (c), Ward (d) and Seddon (e). This is accomplished though literary research, interviews and geospatial analysis. Illustrating our methods, we have displayed here a Hurunui District hazard map (figure 2b) and select infrastructure inventories (figures 2a, 3).

Research papers, University of Canterbury Library

This study examines the performance of nonlinear total-stress wave-propagation site response analysis for modelling site effects in physics-based ground motion simulations of the 2010-2011 Canterbury, New Zealand earthquake sequence. This approach allows for explicit modeling of 3-dimensional ground motion phenomena at the regional scale, as well as detailed site effects and soil nonlinearity at the local scale. The approach is compared to a more commonly used empirical VS30 (30 m time-averaged shear wave velocity)-based method for computing site amplification as proposed by Graves and Pitarka (2010, 2015).

Research papers, University of Canterbury Library

Background This study examines the performance of site response analysis via nonlinear total-stress 1D wave-propagation for modelling site effects in physics-based ground motion simulations of the 2010-2011 Canterbury, New Zealand earthquake sequence. This approach allows for explicit modeling of 3D ground motion phenomena at the regional scale, as well as detailed nonlinear site effects at the local scale. The approach is compared to a more commonly used empirical VS30 (30 m time-averaged shear wave velocity)-based method for computing site amplification as proposed by Graves and Pitarka (2010, 2015), and to empirical ground motion prediction via a ground motion model (GMM).

Research papers, University of Canterbury Library

A one story, two bays, approximately half scaled, perimeter moment frame containing precastprestressed floor units was built and tested at the University of Canterbury to investigate the effect of precastprestressed floor units on the seismic performance of reinforced concrete moment resisting frame. This paper gives an overview of the experimental set up and summarizes the results obtained from the test. The results show that elongation in the beam plastic hinges is partially restrained by the prestressed floor, which increases the strength of the beams much more than that being specified in the codes around the world.

Research papers, University of Canterbury Library

Deep shear wave velocity (Vs) profiles (>400 m) were developed at 14 sites throughout Christchurch, New Zealand using surface wave methods. This paper focuses on the inversion of surface wave data collected at one of these sites, Hagley Park. This site is located on the deep soils of the Canterbury Plains, which consist of alluvial gravels inter-bedded with estuarine and marine sands, silts, clays and peats. Consequently, significant velocity contrasts exist at the interface between geologic formations. In order to develop realistic velocity models in this complex geologic environment, a-priori geotechnical and geologic data were used to identify the boundaries between geologic formations. This information aided in developing the layering for the inversion parameters. Moreover, empirical reference Vs profiles based on material type and confining pressure were used to develop realistic Vs ranges for each layer. Both the a-priori layering information and the reference Vs curves proved to be instrumental in generating realistic velocity models that account for the complex inter-bedded geology in the Canterbury Plains.

Research papers, University of Canterbury Library

There is an increasing recognition that the seismic performance of buildings will be affected by the behaviour of both structural and non-structural elements. In light of this, work has been progressing at the University of Canterbury to develop guidelines for the seismic assessment of commercial glazing systems. This paper reviews the seismic assessment guidelines prescribed in Section C10 of the MBIE building assessment guidelines. Subsequently, the C10 approach is used to assess the drift capacity of a number of glazing units recently tested at the University of Canterbury. Comparing the predicted and observed drift capacities, it would appear that the C10 guidelines may lead to nonconservative estimates of drift capacity. Furthermore, the experimental results indicate that watertightness may be lost at very low drift demands, suggesting that guidance for the assessment of serviceability performance would also be beneficial. As such, it is proposed that improved guidance be provided to assist engineers in considering the possible impact that glazing could have on the structural response of a building in a large earthquake.

Research papers, University of Canterbury Library

Following the 2010-2011 Canterbury (New Zealand) earthquake sequence, lightly reinforced wall structures in the Christchurch central business district were observed to form undesirable crack patterns in the plastic hinge region, while yield penetration either side of cracks and into development zones was less than predicted using empirical expressions. To some extent this structural behaviour was unexpected and has therefore demonstrated that there may be less confidence in the seismic performance of conventionally designed reinforced concrete (RC) structures than previously anticipated. This paper provides an observation-based comparison between the behaviour of RC structural components in laboratory testing and the unexpected structural behaviour of some case study buildings in Christchurch that formed concentrated inelastic deformations. The unexpected behaviour and poor overall seismic performance of ‘real’ buildings (compared to the behaviour of laboratory test specimens) was due to the localization of peak inelastic strains, which in some cases has arguably led to: (i) significantly less ductility capacity; (ii) less hysteretic energy dissipation; and (iii) the fracture of the longitudinal reinforcement. These observations have raised concerns about whether lightly reinforced wall structures can satisfy the performance objective of “Life Safety” at the Ultimate Limit State. The significance of these issues and potential consequences has prompted a review of potential problems with the testing conditions and procedures that are commonly used in seismic experimentations on RC structures. This paper attempts to revisit the principles of RC mechanics, in particular, the influence of loading history, concrete tensile strength, and the quantity of longitudinal reinforcement on the performance of real RC structures. Consideration of these issues in future research on the seismic performance of RC might improve the current confidence levels in newly designed conventional RC structures.

Research papers, University of Canterbury Library

Semi-empirical models based on in-situ geotechnical tests have become the standard of practice for predicting soil liquefaction. Since the inception of the “simplified” cyclic-stress model in 1971, variants based on various in-situ tests have been developed, including the Cone Penetration Test (CPT). More recently, prediction models based soley on remotely-sensed data were developed. Similar to systems that provide automated content on earthquake impacts, these “geospatial” models aim to predict liquefaction for rapid response and loss estimation using readily-available data. This data includes (i) common ground-motion intensity measures (e.g., PGA), which can either be provided in near-real-time following an earthquake, or predicted for a future event; and (ii) geospatial parameters derived from digital elevation models, which are used to infer characteristics of the subsurface relevent to liquefaction. However, the predictive capabilities of geospatial and geotechnical models have not been directly compared, which could elucidate techniques for improving the geospatial models, and which would provide a baseline for measuring improvements. Accordingly, this study assesses the realtive efficacy of liquefaction models based on geospatial vs. CPT data using 9,908 case-studies from the 2010-2016 Canterbury earthquakes. While the top-performing models are CPT-based, the geospatial models perform relatively well given their simplicity and low cost. Although further research is needed (e.g., to improve upon the performance of current models), the findings of this study suggest that geospatial models have the potential to provide valuable first-order predictions of liquefaction occurence and consequence. Towards this end, performance assessments of geospatial vs. geotechnical models are ongoing for more than 20 additional global earthquakes.

Research papers, University of Canterbury Library

Asset management in power systems is exercised to improve network reliability to provide confidence and security for customers and asset owners. While there are well-established reliability metrics that are used to measure and manage business-as-usual disruptions, an increasing appreciation of the consequences of low-probability high-impact events means that resilience is increasingly being factored into asset management in order to provide robustness and redundancy to components and wider networks. This is particularly important for electricity systems, given that a range of other infrastructure lifelines depend upon their operation. The 2010-2011 Canterbury Earthquake Sequence provides valuable insights into electricity system criticality and resilience in the face of severe earthquake impacts. While above-ground assets are relatively easy to monitor and repair, underground assets such as cables emplaced across wide areas in the distribution network are difficult to monitor, identify faults on, and repair. This study has characterised in detail the impacts to buried electricity cables in Christchurch resulting from seismically-induced ground deformation caused primarily by liquefaction and lateral spread. Primary modes of failure include cable bending, stretching, insulation damage, joint braking and, being pulled off other equipment such as substation connections. Performance and repair data have been compiled into a detailed geospatial database, which in combination with spatial models of peak ground acceleration, peak ground velocity and ground deformation, will be used to establish rigorous relationships between seismicity and performance. These metrics will be used to inform asset owners of network performance in future earthquakes, further assess component criticality, and provide resilience metrics.

Research papers, University of Canterbury Library

This paper provides an overview of the salient aspects of the dense array of ground motions observed in the 4 September 2010 Darfield and 22 February 2011 Christchurch earthquakes. Particular attention is given to inferred physical reasons for the observed ground motions, which include: (i) source features such as forward directivity effects; (ii) The effects of the Canterbury Plains sedimentary basin on basin-generated surface waves, and waveguide effects through the region; and (iii) the importance of local site response as evidenced by observations of large long period amplification and liquefaction. The significance of vertical ground motion intensity is also examined.

Research papers, University of Canterbury Library

This research briefing reports on the key findings of a computer-assisted text analysis of records from The Press newspaper related to the Earthquake Commission (EQC) from 2010 to 2019. The briefing has been prepared as a submission to the Public Inquiry into the Earthquake Commission. The aim of producing this research briefing is to provide the Public Inquiry with preliminary findings of a large-scale overview of media coverage on EQC and to identify and quantify key features and trends in public discourse about EQC over time. This research, which aggregates many stories and voices over time, offers a unique lens to view how EQC has been collectively represented, understood and experienced by the people of Canterbury.

Research papers, University of Canterbury Library

This report examines and compares case studies of labour market policy responses in APEC economies to natural disasters. It first reviews the policies and practice within APEC economies and internationally in managing the labour market effects of natural disasters. By using comparative case studies, the report then compares recent disaster events in the Asia-Pacific region, including: - the June 2013 Southern Alberta floods in Canada; - the 2010 and 2011 Queensland floods in Australia; - the 2010 and 2011 Canterbury earthquakes in New Zealand; - the 2011 Great East Japan Earthquake and Tsunami in Japan; and - the 2008 Wenchuan earthquake in China.

Research papers, University of Canterbury Library

This poster discusses several possible approaches by which the nonlinear response of surficial soils can be explicitly modelled in physics-based ground motion simulations, focusing on the relative advantages and limitations of the various methodologies. These methods include fully-coupled 3D simulation models that directly allow soil nonlinearity in surficial soils, the domain reduction method for decomposing the physical domain into multiple subdomains for separate simulation, conventional site response analysis uncoupled from the simulations, and finally, the use of simple empirically based site amplification factors We provide the methodology for an ongoing study to explicitly incorporate soil nonlinearity into hybrid broadband simulations of the 2010-2011 Canterbury, New Zealand earthquakes.

Research papers, University of Canterbury Library

This paper provides a brief discussion of observed strong ground motions from the 14 November 2016 Mw7.8 Kaikoura earthquake. Specific attention is given to examining observations in the near-source region where several ground motions exceeding 1.0g horizontal are recorded, as well as up to 2.7g in the vertical direction at one location. Ground motion response spectra in the near-source, North Canterbury, Marlborough and Wellington regions are also examined and compared with design levels. Observed spectral amplitudes are also compared with predictions from empirical and physics-based ground motion modelling.

Research papers, University of Canterbury Library

On 22 February 2011,a magnitude Mw 6.3 earthquake occurred with an epicenter located near Lyttelton at about 10km from Christchurch in Canterbury region on the South Island of New Zealand (Figure 1). Since this earthquake occurred in the midst of the aftershock activity which had continued since the 4 September 2010 Darfield Earthquake occurrence, it was considered to be an aftershock of the initial earthquake. Because of the short distance to the city and the shallower depth of the epicenter, this earthquake caused more significant damage to pipelines, traffic facilities, residential houses/properties and multi-story buildings in the central business district than the September 2010 Darfield Earthquake in spite of its smaller earthquake magnitude. Unfortunately, this earthquake resulted in significant number of casualties due to the collapse of multi-story buildings and unreinforced masonry structures in the city center of Christchurch. As of 4 April, 172 casualties were reported and the final death toll is expected to be 181. While it is extremely regrettable that Christchurch suffered a terrible number of victims, civil and geotechnical engineers have this hard-to-find opportunity to learn the response of real ground from two gigantic earthquakes which occurred in less than six months from each other. From geotechnical engineering point of view, it is interesting to discuss the widespread liquefaction in natural sediments, repeated liquefaction within short period and further damage to earth structures which have been damaged in the previous earthquake. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. The team included the following members: Misko Cubrinovski (University of Canterbury, NZ, Team Leader), Susumu Yasuda (Tokyo Denki University, Japan, JGS Team Leader), Rolando Orense (University of Auckland, NZ), Kohji Tokimatsu (Tokyo Institute of Technology, Japan), Ryosuke Uzuoka (Tokushima University, Japan), Takashi Kiyota (University of Tokyo, Japan), Yasuyo Hosono (Toyohashi University of Technology, Japan) and Suguru Yamada (University of Tokyo, Japan).

Research papers, University of Canterbury Library

Timber has experienced renewed interests as a sustainable building material in recent times. Although traditionally it has been the prime choice for residential construction in New Zealand and some other parts of the world, its use can be increased significantly in the future through a wider range of applications, particularly when adopting engineered wood material, Research has been started on the development of innovative solutions for multi-storey non-residential timber buildings in recent years and this study is part of that initiative. Application of timber in commercial and office spaces posed some challenges with requirements of large column-free spaces. The current construction practice with timber is not properly suited for structures with the aforementioned required characteristics and new type of structures has to be developed for this type of applications. Any new structural system has to have adequate capacity for carry the gravity and lateral loads due to occupancy and the environmental effects. Along with wind loading, one of the major sources of lateral loads is earthquakes. New Zealand, being located in a seismically active region, has significant risk of earthquake hazard specially in the central region of the country and any structure has be designed for the seismic loading appropriate for the locality. There have been some significant developments in precast concrete in terms of solutions for earthquake resistant structures in the last decade. The “Hybrid” concept combining post-tensioning and energy dissipating elements with structural members has been introduced in the late 1990s by the precast concrete industry to achieve moment-resistant connections based on dry jointed ductile connections. Recent research at the University of Canterbury has shown that the concept can be adopted for timber for similar applications. Hybrid timber frames using post-tensioned beams and dissipaters have the potential to allow longer spans and smaller cross sections than other forms of solid timber frames. Buildings with post-tensioned frames and walls can have larger column-free spaces which is a particular advantage for non-residential applications. While other researchers are focusing on whole structural systems, this research concentrated on the analysis and design of individual members and connections between members or between member and foundation. This thesis extends existing knowledge on the seismic behaviour and response of post-tensioned single walls, columns under uni-direction loads and small scale beam-column joint connections into the response and design of post-tensioned coupled walls, columns under bi-directional loading and full-scale beam-column joints, as well as to generate further insight into practical applications of the design concept for subassemblies. Extensive experimental investigation of walls, column and beam-column joints provided valuable confirmation of the satisfactory performance of these systems. In general, they all exhibited almost complete re-centering capacity and significant energy dissipation, without resulting into structural damage. The different configurations tested also demonstrated the flexibility in design and possibilities for applications in practical structures. Based on the experimental results, numerical models were developed and refined from previous literature in precast concrete jointed ductile connections to predict the behaviour of post-tensioned timber subassemblies. The calibrated models also suggest the values of relevant parameters for applications in further analysis and design. Section analyses involving those parameters are performed to develop procedures to calculate moment capacities of the subassemblies. The typical features and geometric configurations the different types of subassemblies are similar with the only major difference in the connection interfaces. With adoption of appropriate values representing the corresponding connection interface and incorporation of the details of geometry and configurations, moment capacities of all the subassemblies can be calculated with the same scheme. That is found to be true for both post-tensioned-only and hybrid specimens and also applied for both uni-directional and bi-directional loading. The common section analysis and moment capacity calculation procedure is applied in the general design approach for subassemblies.

Research papers, University of Canterbury Library

This paper outlines the deconstruction, redesign and reconstruction of a 2 storey timber building at the University of Canterbury, in Christchurch, New Zealand. The building consists of post tensioned timber frames and walls for lateral and gravity resistance, and timber concrete composite flooring. Originally a test specimen, the structure was subjected to extreme lateral displacements in the University structural testing laboratory. This large scale test of the structural form showed that post tensioned timber can withstand high levels of drift with little to no structural damage in addition to displaying full recentering characteristics with no residual displacements, a significant contributor to post earthquake cost. The building subsequently has been dismantled and reconstructed as offices for the Structural Timber Innovation Company (STIC). In doing this over 90% of the materials have been recycled which further enhances the sustainability of this construction system. The paper outlines the necessary steps to convert the structure from a test specimen into a functioning office building with minimal wastage and sufficient seismic resistance. The feasibility of recycling the structural system is examined using the key indicators of cost and time.

Research papers, University of Canterbury Library

In order to provide information related to seismic vulnerability of non-ductile reinforced concrete (RC) frame buildings, and as a complementary investigation on innovative feasible retrofit solutions developed in the past six years at the University of Canterbury on pre-19170 reinforced concrete buildings, a frame building representative of older construction practice was tested on the shake table. The specimen, 1/2.5 scale, consists of two 3-storey 2-bay asymmetric frames in parallel, one interior and one exterior, jointed together by transverse beams and floor slabs. The as-built (benchmark) specimen was first tested under increasing ground motion amplitudes using records from Loma Prieta Earthquake (California, 1989) and suffered significant damage at the upper floor, most of it due to lap splices failure. As a consequence, in a second stage, the specimen was repaired and modified by removing the concrete in the lap splice region, welding the column longitudinal bars, replacing the removed concrete with structural mortar, and injecting cracks with epoxy resin. The modified as-built specimen was then tested using data recorded during Darfield (New Zealand, 2010) and Maule (Chile, 2010) Earthquakes, with whom the specimen showed remarkably different responses attributed to the main variation in frequency content and duration. In this contribution, the seismic performance of the three series of experiments are presented and compared.

Research papers, University of Canterbury Library

An as-built reinforced concrete (RC) frame building designed and constructed according to pre-1970s code design construction practice has been recently tested on the shake table at the University of Canterbury. The specimen, 1/2.5 scaled version of the original prototype, consists of two 3-storey 2-bay asymmetric frames in parallel, one interior and one exterior, jointed together by transverse beams and floor slabs. Following the benchmark test, a retrofit intervention has been proposed to rehabilitate the tested specimen. In this paper, detailed information on the assessment and design of the seismic retrofit procedure using GFRP (glass fibre reinforced polymer) materials is given for the whole frame. Hierarchy of strength and sequence of events (damage mechanisms) in the panel zone region are evaluated using a moment-axial load (M-N) interaction performance domain, according to a performance-based retrofit philosophy. Specific limit states or design objectives are targeted with attention given to both strength and deformation limits. In addition, an innovative retrofit solution using FRP anchor dowels for the corner beam-column joints with slabs is proposed. Finally, in order to provide a practical tool for engineering practice, the retrofit procedure is provided in a step-by step flowchart fashion.

Research papers, University of Canterbury Library

An overview of the 22 February 2011 Christchurch earthquake is presented in the context of characterization of extreme/rare events. Focus is given to the earthquake source, observed near-source strong ground motions, and effects of site response, while structural response and consequences are mentioned for completeness. For each of the above topics comparisons and discussions are made with predictive models for each of phenomena considered. In light of the observations and predictive model comparisons, the author’s opinion on improving the characterization of such extreme/rare events, and their appropriate consideration in seismic design is presented

Research papers, University of Canterbury Library

Disasters can create the equivalent of 20 years of waste in only a few days. Disaster waste can have direct impacts on public health and safety, and on the environment. The management of such waste has a great direct cost to society in terms of labor, equipment, processing, transport and disposal. Disaster waste management also has indirect costs, in the sense that slow management can slow down a recovery, greatly affecting the ability of commerce and industry to re-start. In addition, a disaster can lead to the disruption of normal solid waste management systems, or result in inappropriate management that leads to expensive environmental remediation. Finally, there are social impacts implicit in disaster waste management decisions because of psychological impact we expect when waste is not cleared quickly or is cleared too quickly. The paper gives an overview of the challenge of disaster waste management, examining issues of waste quantity and composition; waste treatment; environmental, economic, and social impacts; health and safety matters; and planning. Christchurch, New Zealand, and the broader region of Canterbury were impacted during this research by a series of shallow earthquakes. This has led to the largest natural disaster emergency in New Zealand’s history, and the management of approximately 8 million tons of building and infrastructure debris has become a major issue. The paper provides an overview of the status of disaster waste management in Christchurch as a case study. A key conclusion is the vital role of planning in effective disaster waste management. In spite of the frequency of disasters, in most countries the ratio of time spent on planning for disaster waste management to the time spent on normal waste management is extremely low. Disaster waste management also requires improved education or training of those involved in response efforts. All solid waste professionals have a role to play to respond to the challenges of disaster waste management.