This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.
A series of undrained cyclic direct simple shear (DSS) tests on specimens of sandy silty soils are used to evaluate the effects of fines content, fabric and layered structure on the liquefaction response of sandy soils containing non-plastic fines. Test soils originate from shallow deposits in Christchurch, New Zealand, where severe and damaging manifestations of liquefaction occurred during the 2010-2011 Canterbury earthquakes. A procedure for reconstituting specimens by water sedimentation is employed. This specimen preparation technique involves first pluviation of soil through a water column, and then application of gentle vibrations to the mould (tapping) to prepare specimens with different initial densities. This procedure is applied to prepare uniform specimens, and layered specimens with a silt layer atop a sand layer. Cyclic DSS tests are performed on water-sedimented specimens of two sands, a silt, and sand-silt mixtures with different fines contents. Through this testing program, effects of density, time of vibration during preparation, fines content, and layered structure on cyclic behaviour and liquefaction resistance are investigated. Additional information necessary to characterise soil behaviour is provided by particle size distribution analyses, index void ratio testing, and Scanning Electronic Microscope imaging. The results of cyclic DSS tests show that, for all tested soils, specimens vibrated for longer period of time have lower void ratios, higher relative density, and greater liquefaction resistance. One of the tested sands undergoes significant increase in relative density and liquefaction resistance following prolonged vibration. The other sand exhibits lower increase in relative density and in liquefaction resistance when vibrated for the same period of time. Liquefaction resistance of sand-silt mixtures prepared using this latter sand shows a correlation with relative density irrespective of fines content. In general, however, magnitudes of changes in liquefaction resistance for given variations in vibration time, relative density, or void ratio vary depending on soils under consideration. Characterization based on maximum and minimum void ratios indicates that tested soils develop different structures as fines are added to their respective host sands. These structures influence initial specimen density, strains during consolidation, cyclic liquefaction resistance, and undrained cyclic response of each soil. The different structures are the outcome of differences in particle size distributions, average particle sizes, and particle shapes of the two host sands and of the different relationships between these properties and those of the silt. Fines content alone does not provide an effective characterization of the effects of these factors. Monotonic DSS tests are also performed on specimens prepared by water sedimentation, and on specimens prepared by moist tamping, to identify the critical state lines of tested soils. These critical state lines provide the basis for an alternative interpretation of cyclic DSS tests results within the critical state framework. It is shown that test results imply general consistency between observed cyclic and monotonic DSS soil response. The effects of specimen layering are scrutinised by comparing DSS test results for uniform and layered specimens of the same soils. In this case, only a limited number of tests is performed, and the range of densities considered for the layered specimens is also limited. Caution is therefore required in interpretation of their results. The liquefaction resistance of layered specimens appears to be influenced by the bottom sand layer, irrespective of the global fines content of the specimen. The presence of a layered structure does not result in significant differences in terms of liquefaction response with respect to uniform sand specimens. Cyclic triaxial data for Christchurch sandy silty soils available from previous studies are used to comparatively examine the behaviour observed in the tests of this study. The cyclic DSS liquefaction resistance of water-sedimented specimens is consistent with cyclic triaxial tests on undisturbed specimens performed by other investigators. The two data sets result in similar liquefaction triggering relationships for these soils. However, stress-strain response characteristics for the two types of specimens are different, and undisturbed triaxial specimen exhibit a slower rate of increase in shear strains compared to water-sedimented DSS specimens. This could be due to the greater influence of fabric of the undisturbed specimens.
The aim of this study is to explore the main contributors and obstacles to employee learning in the context of an alliance using the framework of a complex embedded multiple-case study. The two participant alliance partner organisations (APOs) are natural competitors that have joined to respond to urgent community needs of the city of Christchurch following the major earthquakes in September 2010 and February 2011. At the moment of the in-depth interviews, it had been about four years since those events occurred. There are continuous, unexpected circumstances that still require attention. However, the alliance has an expiry date, thus reinforcing the uncertain work environment. The main enablers found were participative, collaborative learning encouraged by leaders who embraced the alliance’s “learning organisational culture”. Employees generated innovations mostly in social interaction with others, while taking on responsibility for their learning by learning from mistakes. The main obstacle found is competition, as inhibitor of collaboratively sharing their knowledge out of fear of losing their competitiveness.
This participant-observation study explores the process of gathering and evaluating both financial and non-financial information and communication and transfer of that information within a medium-size Electrical Company in Christchurch, New Zealand. The previous literature has established the importance and the main characteristics of small and medium enterprises (SMEs), mainly studying manufacturing companies. However, there has been little research done in New Zealand on the overall communication process and the financial and non-financial information usage in a small-medium enterprise. Face-to-face interviews were carried out with all the office employees and two partners, along with a ten month participant-observation in the Electrical Company in order to understand how financial and non-financial information is communicated and processed in an SME. Also, research in an SME that has overcome the 2008 economic depression and several major earthquakes allows a deep understanding of lessons learned and what is valued by the Electrical Company. The research has found characteristics of this SME similar to those that have been mentioned in previous literature. However, the partners of the Electrical Company understand the importance of financial management and use financial information extensively to ensure the business expenses are under control. Moreover, the partners use more than just financial information to manage the company. They gather non-financial information through talking to their accountant, their customers and people in the same industry and they keenly follow the news on the rebuilding of Christchurch.
While some scholarship on refugee youth has focussed on leaving a place that is typically considered ‘home,’ there has been little attention to what ‘home’ means to them and how this is negotiated in the country of (re)settlement. This is particularly the case for girls and women. New Zealand research on refugee settlement has largely focussed on the economic integration of refugees. Although this research is essential, it runs the risk of overlooking the socio-cultural aspects of the resettlement experiences and renders partial our understanding of how particular generations and ethnic groups develop a sense of belonging to their adopted homeland. In order to address these research gaps, this thesis explores the experiences of 12 Afghan women, aged 19-29 years, of refugee background who relocated to Christchurch, New Zealand, during their childhood and early teenage years. This study employed semi-structured, one-to-one, in-depth interviews and photo-elicitation to encourage talk about participants’ experiences of leaving Afghanistan, often living in countries of protracted displacement (Iran and/or Pakistan) and making- and being-at-home in New Zealand. In this thesis, I explore the ways in which they frame Afghanistan, and the ways in which their experiences in Iran and Pakistan disrupt the dichotomisation of belonging in terms of ‘here’ (ancestral land) and ‘there’ (country of residence). Furthermore, I use affect theorising to analyse the participants’ expressions of resettlement and home in New Zealand. Feeling at home is as much about negotiating cultural and gendered identities in Western secular societies as it is about belonging to a particular community. Through their experiences of ‘living in two worlds’, the participants are able to strategically challenge cultural expectations without undermining their reputations as Muslims and as Afghan women. The participants discussed their emotional responses to double-displacement: one as a result of war and the other as a result of 2011 Canterbury earthquakes. Therefore, I suggest that for young Afghan women, Afghanistan was among several markers of home in a long embodied journey of (re)settlement.
Supplemental energy dissipation devices are increasingly used to protect structures, limit loads transferred to structural elements and absorbing significant response energy without sacrificial structural damage. Lead extrusion dampers are supplemental energy dissipation devices, where recent development of smaller volumetric size with high force capacities, called high force to volume (HF2V) devices, has seen deployment in a large series of scaled and full-scaled experiments, as well as in three new structures in Christchurch, NZ and San Francisco, USA. HF2V devices have previously been designed using limited precision models, so there is variation in force prediction capability. Further, while the overall resistive force is predicted, the knowledge of the relative contributions of the different internal reaction mechanisms to these overall resistive forces is lacking, limiting insight and predictive accuracy in device design. There is thus a major need for detailed design models to better understand force generation, and to aid precision device design. These outcomes would speed the overall design and implementation process for uptake and use, reducing the need for iterative experimental testing. Design parameters from 17 experimental HF2V device tests are used to create finite element models using ABAQUS. The analysis is run using ABAQUS Explicit, in multiple step times of 1 second with automatic increments, to balance higher accuracy and computational time. The output is obtained from the time- history output of the contact pressure forces including the normal and friction forces on the lead along the shaft. These values are used to calculate the resistive force on the shaft as it moves through the lead, and thus the device force. Results of these highly nonlinear, high strain analyses are compared to experimental device force results. Model errors compared to experimental results for all 17 devices ranged from 0% to 20% with a mean absolute error of 6.4%, indicating most errors were small. In particular, the standard error in manufacturing is SE = ±14%. In this case, 15 of 17 devices (88%) are within ±1SE (±14%) and 2 of 17 devices (12%) are within ±2SE (±28). These results show low errors and a distribution of errors compared to experimental results that are within experimental device construction variability. The overall modelling methodology is objective and repeatable, and thus generalizable. The exact same modelling approach is applied to all devices with only the device geometry changing. The results validate the overall approach with relatively low error, providing a general modelling methodology for accurate design of HF2V devices.
Elevated levels of trace elements in the environment are of great concern because of their persistence, and their high potential to harm living organisms. The exposure of aquatic biota to trace elements can lead to bioaccumulation, and toxicity can result. Furthermore, the transfer of these elements through food chains can result in exposure to human consumers. Sea-fill or coastal fill sites are among the major anthropogenic sources of trace elements to the surrounding marine environment. For example, in the Maldives, Thilafushi Island is a sea-fill site consisting of assorted municipal solid waste, with multiple potential sources of trace elements. However, there is limited data on environmental trace element levels in the Maldives, and although seafood is harvested from close to this site, there is no existing data regarding trace element levels in Maldivian diets. Following the Christchurch earthquakes of 2011,
The Canterbury Earthquake Sequence (CES) of 2010-2011 caused widespread liquefaction in many parts of Christchurch. Observations from the CES highlight some sites were liquefaction was predicted by the simplified method but did not manifest. There are a number of reasons why the simplified method may over-predict liquefaction, one of these is the dynamic interaction between soil layers within a stratified deposit. Soil layer interaction occurs through two key mechanisms; modification of the ground motion due to seismic waves passing through deep liquefied layers, and the effect of pore water seepage from an area of high excess pore water pressure to the surrounding soil. In this way, soil layer interaction can significantly alter the liquefaction behaviour and surface manifestation of soils subject to seismic loading. This research aimed to develop an understanding of how soil layer interaction, in particular ground motion modification, affects the development of excess pore water pressures and liquefaction manifestation in a soil deposit subject to seismic loading. A 1-D soil column time history Effective Stress Analysis (ESA) was conducted to give an in depth assessment of the development of pore pressures in a number of soil deposits. For this analysis, ground motions, soil profiles and model parameters were required for the ESA. Deconvolution of ground motions recorded at the surface during the CES was used to develop some acceleration time histories to input at the base of the soil-column model. An analysis of 55 sites around Christchurch, where detailed site investigations have been carried out, was then conducted to identify some simplified soil profiles and soil characteristics. From this analysis, four soil profiles representative of different levels of liquefaction manifestation were developed. These were; two thick uniform and vertically continuous sandy deposits that were representative of sites were liquefaction manifested in both the Mw 7.1 September 2010 and the Mw 6.3 February 2011 earthquakes, and two vertically discontinuous profiles with interlayered liquefiable and non-liquefiable layers representative of sites that did not manifest liquefaction in either the September 2010 or the February 2011 events. Model parameters were then developed for these four representative soil profiles through calibration of the constitutive model in element test simulations. Simulations were run for each of the four profiles subject to three levels of loading intensity. The results were analysed for the effect of soil layer interaction. These were then compared to a simplified triggering analysis for the same four profiles to determine where the simplified method was accurate in predicting soil liquefaction (for the continuous sandy deposits) and were it was less accurate (the vertically discontinuous deposits where soil layer interaction was a factor).
This paper outlines the deconstruction, redesign and reconstruction of a 2 storey timber building at the University of Canterbury, in Christchurch, New Zealand. The building consists of post tensioned timber frames and walls for lateral and gravity resistance, and timber concrete composite flooring. Originally a test specimen, the structure was subjected to extreme lateral displacements in the University structural testing laboratory. This large scale test of the structural form showed that post tensioned timber can withstand high levels of drift with little to no structural damage in addition to displaying full recentering characteristics with no residual displacements, a significant contributor to post earthquake cost. The building subsequently has been dismantled and reconstructed as offices for the Structural Timber Innovation Company (STIC). In doing this over 90% of the materials have been recycled which further enhances the sustainability of this construction system. The paper outlines the necessary steps to convert the structure from a test specimen into a functioning office building with minimal wastage and sufficient seismic resistance. The feasibility of recycling the structural system is examined using the key indicators of cost and time.
The Bachelor of Youth and Community Leadership (BYCL) was launched by the University of Canterbury (UC) in 2020. The genesis of this new degree was a Stage One service-learning course that, in turn, arose from the innovative and active response of many of the university’s students in the aftermath of the Christchurch earthquakes in 2010 and 2011. That innovative action saw the formation of the Student Volunteer Army as well as the adoption of a new set of Graduate Attributes for every undergraduate at the university. The idea of a specialist undergraduate degree that captured this unique chain of events began to take form from 2016. The resulting degree was developed as a flexible, transdisciplinary programme for young (and not so young) leaders wanting an academic grounding for their passions in community leadership and social action. In 2020, the inaugural intake of students commenced their studies. In this reflection, we discuss our experience of teaching within the BYCL for the first time, using a collaborative approach to teaching that we based on what we understand, individually and collectively, to draw on principles of democratic pedagogy.
A zone of active tectonism occurs in mid and north Canterbury, from the Rakaia to the Waipara Rivers, which coincides with seismicity concentrations and several Quaternary surface anomalies and is here defined as the Porters Pass Tectonic Zone. Although parallel to the Marlborough faults to the north, the lack of regional definition suggests this zone is much younger in its inception reflecting a southward movement of the plate rotation vector. The objectives of this study were to map the structures associated with this zone in the segment between the Rakaia and Waimakariri Rivers with detailed analysis concentrated in the upper Kawai Valley. Quaternary offsets on the main lineament of the Porters Pass Fault were traced through the area and evidence for the rate of movement, probable magnitudes and return periods of related seismic events was sought. The basement was found to be complicated by pre-existing deformation structures in Torlesse Group rocks which have been subsequently been re-activated or rotated by recent fault movement probably beginning in the Pleistocene. This phase is dominantly thrusting and uplift has lead to the erosion of most of the overlying sedimentary cover. Remnants of the Cret-Tertiary sediments still remain as fault-bounded packets. Evidence suggests that a change to development of a regional lateral shear associated with the Porters Pass Tectonic Zone transects the thrust system with complex interaction between the older reverse and new strike-slip faults. Offset rates along the segments of the Porters Pass Fault are not well constrained but are believed to be approximately in the range of 11-13 mm/year for at least the last 130,000 years. This rate is similar to other large faults in the Marlborough region. Two earthquake events have been identified and dated at 600 and 2000 years ago, with a magnitude of greater than 6.5. Evidence suggests characteristic earthquakes along the Porters Pass Fault are greater than Magnitude 7. This result has some major ramifications for the expected seismic hazards for nearby Christchurch.
The Acheron rock avalanche is located in the Red Hill valley almost 80 km west of Christchurch and is one of 42 greywacke-derived rock avalanches identified in the central Southern Alps. It overlies the Holocene active Porters Pass Fault; a component of the Porters Pass-Amberley Fault Zone which extends from the Rakaia River to beyond the Waimakariri River. The Porters Pass Fault is a dextral strike-slip fault system viewed as a series of discontinuous fault scarps. The location of the fault trace beneath the deposit suggests it may represent a possible source of seismic shaking resulting in the formation of the Acheron rock avalanche. The rock mass composition of the rock avalanche source scar is Torlesse Supergroup greywacke consisting of massive sandstone and thinly bedded mudstone sequences dipping steeply north into the centre of the source basin. A stability analysis identified potential instability along shallow north dipping planar defects, and steep south dipping toppling failure planes. The interaction of the defects with bedding is considered to have formed conditions for potential instability most likely triggered by a seismic event. The dTositional area of the rock avalanche covers 7.2 x 105 m2 with an estimated volume of 9 x 10 m3 The mobilised rock mass volume was calculated at 7.5 x 106 m3• Run out of the debris from the top of the source scar to the distal limit reached 3500m, descending over a vertical fall of almost 700m with an estimated Fahrboschung of 0.2. The run out of the rock avalanche displayed moderate to high mobility, travelling at an estimated maximum velocity of 140-160 km/hour. The rapid emplacement of the deposit is confirmed by highly fragmented internal composition and burial of forest vegetation New radiocarbon ages from buried wood retrieved from the base of Acheron rock avalanche deposit represents an emplacement age closely post-dating (Wk 12094) 1152 ± 51 years B.P. This differs significantly from a previous radiocarbon age of (NZ547) 500 ± 69 years B.P. and modal lichenometry and weathering-rind thickness ages of approximately 460 ± 10 yrs and 490 ± 50 years B.P. The new age shows no resemblance to an earthquake event around 700- 500 years B.P. on the Porters Pass-Amberley Fault Zone. The DAN run out simulation using a friction model rheology successfully replicated the long run out and velocity of the Acheron rock avalanche using a frictron angle of 27° and high earth pressure coefficients of 5.5, 5.2, and 5.9. The elevated earth pressure coefficients represent dispersive pressures derived from dynamic fragmentation of the debris within the mobile rock avalanche, supporting the hypothesis of Davies and McSaveney (2002). The DAN model has potential applications for areas prone to large-scale instability in the elevated slopes and steep waterways of the Southern Alps. A paleoseismic investigation of a newly identified scarp of the Porters Pass Fault partially buried by the rock avalanche was conducted to identify any evidence of a coseismic relationship to the Acheron rock avalanche. This identified three-four fault traces striking at 078°, and a sag pond displaying a sequence of overbank deposits containing two buried soils representing an earthquake event horizon. A 40cm vertical offset of the ponded sediment and lower buried soil horizqn was recorded, which was dated to (Wk 13112 charcoal in palosol) 653 ± 54 years B.P. and (Wk 13034 palosol) 661 ± 34 years B.P. The evidence indicates a fault rupture occurred along the Porters Pass Fault, west of Porters Pass most likely extending to the Red Lakes terraces, post-dating 700 years B.P., resulting in 40cm of vertical displacement and an unknown component of dextral strike slip movement. This event post dates the event one (1000 ± 100 years B.P) at Porters Pass previously considered to represent the most recent rupture along the fault line. This points to a probable source for resetting of the modal weathering-rind thicknesses and lichen size populations in the Red Hill valley and possibly the Red Lakes terraces. These results suggest careful consideration must be given to the geomorphic and paleoseismic history of a specific site when applying surface dating techniques and furthermore the origin of dates used in literature and their useful range should be verified. An event at 700-500 years B.P did not trigger the Acheron rock avalanche as previously assumed supporting Howard's conclusions. The lack of similar aged rupture evidence in either of the Porters Pass and Coleridge trenches supports Howard's hypothesis of segmentation of the Porters Pass Fault; where rupture occurs along one fault segment but not along another. The new rock avalanche age closely post-dating 1200-1100 years B.P. resembles the poorly constrained event one rupture age of 1700-800 years B.P for the Porters Pass Fault and the tighter constrained Round Top event of 1010 ± 50 years B.P. on the Alpine Fault. Eight other rock avalanche deposits spread across the central Southern Alps also resemble the new ages however are unable to be assigned specific earthquake events due to the large associated error bars of± 270 years. This clustering of ages does represent compelling lines of evidence for large magnitude earthquake events occurring over the central Southern Alps. The presence of a rock avalanche deposit does not signify an earthquake based on the historical evidence in the Southern Alps however clustering of ages does suggest that large Mw >7 earthquakes occurred across the Southern Alps between 1200-900 years BP.
This paper presents the probabilistic seismic performance and loss assessment of an actual bridge– foundation–soil system, the Fitzgerald Avenue twin bridges in Christchurch, New Zealand. A two-dimensional finite element model of the longitudinal direction of the system is modelled using advanced soil and structural constitutive models. Ground motions at multiple levels of intensity are selected based on the seismic hazard deaggregation at the site. Based on rigorous examination of several deterministic analyses, engineering demand parameters (EDP’s), which capture the global and local demand, and consequent damage to the bridge and foundation are determined. A probabilistic seismic loss assessment of the structure considering both direct repair and loss of functionality consequences was performed to holistically assess the seismi risk of the system. It was found that the non-horizontal stratification of the soils, liquefaction, and soil–structure interaction had pronounced effects on the seismic demand distribution of the bridge components, of which the north abutment piles and central pier were critical in the systems seismic performance. The consequences due to loss of functionality of the bridge during repair were significantly larger than the direct repair costs, with over a 2% in 50 year probability of the total loss exceeding twice the book-value of the structure.
The Avon-Heathcote Estuary, located in Christchurch, New Zealand, experienced coseismic deformation as a result of the February 22nd 2011 Christchurch Earthquake. The deformation is reflected as subsidence in the northern area and uplift in the southern area of the Estuary, in addition to sand volcanoes which forced up sediment throughout the floor of the Estuary altering estuary bed height and tidal flow. The first part of the research involved quantifying the change in the modern benthic foraminifera distribution as a result of the coseismic deformation caused by the February 22nd 2011 earthquake. By analysing the taxa present immediately post deformation and then the taxa present 2 years post deformation a comparison of the benthic foraminifera distribution can be made of the pre and post deformation. Both the northern and the southern areas of the Estuary were sampled to establish whether foraminifera faunas migrated landward or seaward as a result of subsidence and uplift experienced in different areas. There was no statistical change in overall species distribution in the two year time period since the coseismic deformation occurred, however, there were some noticeable changes in foraminifera distribution at BSNS-Z3 showing a landward migration of taxa. The changes that were predicted to occur as a result of the deformation of the Estuary are taking longer than expected to show up in the foraminiferal record and a longer time period is needed to establish these changes. The second stage involved establishing the modern distribution of foraminifera at Settlers Reserve in the southern area of the Avon-Heathcote Estuary by detailed sampling along a 160 m transect. Foraminifera are sensitive to environmental parameters, tidal height, grainsize, pH and salinity were recorded to evaluate the effect these parameters have on distribution. Bray-Curtis two-way cluster analysis was primarily used to assess the distribution pattern of foraminifera. The modern foraminifera distribution is comparable to that of the modern day New Zealand brackish-water benthic foraminifera distribution and includes species not yet found in other studies of the Avon-Heathcote Estuary. Differences in sampling techniques and the restricted intertidal marshland area where the transect samples were collected account for some of the differences seen between this model and past foraminifera studies. xiii The final stage involved sampling a 2.20 m core collected from Settlers Reserve and using the modern foraminiferal distribution to establish a foraminiferal history of Settlers Reserve. As foraminifera are sensitive to tidal height they may record past coseismic deformation events and the core was used to ascertain whether record of past coseismic deformation is preserved in Settlers Reserve sediments. Sampling the core for foraminifera, grainsize, trace metals and carbon material helped to build a story of estuary development. Using the modern foraminiferal distribution and the tidal height information collected, a down core model of past tidal heights was established to determine past rates of change. Foraminifera are not well preserved throughout the core, however, a sudden relative rise in sea level is recorded between 0.25 m and 0.85 m. Using trace metal and isotope analysis to develop an age profile, this sea level rise is interpreted to record coseismic subsidence associated with a palaeoseismic event in the early 1900’s. Overall, although the Avon-Heathcote Estuary experienced clear coseismic deformation as a result of the 22nd of February 2011 earthquake, modern changes in foraminiferal distribution cannot yet be tracked, however, past seismic deformation is identified in a core. The modern transect describes the foraminifera distribution which identifies species that have not been identified in the Avon-Heathcote Estuary before. This thesis enhances the current knowledge of the Avon-Heathcote Estuary and is a baseline for future studies.
Over the last six years, Canterbury residents have lived through two major earthquakes and thousands of aftershocks, with such events negatively impacting psychological health. Research shows rates of post-traumatic stress symptoms in children have doubled post-quake, and a classroom containing children who are experiencing chronically high physiological arousal has been shown to be a stressful environment for teachers. Such stress therefore negatively impacts teachers’ ability to sleep well, meaning many Christchurch teachers may suffer from insomnia, a debilitating condition leading to psychological distress and often comorbid with other mental health conditions. The present research sought to investigate the use of a broadspectrum micronutrient formula called EMPowerplus (EMP+) for chronic insomnia in teachers. This study examined the effect of EMP+ over an 8-10 week period using a multiple-baseline design with placebo. Seventeen teachers were randomized to one of three baseline sequences where they completed a one week baseline period, before receiving five, nine, or 14 days, of placebo as well as 8-10 weeks of the micronutrient formula. After completion of the trial, a three-month follow up was conducted. All participants completed the trial, and results showed a statistically reliable and clinically significant decrease in insomnia severity (Cohen’s dav = - 1.37), on at least one or more aspects of the sleep diary, and on emotional exhaustion (Cohen’s dav = -1.08). EMP+ also statistically significantly reduced insomnia severity compared to placebo (Cohen’s dav = -0.66). Statistically significant reduction was not seen in stress, anxiety and depression scores as compared to placebo, and these levels were not generally clinically raised to begin with. Sixteen out of 17 participants were compliant, and side effects were generally mild and transitory. The current study provides evidence for the beneficial effect of micronutrient supplementation on chronic insomnia in Christchurch teachers working in a stressful environment. Future research incorporating measurement of nutritional intake and proinflammatory biomarkers, as well as conducting comparisons to other conventional treatments, is recommended.
School travel is a major aspect of a young person’s everyday activity. The relationship between the built environment that youth experience on their way to and from school, influences a number of factors including their development, health and wellbeing. This is especially important in low income areas where the built environment is often poorer, but the need for it to be high quality and accessible is greater. This study focusses on the community of Aranui, a relatively low income suburb in Christchurch, New Zealand. It pays particular attention to Haeata Community Campus, a state school of just under 800 pupils from year one through to year thirteen (ages 5-18). The campus opened in 2017 following the closure of four local schools (three primary and one secondary), as part of the New Zealand Government’s Education Renewal scheme following the Christchurch earthquakes of 2010/11. Dedicated effort toward understanding the local built environment, and subsequent travel patterns has been argued to be insufficiently considered. The key focus of this research was to understand the importance of the local environment in encouraging active school travel. The present study combines geospatial analysis, quantitative survey software Maptionnaire, and statistical models to explore the features of the local environment that influence school travel behaviour. Key findings suggest that distance to school and parental control are the most significant predictors of active transport in the study sample. Almost 75% of students live within two kilometres of the school, yet less than 40% utilise active transport. Parental control may be the key contributing factor to the disproportionate private vehicle use. However, active school travel is acknowledged as a complex process that is the product of many individual, household, and local environment factors. To see increased active transport uptake, the local environment needs to be of greater quality. Meaning that the built environment should be improved to be youth friendly, with greater walkability and safe, accessible cycling infrastructure.
Based on the recent developments on alternative jointed ductile dry connections for concrete multistorey buildings, the paper aims to extend and propose similar innovative seismic connections for laminated veneer lumber (LVL) timber buildings. The dry connections herein proposed are characterised by a sort of rocking occurring at the section interface of the structural elements when an earthquake occurs; unbonded post-tensioned techniques and dissipative devices respectively provide self-centring and dissipation capacities. The paper illustrates some experimental investigations of an extensive campaign, still undergoing at the University of Canterbury Christchurch, NZ) are herein presented and critically discussed. In particular, results of cyclic quasi-static testing on exterior beam-column subassemblies and wall-to-foundation systems are herein presented; preliminary results of pseudo-dynamic testing on wall-to-foundation specimens are also illustrated. The research investigations confirmed the enhanced seismic performance of these systems/connections; three key aspects , as the no-damageability in the structural elements, typical “flag-shape” cyclic behaviour (with self-centring and dissipation capacity), negligible residual deformations, i.e. limited costs of repair, joined with low mass, flexibility of design and rapidity of construction LVL timber, all create the potential for an increased use in low-rise multistorey buildings.
This research aims to explore how business models of SMEs revolve in the face of a crisis to be resilient. The business model canvas was used as a tool to analyse business models of SMEs in Greater Christchurch. The purpose was to evaluate the changes SMEs brought in their business models after hit by a series of earthquake in 2010 and 2011. The idea was to conduct interviews of business owners and analyse using grounded theory methods. Because this method is iterative, a tentative theoretical framework was proposed, half way through the data collection. It was realised that owner specific characteristics were more prominent in the data than the elements business model. Although, SMEs in this study experienced several operational changes in their business models such as change of location and modification of payment terms. However, the suggested framework highlights how owner specific attributes influence the survival of a small business. Small businesses and their owners are extremely interrelated that the business models personify the owner specific characteristics. In other words, the adaptation of the business model reflects the extent to which the owner possess these attributes. These attributes are (a) Mindsets – the attitude and optimism of business owner; (b) Adaptive coping – the ability of business owner to take corrective actions; and (c) Social capital – the network of a business owner, including family, friends, neighbours and business partners.
Meeting the Sustainable Development Goals by 2030 involves transformational change in the business of business, and social enterprises can lead the way in such change. We studied Cultivate, one such social enterprise in Christchurch, New Zealand, a city still recovering from the 2010/11 Canterbury earthquakes. Cultivate works with vulnerable youth to transform donated compost into garden vegetables for local restaurants and businesses. Cultivate’s objectives align with SDG concerns with poverty and hunger (1 & 2), social protection (3 & 4), and sustainable human settlements (6 & 11). Like many grant-supported organisations, Cultivate is required to track and measure its progress. Given the organisation’s holistic objectives, however, adequately accounting for its impact reporting is not straightforward. Our action research project engaged Cultivate staff and youth-workers to generate meaningful ways of measuring impact. Elaborating the Community Economy Return on Investment tool (CEROI), we explore how participatory audit processes can capture impacts on individuals, organisations, and the wider community in ways that extend capacities to act collectively. We conclude that Cultivate and social enterprises like it offer insights regarding how to align values and practices, commercial activity and wellbeing in ways that accrue to individuals, organisations and the broader civic-community.
Between 2010 and 2011, Canterbury experienced a series of four large earthquake events with associated aftershocks which caused widespread damage to residential and commercial infrastructure. Fine grained and uncompacted alluvial soils, typical to the Canterbury outwash plains, were exposed to high peak ground acceleration (PGA) during these events. This rapid increase in PGA induced cyclic strain softening and liquefaction in the saturated, near surface alluvial soils. Extensive research into understanding the response of soils in Canterbury to dynamic loading has since occurred. The Earthquake Commission (EQC), the Ministry of Business and Employment (MBIE), and the Christchurch City Council (CCC) have quantified the potential hazards associated with future seismic events. Theses bodies have tested numerous ground improvement design methods, and subsequently are at the forefront of the Canterbury recovery and rebuild process. Deep Soil Mixing (DSM) has been proven as a viable ground improvement foundation method used to enhance in situ soils by increasing stiffness and positively altering in situ soil characteristics. However, current industry practice for confirming the effectiveness of the DSM method involves specific laboratory and absolute soil test methods associated with the mixed column element itself. Currently, the response of the soil around the columns to DSM installation is poorly understood. This research aims to understand and quantify the effects of DSM columns on near surface alluvial soils between the DSM columns though the implementation of standardised empirical soil test methods. These soil strength properties and ground improvement changes have been investigated using shear wave velocity (Vs), soil behaviour and density response methods. The results of the three different empirical tests indicated a consistent improvement within the ground around the DSM columns in sandier soils. By contrast, cohesive silty soils portrayed less of a consistent response to DSM, although still recorded increases. Generally, within the tests completed 50 mm from the column edge, the soil response indicated a deterioration to DSM. This is likely to be a result of the destruction of the soil fabric as the stress and strain of DSM is applied to the un‐mixed in situ soils. The results suggest that during the installation of DSM columns, a positive ground effect occurs in a similar way to other methods of ground improvement. However, further research, including additional testing following this empirical method, laboratory testing and finite 2D and 3D modelling, would be useful to quantify, in detail, how in situ soils respond and how practitioners should consider these test results in their designs. This thesis begins to evaluate how alluvial soils tend to respond to DSM. Conducting more testing on the research site, on other sites in Christchurch, and around the world, would provide a more complete data set to confirm the results of this research and enable further evaluation. Completing this additional research could help geotechnical DSM practitioners to use standardised empirical test methods to measure and confirm ground improvement rather than using existing test methods in future DSM projects. Further, demonstrating the effectiveness of empirical test methods in a DSM context is likely to enable more cost effective and efficient testing of DSM columns in future geotechnical projects.
The aim of this report is to investigate the ductile performance of concrete tilt-up panels reinforced with cold-drawn mesh to improve the current seismic assessment procedure. The commercial impact of the project was also investigated. Engineering Advisory Group (EAG) guidelines state that a crack in a panel under face loading may be sufficient to fracture the mesh. The comments made by EAG regarding the performance of cold-drawn mesh may be interpreted as suggesting that assessment of such panels be conducted with a ductility of 1.0. Observations of tilt-up panel performance following the Christchurch earthquakes suggest that a ductility higher than μ=1.0 is likely to be appropriate for the response of panels to out-of-plane loading. An experimental test frame was designed to subject ten tilt-panel specimens to a cyclic quasi-static loading protocol. Rotation ductility, calculated from the force-displacement response from the test specimens, was found to range between 2.9 and 5.8. Correlation between tensile tests on 663L mesh, and data collected from instrumentation during testing confirmed that the mesh behaves as un-bonded over the pitch length of 150mm. Recommendation: Based on a moment-rotation assessment approach with an un-bonded length equal to the pitch of the mesh, a rotation ductility of μ=2.5 appears to be appropriate for the seismic assessment of panels reinforced with cold-drawn mesh.
Background: Earthquakes are found to have lingering post-disaster effects on children that can be present for months or years after the disaster, including hyperarousal symptoms. Young children have the most difficulties in regulating their emotions, especially when they are highly aroused. Colouring-in mandala designs have been found to reduce hyperarousal symptoms of stress in young adults. The purpose of this study was to determine if the same effects of colouring-in mandalas would be seen with children showing signs of hyperarousal. Research Question: To identify what effect colouring-in mandala designs would have on the heart rate in a young child showing signs of hyperarousal. Method: Following approved procedures for informed consent, two 6-year-old girls from a Christchurch primary school were chosen for the study. Heart rate was measured using a Fitbit in a single subject design. The baseline, colouring-in and a second baseline phase were conducted during mathematics. The participants and their teacher reported on arousal, enjoyment, and positive and problem behaviours. The study took 26 school days to complete. Results: Compared with baseline, the average heart rate data showed no decrease in heart rate (i.e., calming effect) during the mandala colouring-in task phase. Conclusions: The participants enjoyed colouring-in the mandalas, but the average heart rate data did not show that colouring-in pre-drawn designs reduced heart rate, a measure of arousal. Major study limitations included; not having suitable participants or a suitable setting for the colouring-in task, and not being able to observe both participants.
Validation is an essential step to assess the applicability of simulated ground motions for utilization in engineering practice, and a comprehensive analysis should include both simple intensity measures (PGA, SA, etc), as well as the seismic response of a range of complex systems obtained by response history analysis. In order to enable a spectrum of complex structural systems to be considered in systematic validation of ground motion simulations in a routine fashion, an automated workflow was developed. Such a workflow enables validation of simulated ground motions in terms of different complex model responses by considering various ground motion sets and different ground motion simulation methods. The automated workflow converts the complex validation process into a routine one by providing a platform to perform the validation process promptly as a built-in process of simulation post-processing. As a case study, validation of simulated ground motions was investigated via the automated workflow by comparing the dynamic responses of three steel special moment frame (SMRF) subjected to the 40 observed and 40 simulated ground motions of 22 February 2011 Christchurch earthquake. The seismic responses of the structures are principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, the results indicate a general agreement in seismic demands obtained using the recorded and simulated ensembles of ground motions and provide further evidence that simulated ground motions can be used in code-based structural performance assessments in-place of, or in combination with, ensembles of recorded ground motions.
Research indicates that aside from the disaster itself, the next major source of adverse outcomes during such events, is from errors by either the response leader or organisation. Yet, despite their frequency, challenge, complexity, and the risks involved; situations of extreme context remain one of the least researched areas in the leadership field. This is perhaps surprising. In the 2010 and 2011 (Christchurch) earthquakes alone, 185 people died and rebuild costs are estimated to have been $40b. Add to this the damage and losses annually around the globe arising from natural disasters, major business catastrophes, and military conflict; there is certainly a lot at stake (lives, way of life, and our well-being). While over the years, much has been written on leadership, there is a much smaller subset of articles on leadership in extreme contexts, with the majority of these focusing on the event rather than leadership itself. Where leadership has been the focus, the spotlight has shone on the actions and capabilities of one person - the leader. Leadership, however, is not simply one person, it is a chain or network of people, delivering outcomes with the support of others, guided by a governance structure, contextualised by the environment, and operating on a continuum across time (before, during, and after an event). This particular research is intended to examine the following: • What are the leadership capabilities and systems necessary to deliver more successful outcomes during situations of extreme context; • How does leadership in these circumstances differ from leadership during business as usual conditions; • Lastly, through effective leadership, can we leverage these unfortunate events to thrive, rather than merely survive?
This chapter will draw on recent literature and practice experience to discuss the nature of field education in Aotearoa New Zealand. Social work education in this country is provided by academic institutions that are approved by the Social Workers Registration Board. The field education curriculum is therefore shaped by both the regulatory body and the tertiary institutions. Significant numbers of students undertake field education annually which places pressure on industry and raises concerns as to the quality of student experience. Although the importance of field education is undisputed it remains poised in a liminal space between the tertiary education and social service sectors where it is not sufficiently resourced by either. This affects the provision of practice placements as well as the establishment of long-term cross-sector partnerships. Significant events such as the 2010 and 2011 Christchurch earthquakes and recent terrorist attacks have exposed students to different field education experiences signalling the need for programmes to be responsive. Examples of creative learning opportunities in diverse environments, including in indigenous contexts, will be described. Drawing upon recent research, we comment on student and field educator experiences of supervision in the field. Recommendations to further develop social work field education in Aotearoa New Zealand relate to resourcing, infrastructure and quality, support for field educators, and assessment.
Cities need places that contribute to quality of life, places that support social interaction. Wellbeing, specifically, community wellbeing, is influenced by where people live, the quality of place is important and who they connect with socially. Social interaction and connection can come from the routine involvement with others, the behavioural acts of seeing and being with others. This research consisted of 38 interviews of residents of Christchurch, New Zealand, in the years following the 2010-12 earthquakes. Residents were asked about the place they lived and their interactions within their community. The aim was to examine the role of neighbourhood in contributing to local social connections and networks that contribute to living well. Specifically, it focused on the role and importance of social infrastructure in facilitating less formal social interactions in local neighbourhoods. It found that neighbourhood gathering places and bumping spaces can provide benefit for living well. Social infrastructure, like libraries, parks, primary schools, and pubs are some of the places of neighbourhood that contributed to how well people can encounter others for social interaction. In addition, unplanned interactions were facilitated by the existence of bumping places, such as street furniture. The wellbeing value of such spaces needs to be acknowledged and factored into planning decisions, and local rules and regulations need to allow the development of such spaces.
This thesis explores the lived experiences of a group of young Bhutanese former refugees between the ages of 18 to 24 years who were resettled in Christchurch between 2008 and 2010 – prior to the first major earthquake. The main goal of the thesis was to gain an understanding of their ways of coping and a second goal was to explore whether their participation in up to five mindfulness infused counselling sessions had influenced their ways of coping. A qualitative research methodology was used to guide the thesis. Participants were interviewed about the major events in their life and how they coped with them. They were then invited to participate in five sessions of mindfulness infused counselling. Approximately five weeks after their final session had ended they were invited to one final interview to explore the influence of the sessions on their ways of coping. Interviews were recorded and transcribed and research notes were taken of the mindfulness infused counselling sessions. Max van Manen’s method of phenomenology was adopted to interpret the narratives of the youth. Three main themes emerged from the data analysis and these are described as essences of lived coping experiences. The first captures their strong sense of community back in the refugee camp. The second presents the sense of resilience that exists among the Bhutanese former refugees. The third essence indicated the inner strengths of the participants which they said helped them deal with the challenging circumstances that life cast in their direction. This meant that their first experience of an earthquake was not considered the biggest event in their lives. After attending the mindfulness infused counselling sessions’ participants reported positive benefits from giving non-judgemental attention to their thoughts and feelings and they found themselves dealing with their issues proactively. For some participants their ‘accepting’ attitude facilitated better control over their emotions while others reported being able to form deeper connections with nature and other people as a result of being mindful. Other participants reported being able to make peace with the events in their past and even found that they were able to forgive those who tormented their community. However, in the absence of any major event in any of the participants’ lives in the time period following their final counselling session, the research was not able to definitely conclude that using mindful-based counselling facilitates better coping in the face extremely stressful events. There is currently very little research that focuses on the experiences of former refugee youth within New Zealand and how they utilize their capacities to deal with adversities. When this thesis commenced, the Bhutanese were the newest refugee community to be accepted for resettlement in New Zealand. This research partly addresses the limited voice of this community.
Probabilistic Structural Fire Engineering (PSFE) has been introduced to overcome the limitations of current conventional approaches used for the design of fire-exposed structures. Current structural fire design investigates worst-case fire scenarios and include multiple thermal and structural analyses. PSFE permits buildings to be designed to a level of life safety or economic loss that may occur in future fire events with the help of a probabilistic approach. This thesis presents modifications to the adoption of a Performance-Based Earthquake Engineering (PBEE) framework in Probabilistic Structural Fire Engineering (PSFE). The probabilistic approach runs through a series of interrelationships between different variables, and successive convolution integrals of these interrelationships result in probabilities of different measures. The process starts with the definition of a fire severity measure (FSM), which best relates fire hazard intensity with structural response. It is identified by satisfying efficiency and sufficiency criteria as described by the PBEE framework. The relationship between a fire hazard and corresponding structural response is established by analysis methods. One method that has been used to quantify this relationship in PSFE is Incremental Fire Analysis (IFA). The existing IFA approach produces unrealistic fire scenarios, as fire profiles may be scaled to wide ranges of fire severity levels, which may not physically represent any real fires. Two new techniques are introduced in this thesis to limit extensive scaling. In order to obtain an annual rate of exceedance of fire hazard and structural response for an office building, an occurrence model and an attenuation model for office fires are generated for both Christchurch city and New Zealand. The results show that Christchurch city is 15% less likely to experience fires that have the potential to cause structural failures in comparison to all of New Zealand. In establishing better predictive relationships between fires and structural response, cumulative incident radiation (a fire hazard property) is found to be the most appropriate fire severity measure. This research brings together existing research on various sources of uncertainty in probabilistic structural fire engineering, such as elements affecting post-flashover fire development factors (fuel load, ventilation, surface lining and compartment geometry), fire models, analysis methods and structural reliability. Epistemic uncertainty and aleatory uncertainty are investigated in the thesis by examining the uncertainty associated with modelling and the factors that influence post-flashover development of fires. A survey of 12 buildings in Christchurch in combination with recent surveys in New Zealand produced new statistical data on post-flashover development factors in office buildings in New Zealand. The effects of these parameters on temperature-time profiles are evaluated. The effects of epistemic uncertainty due to fire models in the estimation of structural response is also calculated. Parametric fires are found to have large uncertainty in the prediction of post-flashover fires, while the BFD curves have large uncertainties in prediction of structural response. These uncertainties need to be incorporated into failure probability calculations. Uncertainty in structural modelling shows that the choices that are made during modelling have a large influence on realistic predictions of structural response.
The context of this study is the increasing need for public transport as issues over high private vehicle usage are becoming increasingly obvious. Public transport services need to compete with private transport to improve patronage, and issues with reliability need to be addressed. Bus bunching affects reliability through disruptions to the scheduled headways. The purpose of this study was to collect and analyse data to compare how travel time and dwell time vary, to explore the variation of key variables, and to better understand the sources of these variations. The Orbiter bus service in Christchurch was used as a case study, as it is particularly vulnerable to bus bunching. The dwell time was found to be more variable than travel time. It appeared the Canterbury earthquake had significantly reduced the average speeds for the Orbiter service. In 1964, Newell and Potts described a basic bus bunching theory, which was used as the basis for an Excel bus bunching model. This model allows input variables to vary stochastically. Random values were generated from four specified distributions derived from manually collected data, allowing variance across all bus platforms and buses. However the complexity resulted in stability and difficulty in achieving convergence, so the model was run in single Monte Carlo simulations. The outputs were realistic and showed a higher degree of bunching behaviour than previous models. The model demonstrated bunching phenomena that had not been observed in previous models, including spontaneously un-pairing, overtaking of buses delayed at platforms, and odd-numbered bunches of three buses. Furthermore, the study identified areas of further research for data collection and model development.
Post-traumatic stress symptoms are a common reaction to experiencing a traumatic event such as a natural disaster. Young children may be at an increased risk for such mental health problems as these catastrophic events may coincide with developmentally sensitive periods of development. Treatments currently recommended for children with post-traumatic stress symptoms insufficiently acknowledge the role of neurobiological stress related systems responsible for these symptoms. As such, alternative approaches to the treatment of posttraumatic symptoms have been explored, with nature-based interventions offering a potential alternative based on two different theories that uphold the stress reducing benefits of natural environments. To date, there are a limited number of experimental studies that have explored the use of nature-based interventions with children, and no known research that has used a simulated nature experience with child participants. The purpose of this study was to investigate the effects of a simulated nature experience on the physiological and behavioural responses of children with post-traumatic stress symptoms that experienced the Christchurch earthquakes. A single-case research design with repeated measures of heart rate and teacherreported behaviour was gathered across a 20-day period. Heart rate data was collected before and after participants watched a 10-minute nature video, while data from a teacher rating scale provided information about the participants’ behaviours in the 30-minute period after they watched the nature video. Comparisons made to data collected during two different baseline phases indicated that the nature video intervention had no recognisable effects on the participants’ physiological and behavioural stress responses. Limitations to the current study are discussed as possible reasons for the incompatibility between the current study’s results and the findings from previous research. Suggestions are made for any future replications of the study.