Search

found 705 results

Research papers, University of Canterbury Library

Between September 2010 and February 2012 (a period of 18 months) the Canterbury region of New Zealand has experienced over 10,000 earthquakes (Nicholls, 2012). This report is the first in a series that will describe the impact of the Canterbury earthquake on businesses. This initial report gives a high level overview of the earthquake events and the impacts on the Canterbury economy and businesses. This report is intended to provide background and context for more in-depth analyses to come in future reports.

Research papers, University of Canterbury Library

Organisations locate strategically within Business Districts (CBDs) in order to cultivate their image, increase their profile, and improve access to customers, suppliers, and services. While CBDs offer an economic benefit to organisations, they also present a unique set of hazard vulnerabilities and planning challenges for businesses. As of May 2012, the Christchurch CBD has been partially cordoned off for over 14 months. Economic activity within the cordoned CBD, which previously contained 6,000 businesses and over 51,000 workers, has been significantly diminished and organisations have been forced to find new ways of operating. The vulnerabilities and resilience of CBDs not only influences outcomes for CBD organisations, but also the broader interconnected (urban/regional/national) system. A CBD is a hub of economic, social, and built infrastructure within a network of links and nodes. When the hub is disrupted all of the people, objects, and transactions that usually flow into and out of the hub must be redirected elsewhere. In an urban situation this means traffic jams in peripheries of the city, increased prices of commercial property, and capital flight; all of which are currently being faced in Canterbury. This report presents the lessons learned from organisations in CBDs affected by the Canterbury earthquakes. Here we focus on the Christchurch CBD; however, several urban town centres were extensively disrupted by the earthquakes. The statistics and discussion presented in this report are based on the results of an ongoing study conducted by Resilient Organisations (www.resorgs.org.nz). The data was captured using two questionnaire surveys of Canterbury organisations (issued November 2010 and May 2011), interviews with key informants, and in-depth case studies of organisations. Several industry sectors were sampled, and geographic samples of organisations in the Christchurch CBD, Lyttelton, and the Kaiapoi town centre were also collected. Results in this report describing “non-CBD organisations” refer to all organisations outside of the Christchurch CBD, Lyttelton, and Kaiapoi town centres.

Research papers, University of Canterbury Library

In 2010 and 2011 Christchurch, New Zealand experienced a series of earthquakes that caused extensive damage across the city, but primarily to the Central Business District (CBD) and eastern suburbs. A major feature of the observed damage was extensive and severe soil liquefaction and associated ground damage, affecting buildings and infrastructure. The behaviour of soil during earthquake loading is a complex phenomena that can be most comprehensively analysed through advanced numerical simulations to aid engineers in the design of important buildings and critical facilities. These numerical simulations are highly dependent on the capabilities of the constitutive soil model to replicate the salient features of sand behaviour during cyclic loading, including liquefaction and cyclic mobility, such as the Stress-Density model. For robust analyses advanced soil models require extensive testing to derive engineering parameters under varying loading conditions for calibration. Prior to this research project little testing on Christchurch sands had been completed, and none from natural samples containing important features such as fabric and structure of the sand that may be influenced by the unique stress-history of the deposit. This research programme is focussed on the characterisation of Christchurch sands, as typically found in the CBD, to facilitate advanced soil modelling in both res earch and engineering practice - to simulate earthquake loading on proposed foundation design solutions including expensive ground improvement treatments. This has involved the use of a new Gel Push (GP) sampler to obtain undisturbed samples from below the ground-water table. Due to the variable nature of fluvial deposition, samples with a wide range of soil gradations, and accordingly soil index properties, were obtained from the sampling sites. The quality of the samples is comprehensively examined using available data from the ground investigation and laboratory testing. A meta-quality assessment was considered whereby a each method of evaluation contributed to the final quality index assigned to the specimen. The sampling sites were characterised with available geotechnical field-based test data, primarily the Cone Penetrometer Test (CPT), supported by borehole sampling and shear-wave velocity testing. This characterisation provides a geo- logical context to the sampling sites and samples obtained for element testing. It also facilitated the evaluation of sample quality. The sampling sites were evaluated for liquefaction hazard using the industry standard empirical procedures, and showed good correlation to observations made following the 22 February 2011 earthquake. However, the empirical method over-predicted liquefaction occurrence during the preceding 4 September 2010 event, and under-predicted for the subsequent 13 June 2011 event. The reasons for these discrepancies are discussed. The response of the GP samples to monotonic and cyclic loading was measured in the laboratory through triaxial testing at the University of Canterbury geomechanics laboratory. The undisturbed samples were compared to reconstituted specimens formed in the lab in an attempt to quantify the effect of fabric and structure in the Christchurch sands. Further testing of moist tamped re- constituted specimens (MT) was conducted to define important state parameters and state-dependent properties including the Critical State Line (CSL), and the stress-strain curve for varying state index. To account for the wide-ranging soil gradations, selected representative specimens were used to define four distinct CSL. The input parameters for the Stress-Density Model (S-D) were derived from a suite of tests performed on each representative soil, and with reference to available GP sample data. The results of testing were scrutinised by comparing the data against expected trends. The influence of fabric and structure of the GP samples was observed to result in similar cyclic strength curves at 5 % Double Amplitude (DA) strain criteria, however on close inspection of the test data, clear differences emerged. The natural samples exhibited higher compressibility during initial loading cycles, but thereafter typically exhibited steady growth of plastic strain and excess pore water pressure towards and beyond the strain criteria and initial liquefaction, and no flow was observed. By contrast the reconstituted specimens exhibited a stiffer response during initial loading cycles, but exponential growth in strains and associated excess pore water pressure beyond phase-transformation, and particularly after initial liquefaction where large strains were mobilised in subsequent cycles. These behavioural differences were not well characterised by the cyclic strength curve at 5 % DA strain level, which showed a similar strength for both GP samples and MT specimens. A preliminary calibration of the S-D model for a range of soil gradations is derived from the suite of laboratory test data. Issues encountered include the influence of natural structure on the peak-strength–state index relationship, resulting in much higher peak strengths than typically observed for sands in the literature. For the S-D model this resulted in excessive stiffness to be modelled during cyclic mobility, when the state index becomes large momentarily, causing strain development to halt. This behaviour prevented modelling the observed re- sponse of silty sands to large strains, synonymous with “liquefaction”. Efforts to reduce this effect within the current formulation are proposed as well as future research to address this issue.

Research papers, University of Canterbury Library

Current research in geotechnical engineering at the University of Canterbury includes a number of laboratory testing programmes focussed on understanding the behaviour of natural soil deposits in Christchurch during the 2010-2011 Canterbury Earthquake Sequence. Many soils found in Christchurch are sands or silty sands with little to no plasticity, making them very difficult to sample using established methods. The gel-push sampling methodology, developed by Kiso-Jiban Consultants in Japan, was developed to address some of the deficiencies of existing sampling techniques and has been deployed on two projects in Christchurch. Gel push sampling is carried out with a range of samplers which are modified versions of existing technology, and the University of Canterbury has acquired three versions of the tools (GP-S, GP-Tr, GP-D). Soil samples are extracted from the bottom of a freshly drilled borehole and are captured within a liner barrel, close to 1m in length. A lubricating polymer gel coats the outside of the soil sample as it enters the liner barrel. The frictional rubbing which normally occurs on the sides of the soil samples using existing techniques is eliminated by the presence of the polymer gel. The operation of the gel-push samplers is significantly more complicated than conventional push-tube samplers, and in the initial trials a number of operational difficulties were encountered, requiring changes to the sampling procedures. Despite these issues, a number of high quality soil samples were obtained on both projects using the GP-S sampler to capture silty soil. Attempts were made to obtain clean sands using a different gel-push sampler (GP-TR) in the Red Zone. The laboratory testing of these sands indicated that they were being significantly disturbed during the sampling and/or transportation procedures. While it remains too early to draw definitive conclusions regarding the performance of the gel-push samplers, the methodology has provided some promising results. Further trialling of the tools are required to refine operating procedures understand the full range of soil conditions which can be successfully sampled using the tools. In parallel with the gel-push trials, a Dames and Moore fixed-piston sampler has been used by our research partners from Berkeley to obtain soil samples at a number of sites within Christchurch. This sampler features relatively short (50cm), thin-walled liner barrels which is advanced into the ground under the action of hydraulic pressure. By reducing the overall length of the soil being captured, the disturbance to the soil as it enters the liner barrel is significantly reduced. The Dames and Moore sampler is significantly easier to operate than the gel-push sampler, and past experience has shown it to be successful in soft, plastic materials (i.e. clays and silty clays). The cyclic resistance of one silty clay obtained using both the gel-push and Dames & Moore samplers has been found to be very similar, and ongoing research aims to establish whether similar results are obtained for different soil types, including silty materials and clean sands.

Research papers, University of Canterbury Library

This study investigates evidence for linkages and fault interactions centred on the Cust Anticline in Northwest Canterbury between Starvation Hill to the southwest and the Ashley and Loburn faults to the northeast. An integrated programme of geologic, geomorphic, paleo-seismic and geophysical analyses was undertaken owing to a lack of surface exposures and difficulty in distinguishing active tectonic features from fluvial and/or aeolian features across the low-relief Canterbury Plains. LiDAR analysis identified surface expression of several previously unrecognised active fault traces across the low-relief aggradation surfaces of the Canterbury Plains. Their presence is consistent with predictions of a fault relay exploiting the structural mesh across the region. This is characterised by interactions of northeast-striking contractional faults and a series of re-activating inherited Late Cretaceous normal faults, the latter now functioning as E–W-striking dextral transpressive faults. LiDAR also allowed for detailed analysis of the surface expression of individual faults and folds across the Cust Anticline contractional restraining bend, which is evolving as a pop-up structure within the newly established dextral shear system that is exploiting the inherited, now re-activated, basement fault zone. Paleo-seismic trenches were located on the crest of the western arm of the Cust Anticline and across a previously unrecognised E–W-striking fault trace, immediately southwest of the steeply plunging Cust Anticline termination. These studies confirmed the location and structural style of north-northeast-striking faults and an E–W-striking fault associated with the development of this structural culmination. A review of available industry seismic reflection lines emphasised the presence of a series of common structural styles having the same underlying structural drivers but with varying degrees of development and expression, both in the seismic profiles and in surface elevations across the study area. Based on LiDAR surface mapping and preliminary re-analysis of industry seismic reflection data, four fault zones are identified across the restraining bend structural culminations, which together form the proposed Oxford–Cust–Ashley Fault System. The 2010–2012 Canterbury Earthquake Sequence showed many similarities to the structural pattern established across the Oxford–Cust–Ashley Fault System, emphasising the importance of identification and characterization of presently hidden fault sources, and the understanding of fault network linkages, in order to improve constraints on earthquake source potential. Improved understanding of potentially-interactive fault sources in Northwest Canterbury, with the potential for combined initial fault rupture and spatial and temporal rupture propagation across this fault system, can be used in probabilistic seismic hazard analysis for the region, which is essential for the suitability and sustainability of future social and economic development.

Research papers, University of Canterbury Library

Severe liquefaction was repeatedly observed during the 2010 - 2011 C hristchurch earthquake s , particularly affecting deposits of fine sands and silty sands of recent fluvial or estuarine origin. The effects of liquefaction included major sliding of soil tow ard water bodies ( i.e. lateral spreading ) rang ing from centimetres to several metres. In this paper, a series of undrained cyclic torsional shear tests were conducted to evaluate the liquefaction and extremely large deformation properties of Christchurch b oiled sand . In these tests, the simple shear conditions were reproduced in order to apply realistic stress conditions that soil s experience in the field during horizontal seismic shaking. Several hollow cylindrical medium dense specimens ( D r = 50%) were pr epared by pluviation method, isotropically consolidated at an effective stress of 100 kPa and then cyclically sheared under undrained conditions up to 10 0% double amplitude shear strain (γ DA ) . The cyclic strength at different levels of γ DA of 7.5%, 15%, 3 0 % and 6 0%, development of extremely large post - liquefaction deformation and shear strain locali s ation properties were assessed from the analysis of the effective stress paths and stress - strain responses . To reveal possible distinctiveness, the cyclic undra ined behaviour of CHCH boiled sand was compared with that of Toyoura sand previously examined under similar testing conditions

Research papers, University of Canterbury Library

The empirical liquefaction triggering chart of Idriss and Boulanger (2008) is compared to direct measurements of the cyclic resistance of Christchurch silty sands via undisturbed and reconstituted lab specimens. Comparisons suggest that overall there is a reasonable agreement between the empirical triggering curve and the interpreted test data. However, the influence of fines on cyclic resistance appears to be over-predicted by the empirical method, particularly for non-plastic silty sands that are commonly encountered in flood over-bank deposits in Christchurch and nearby settlements

Research papers, University of Canterbury Library

The recent Canterbury earthquake sequence in 2010-2011 highlighted a uniquely severe level of structural damage to modern buildings, while confirming the high vulnerability and life threatening of unreinforced masonry and inadequately detailed reinforced concrete buildings. Although the level of damage of most buildings met the expected life-safety and collapse prevention criteria, the structural damage to those building was beyond economic repair. The difficulty in the post-event assessment of a concrete or steel structure and the uneconomical repairing costs are the big drivers of the adoption of low damage design. Among several low-damage technologies, post-tensioned rocking systems were developed in the 1990s with applications to precast concrete members and later extended to structural steel members. More recently the technology was extended to timber buildings (Pres-Lam system). This doctoral dissertation focuses on the experimental investigation and analytical and numerical prediction of the lateral load response of dissipative post-tensioned rocking timber wall systems. The first experimental stages of this research consisted of component testing on both external replaceable devices and internal bars. The component testing was aimed to further investigate the response of these devices and to provide significant design parameters. Post-tensioned wall subassembly testing was then carried out. Firstly, quasi-static cyclic testing of two-thirds scale post-tensioned single wall specimens with several reinforcement layouts was carried out. Then, an alternative wall configuration to limit displacement incompatibilities in the diaphragm was developed and tested. The system consisted of a Column-Wall-Column configuration, where the boundary columns can provide the support to the diaphragm with minimal uplifting and also provide dissipation through the coupling to the post-tensioned wall panel with dissipation devices. Both single wall and column-wall-column specimens were subjected to drifts up to 2% showing excellent performance, limiting the damage to the dissipating devices. One of the objectives of the experimental program was to assess the influence of construction detailing, and the dissipater connection in particular proved to have a significant influence on the wall’s response. The experimental programs on dissipaters and wall subassemblies provided exhaustive data for the validation and refinement of current analytical and numerical models. The current moment-rotation iterative procedure was refined accounting for detailed response parameters identified in the initial experimental stage. The refined analytical model proved capable of fitting the experimental result with good accuracy. A further stage in this research was the validation and refinement of numerical modelling approaches, which consisted in rotational spring and multi-spring models. Both the modelling approaches were calibrated versus the experimental results on post-tensioned walls subassemblies. In particular, the multi-spring model was further refined and implemented in OpenSEES to account for the full range of behavioural aspects of the systems. The multi-spring model was used in the final part of the dissertation to validate and refine current lateral force design procedures. Firstly, seismic performance factors in accordance to a Force-Based Design procedure were developed in accordance to the FEMA P-695 procedure through extensive numerical analyses. This procedure aims to determine the seismic reduction factor and over-strength factor accounting for the collapse probability of the building. The outcomes of this numerical analysis were also extended to other significant design codes. Alternatively, Displacement-Based Design can be used for the determination of the lateral load demand on a post-tensioned multi-storey timber building. The current DBD procedure was used for the development of a further numerical analysis which aimed to validate the procedure and identify the necessary refinements. It was concluded that the analytical and numerical models developed throughout this dissertation provided comprehensive and accurate tools for the determination of the lateral load response of post-tensioned wall systems, also allowing the provision of design parameters in accordance to the current standards and lateral force design procedures.

Research papers, University of Canterbury Library

This study explored the experiences of 10 leaders in their intentional six-month implementation, during the 2010-2011Christchurch earthquakes, of an adapted positive leadership model. The study concluded that the combination of strategies in the model provided psychological and participative safety for leaders to learn and to apply new ways of working. Contrary to other studies on natural disaster, workplace performance increased and absenteeism decreased. The research contributes new knowledge to the positive leadership literature and new understanding, from the perspective of leaders, of the challenges of leading in a workplace environment of ongoing natural disaster events.

Research papers, University of Canterbury Library

Triple P parenting programmes have provided promising results for children and families in recent years. The aim of the current project was to explore the experiences of families leading up to participating in a Teen Triple P programme three years following the Christchurch earthquakes and their need for assistance in the management of their teenagers. Parents were interviewed prior to the commencement of the Teen Triple P programme and after its completion. Parents were also asked to complete a journal entry or engage in two brief telephone conversations with the researcher outlining their experiences with the Teen Triple P programme. These outlined the perceived fit of the programme to the needs of the family. Parents provided insight into their family’s experiences of the Christchurch 2010 and 2011 series of earthquakes and the perceived impact this had on their lives and the management of their teenagers. The results indicated that parents felt more positively about their parenting behaviours post-programme and were able to identify changes in their teen and/or family that they felt were as a response to participation in Teen Triple P. Parents provided rich descriptions of their earthquake experiences and the immediate and long-term impacts they endured both individually and as a family. Parents did not feel that the earthquakes fed into their decision to do a Teen Triple P Programme. The results helped improve our understanding of the effectiveness of Teen Triple P as a parenting programme as well increased our understanding of the challenges and needs of families in post-earthquake Christchurch.

Research papers, University of Canterbury Library

Deep shear wave velocity (Vs) profiles (>400 m) were developed at 14 sites throughout Christchurch, New Zealand using surface wave methods. This paper focuses on the inversion of surface wave data collected at one of these sites, Hagley Park. This site is located on the deep soils of the Canterbury Plains, which consist of alluvial gravels inter-bedded with estuarine and marine sands, silts, clays and peats. Consequently, significant velocity contrasts exist at the interface between geologic formations. In order to develop realistic velocity models in this complex geologic environment, a-priori geotechnical and geologic data were used to identify the boundaries between geologic formations. This information aided in developing the layering for the inversion parameters. Moreover, empirical reference Vs profiles based on material type and confining pressure were used to develop realistic Vs ranges for each layer. Both the a-priori layering information and the reference Vs curves proved to be instrumental in generating realistic velocity models that account for the complex inter-bedded geology in the Canterbury Plains.

Research papers, University of Canterbury Library

This literature review uses research informed by disasters including the Christchurch Earthquakes, Hurricane Katrina, Red River floods, War in Israel and natural disasters in Indonesia to identify key aspects within teacher-student relationships which result in an increase in the emotional stability of our students. These aspects include prior knowledge of students and their development, psycho-social interventions and incorporation of the disaster into the curriculum. Teacher-student relationships are highlighted as vital to a child’s healing and resilience after experiencing disaster trauma.

Research papers, University of Canterbury Library

The need for a simple but rigorous seismic assessment procedure to predict damage to reinforced concrete buildings during a seismic event has been highlighted following the Canterbury Earthquake sequence. Such simplified assessment procedure, applied to individual structure or large building inventory, should not only have low requirement in terms of input information and involve straightforward analyses, but also should be capable to provide reliable predictive results within short timeframe. This research provides a general overview and critical comparison of alternative simplified assessment procedures adopted in NZSEE 2006 Guidelines (Assessment and Improvement of the Structural Performance of Buildings in Earthquakes), ASCE 41-13 (Seismic Evaluation and Retrofit of Existing Buildings), and EN: 1998-3: 2005 (Assessment and Retrofitting of Buildings). Particular focus is given to the evaluation of the capability of Simplified Lateral Mechanism Analysis (SLaMa), which is an analytical pushover method adopted in NZSEE 2006 Guidelines. The predictive results from SLaMa are compared to damages observed for a set of reinforced concrete buildings in Christchurch, as well as the results from more detailed assessment procedure based on numerical modelling. This research also suggests improvements to SLaMa, together with validation of the improvements, to include assessment of local mechanism by strength hierarchy evaluation, as well as to develop assessment of global mechanism including post-yield mechanism sequence based on local mechanism.

Research papers, University of Canterbury Library

This book is the result of an investigation into the vulnerability of the infrastructure serving metropolitan Christchurch (including Lyttelton). The work was undertaken by the Christchurch Engineering Lifelines Group and the objectives are: to identify the vulnerability of engineering lifeline services to damage from earthquakes, flooding, tsunami and meteorological hazards; to identify practical engineering strategies for reducing the risk or impact of such damage and for providing for reinstatement following such events; and to communicate the issues to people involved in the management of these services and to raise the awareness of the public to their importance.

Research papers, University of Canterbury Library

"Lifelines in Earthquakes: Wellington Case Study was the topic of CAE's first major project, which was carried out in 1990/91. Lifelines are those services vital to the running of day-to-day life and include water, gas, electricity, telecommunications and transportation networks. The aim of the project was to assess the vulnerability of these lifelines, identify mitigation measures and raise awareness amongst lifeline managers. Although the project focused on Wellington, the findings are applicable to all urban centres within New Zealand and ongoing study groups have been established in Wellington and Christchurch since the project's completion."

Research papers, University of Canterbury Library

The Canterbury Earthquake Recovery Authority (CERA) and the Canterbury Lifeline Utilities Group have collaborated to assemble documented infra- structure-related learnings from the recent Canterbury earthquakes and other natural hazard events over the last 15 years (i.e. since publication of Risks and Realities). The project was led by the Centre for Advanced Engineering (CAE) and was undertaken to promote knowledge sharing by facilitating access to diverse documents on natural hazard learnings, a matter of ongoing relevance and very considerable current interest.

Research papers, University of Canterbury Library

"Lifelines in Earthquakes: Wellington Case Study was the topic of CAE's first major project, which was carried out in 1990/91. Lifelines are those services vital to the running of day-to-day life and include water, gas, electricity, telecommunications and transportation networks. The aim of the project was to assess the vulnerability of these lifelines, identify mitigation measures and raise awareness amongst lifeline managers. Although the project focused on Wellington, the findings are applicable to all urban centres within New Zealand and ongoing study groups have been established in Wellington and Christchurch since the project's completion."

Research papers, University of Canterbury Library

The Sendai Framework for Disaster Risk Reduction 2015-2030 finds that, despite progress in disaster risk reduction over the last decade “evidence indicates that exposure of persons and assets in all countries has increased faster than vulnerability has decreased, thus generating new risk and a steady rise in disaster losses” (p.4, UNISDR 2015). Fostering cooperation among relevant stakeholders and policy makers to “facilitate a science-policy interface for effective decisionmaking in disaster risk management” is required to achieve two priority areas for action, understanding disaster risk and enhancing disaster preparedness (p. 13, p. 23, UNISDR 2015). In other topic areas, the term science-policy interface is used interchangeably with the term boundary organisation. Both terms are usually used refer to systematic collaborative arrangements used to manage the intersection, or boundary, between science and policy domains, with the aim of facilitating the joint construction of knowledge to inform decision-making. Informed by complexity theory, and a constructivist focus on the functions and processes that minimize inevitable tensions between domains, this conceptual framework has become well established in fields where large complex issues have significant economic and political consequences, including environmental management, biodiversity, sustainable development, climate change and public health. To date, however, there has been little application of this framework in the disaster risk reduction field. In this doctoral project the boundary management framework informs an analysis of the research response to the 2010-2011 Canterbury Earthquake Sequence, focusing on the coordination role of New Zealand’s national Natural Hazards Research Platform. The project has two aims. It uses this framework to tell the nuanced story of the way this research coordination role evolved in response to both the complexity of the unfolding post-disaster environment, and to national policy and research developments. Lessons are drawn from this analysis for those planning and implementing arrangements across the science-policy boundary to manage research support for disaster risk reduction decision-making, particularly after disasters. The second aim is to use this case study to test the utility of the boundary management framework in the disaster risk reduction context. This requires that terminology and concepts are explained and translated in terms that make this analysis as accessible as possible across the disciplines, domains and sectors involved in disaster risk reduction. Key findings are that the focus on balance, both within organisations, and between organisations and domains, and the emphasis on systemic effects, patterns and trends, offer an effective and productive alternative to the more traditional focus on individual or organisational performance. Lessons are drawn concerning the application of this framework when planning and implementing boundary organisations in the hazard and disaster risk management context.

Research papers, University of Canterbury Library

This article reports on research conducted in Christchurch, New Zealand, after the 22 February 2011 earthquake. This quake and thousands of subsequent aftershocks have left the city of Christchurch with serious infrastructure damage to roads, sewage supply, housing and commercial buildings. The emergence of a vibrant art and craft movement in the Christchurch region post earthquake has been an unexpected aspect of the recovery process. The article begins with a review of the literature on traditional responses to disaster recovery illustrating how more contemporary approaches are community-focused. We review the links between crafting and well-being, and report on qualitative research conducted with five focus groups and nine individuals who have contributed to this movement in Christchurch. The findings illustrate the role crafting has played post earthquake, in terms of processing key elements of the disaster for healing and recovery, creating opportunities for social support; giving to others; generating learning and meaning making and developing a vision for the future. The data analysis is underpinned by theory related to post-traumatic growth and ecological concerns. The role of social work in promoting low-cost initiatives such as craft groups to foster social resilience and aid in the recovery from disaster trauma is explored. This discussion considers why such approaches are rare in social work.

Research papers, University of Canterbury Library

This paper presents an examination of ground motion observations from 20 near-source strong motion stations during the most significant 10 events in the 2010-2011 Canterbury earthquake to examine region-specific systematic effects based on relaxing the conventional ergodic assumption. On the basis of similar site-to-site residuals, surfical geology, and geographical proximity, 15 of the 20 stations are grouped into four sub-regions: the Central Business District; and Western, Eastern, and Northern suburbs. Mean site-to-site residuals for these sub-regions then allows for the possibility of non-ergodic ground motion prediction over these sub-regions of Canterbury, rather than only at strong motion station locations. The ratio of the total non-ergodic vs. ergodic standard deviation is found to be, on average, consistent with previous studies, however it is emphasized that on a site-by-site basis the non-ergodic standard deviation can easily vary by ±20%.

Research papers, University of Canterbury Library

The Canterbury earthquakes of 2010-2012 have been generation shaping. People living and working in and around the city during this time have had their lives and social landscapes changed forever. The earthquake response, recovery and rebuild efforts have highlighted unheralded social strengths and vulnerabilities within individuals, organisations, communities and country writ large. It is imperative that the social sciences stand up to be counted amongst the myriad of academic research, commentary and analysis.

Research papers, University of Canterbury Library

Using greater Christchurch as a case study, this research seeks to understand the key drivers of residential choice of families with children who live in recently developed, low-density greenfield subdivisions. In particular, the research examines the role that transport-related implications play in families’ choice of residence and location. It also explores the lived experience of the quotidian travel of these households, and the intrinsic value of their time in the car. While the research is situated in one particular location, it is designed to gain an understanding of urban processes and residents’ experiences of these as applicable to broader settings. Concerns about the pernicious environmental, fiscal, and wellbeing effects of sprawling urban form have been growing over the past few decades, inciting many cities including Christchurch to start shifting planning policies to try and achieve greater intensification and a denser development pattern. The 2010/2011 Christchurch earthquake sequence and its destruction of thousands of homes however created huge pressure for housing development, the bulk of which is now occurring on greenfield sites on the peripheries of Christchurch City and its neighbouring towns. Drawing on the insights provided by a wide body of both qualitative and quantitative literature on residential choice, transport and urban form, and mobilities literature as a basis, this research is interested in the attraction of these growing neighbourhoods to families, and puts the focus firmly on the attitudes, values, motivations, decisions, and lived experience of those who live in the growing suburbs of Christchurch.

Research papers, University of Canterbury Library

In this paper we outline the process and outcomes of a multi-agency, multi-sector research collaboration, led by the Canterbury Earthquake Research Authority (CERA). The CERA Wellbeing Survey (CWS) is a serial, cross-sectional survey that is to be repeated six-monthly (in April and September) until the end of the CERA Act, in April 2016. The survey gathers self-reported wellbeing data to supplement the monitoring of the social recovery undertaken through CERA's Canterbury Wellbeing Index. Thereby informing a range of relevant agency decision-making, the CWS was also intended to provide the community and other sectors with a broad indication of how the population is tracking in the recovery. The primary objective was to ensure that decision-making was appropriately informed, with the concurrent aim of compiling a robust dataset that is of value to future researchers, and to the wider, global hazard and disaster research endeavor. The paper begins with an outline of both the Canterbury earthquake sequence, and the research context informing this collaborative project, before reporting on the methodology and significant results to date. It concludes with a discussion of both the survey results, and the collaborative process through which it was developed.

Research papers, University of Canterbury Library

Following the Mw 6.2 Christchurch Earthquake on 22 February 2011, extensive ground cracking in loessial soils was reported in some areas of the Port Hills, southeast of central Christchurch. This study was undertaken to investigate the mechanisms of earthquake-induced ground damage on the eastern side of the Hillsborough Valley. A zone of extensional cracking up to 40m wide and 600m long was identified along the eastern foot-slope, accompanied by compression features and spring formation at the toe of the slope. An engineering geological and geomorphological model was developed for the eastern Hillsborough Valley that incorporates geotechnical investigation data sourced from the Canterbury Geotechnical Database (CGD), the findings of trenching and seismic refraction surveying carried out for this research, and interpretation of historical aerial photographs. The thickness and extent of a buried peat swamp at the base of the slope was mapped, and found to coincide with significant compression features. Ground cracking was found to have occurred entirely within loess-colluvium and to follow the apices of pre-1920s tunnel-gully fan debris at the southern end of the valley. The ground-cracking on the eastern side of the Hillsborough Valley is interpreted to have formed through tensile failure of the loess-colluvium. Testing was carried out to determine the tensile strength of Port Hills loess colluvium as a function of water content and density, in order to better understand the occurrence and distribution of the observed ground cracking. A comprehensive review of the soil tensile strength testing literature was undertaken, from which a test methodology was developed. Results show remoulded loess-colluvium to possess tensile strength of 7 - 28 kPa across the range of tested moisture contents (10-15%) and dry densities (1650-1900kg/m3). A positive linear relationship was observed between tensile strength and dry density, and a negative linear relationship between moisture content and tensile strength. The observed ground damage and available geotechnical information (inclinometer and piezometer records provided by the Earthquake Commission) were together used to interpret the mechanism(s) of slope movement that occurred in the eastern Hillsborough Valley. The observed ground damage is characteristic of translational movement, but without the development of lateral release scarps, or a basal sliding surface - which was not located during drilling. It is hypothesised that shear displacement has been accommodated by multiple slip surfaces of limited extent within the upper 10m of the slope. Movement has likely occurred within near-saturated colluvial units that have lost strength during earthquake shaking. The eastern Hillsborough Valley is considered to be an ‘incipient translational slide’, as both the patterns of damage and shearing are consistent with the early stages of such slide development. Sliding block analysis was utilised to understand how the eastern Hillsborough Valley may perform in a future large magnitude earthquake. Known cumulative displacements of ~0.3m for eastern Hillsborough Valley during the 2010-2011 Canterbury Earthquake Sequence were compared with modelled slope displacements to back-analyse a lower-bound yield acceleration of 0.2 - 0.25g. Synthetic broadband modelling for future Alpine and Hope Fault earthquakes indicates PGAs of approximately 0.08g for soil sites in the Christchurch area, as such, slope movement is unlikely to be reactivated by an Alpine Fault or Hope Fault earthquake. This does not take into account the possible role of strength loss due to excess pore pressure that may occur during these future events.

Research papers, University of Canterbury Library

Spatial variations in river facies exerted a strong influence on the distribution of liquefaction features observed in Christchurch during the 2010-11 Canterbury Earthquake Sequence (CES). Liquefaction and liquefaction-induced ground deformation was primarily concentrated near modern waterways and areas underlain by Holocene fluvial deposits with shallow water tables (< 1 to 2 m). In southern Christchurch, spatial variations of liquefaction and subsidence were documented in the suburbs within inner meander loops of the Heathcote River. Newly acquired geospatial data, geotechnical reports and eye-witness discussions are compiled to provide a detailed account of the surficial effects of CES liquefaction and ground deformation adjacent to the Heathcote River. LiDAR data and aerial photography are used to produce a new series of original figures which reveal the locations of recurrent liquefaction and subsidence. To investigate why variable liquefaction patterns occurred, the distribution of surface ejecta and associated ground damage is compared with near-surface sedimentologic, topographic, and geomorphic variability to seek relationships between the near-surface properties and observed ground damages. The most severe liquefaction was concentrated within a topographic low in the suburb of St Martins, an inner meander loop of the Heathcote River, with liquefaction only minor or absent in the surrounding areas. Subsurface investigations at two sites in St Martins enable documentation of fluvial stratigraphy, the expressions of liquefaction, and identification of pre-CES liquefaction features. Excavation to water table depths (~1.5 m below the surface) across sand boils reveals multiple generations of CES liquefaction dikes and sills that cross-cut Holocene fluvial and anthropogenic stratigraphy. Based on in situ geotechnical tests (CPT) indicating sediment with a factor of safety < 1, the majority of surface ejecta was sourced from well-sorted fine to medium sand at < 5 m depth, with the most damaging liquefaction corresponding with the location of a low-lying sandy paleochannel, a remnant river channel from the Holocene migration of the meander in St Martins. In the adjacent suburb of Beckenham, where migration of the Heathcote River has been laterally confined by topography associated with the volcanic lithologies of Banks Peninsula, severe liquefaction was absent with only minor sand boils occurring closest to the modern river channel. Auger sampling across the suburb revealed thick (>1 m) clay-rich overbank and back swamp sediments that produced a stratigraphy which likely confined the units susceptible to liquefaction and prevented widespread ejection of liquefied material. This analysis suggests river migration promotes the formation and preservation of fluvial deposits prone to liquefaction. Trenching revealed the strongest CES earthquakes with large vertical accelerations favoured sill formation and severe subsidence at highly susceptible locations corresponding with an abandoned channel. Less vulnerable sites containing deeper and thinner sand bodies only liquefied in the strongest and most proximal earthquakes forming minor localised liquefaction features. Liquefaction was less prominent and severe subsidence was absent where lateral confinement of a Heathcote meander has promoted the formation of fluvial stratum resistant to liquefaction. Correlating CES liquefaction with geomorphic interpretations of Christchurch’s Heathcote River highlights methods in which the performance of liquefaction susceptibility models can be improved. These include developing a reliable proxy for estimating soil conditions in meandering fluvial systems by interpreting the geology and geomorphology, derived from LiDAR data and modern river morphology, to improve the methods of accounting for the susceptibility of an area. Combining geomorphic interpretations with geotechnical data can be applied elsewhere to identify regional liquefaction susceptibilities, improve existing liquefaction susceptibility datasets, and predict future earthquake damage.

Research papers, University of Canterbury Library

This thesis is concerned with springs that appeared in the Hillsborough, Christchurch during the 2010-2011 Canterbury Earthquake Sequence, and which have continued to discharge groundwater to the surface to the present time. Investigations have evolved, measurements of discharge at selected sites, limited chemical data on anions and isotope analysis. The springs are associated with earthquake generated fissures (extensional) and compression zones, mostly in loess-colluvium soils of the valley floor and lower slopes. Extensive peat swamps are present in the Hillsborough valley, with a groundwater table at ~1m below ground. The first appearance of the ‘new’ springs took place following the Mw 7.1 Darfield Earthquake on 4 September 2010, and discharges increased both in volume and extent of the Christchurch Mw 6.3 Earthquake of 22 February 2011. Five monitored sites show flow rates in the range of 4.2-14.4L/min, which have remained effectively constant for the duration of the study (2014-2015). Water chemistry analysis shows that the groundwater discharges are sourced primarily from volcanic bedrocks which underlies the valley at depths ≤50m below ground level. Isotope values confirm similarities with bedrock-sourced groundwater, and the short term (hours-days) influence of extreme rainfall events. Cyclone Lusi (2013-2014) affects were monitored and showed recovery of the bedrock derived water signature within 72 hours. Close to the mouth of the valley sediments interfinger with Waimakiriri River derived alluvium bearing a distinct and different isotope signature. Some mixing is evident at certain locations, but it is not clear if there is any influence from the Huntsbury reservoir which failed in the Port Hills Earthquake (22 February 2011) and stored groundwater from the Christchurch artesian aquifer system (Riccarton Gravel).

Research papers, University of Canterbury Library

Oblique-convergent plate collision between the Pacific and Australian plates across the South Island has resulted in shallow, upper crustal earthquake activity and ground surface deformation. In particular the Porters Pass - Amberley Fault Zone displays a complex hybrid zone of anastomosing dextral strike-slip and thrust/reverse faulting which includes the thrust/reverse Lees Valley Fault Zone and associated basin deformation. There is a knowledge gap with respect to the paleoseismicity of many of the faults in this region including the Lees Valley Fault Zone. This study aimed to investigate the earthquake history of the fault at a selected location and the structural and geomorphic development of the Lees Valley Fault Zone and eastern rangefront. This was investigated through extensive structural and geomorphic mapping, GPS field surveying, vertical aerial photo interpretation, analysis of Digital Elevation Models, paleoseismic trenching and optically stimulated luminescence dating. This thesis used a published model for tectonic geomorphology development of mountain rangefronts to understand the development of Lees Valley. Rangefront geomorphology is investigated through analysis of features such as rangefront sinuosity and faceted spurs and indicates the recently active and episodic nature of the uplifted rangefront. Analysis of fault discontinuity, fault splays, distribution of displacement, fault deformation zone and limited exposure of bedrock provided insight into the complex structure of the fault zone. These observations revealed preserved, earlier rangefronts, abandoned and uplifted within the eastern ranges, indicating a basinward shift in focus of faulting and an imbricate thrust wedge development propagating into the footwall of the fault zone and along the eastern ranges of Lees Valley. Fault scarp deformation analysis indicated multiple events have produced the deformation present preserved by the active fault trace in the northern valley. Vertical deformation along this scarp varied with a maximum of 11.5 m and an average of 5 m. Field mapping revealed fan surfaces of various ages have been offset and deformed, likely during the Holocene, based on expected relative surface ages. Geomorphic and structural mapping highlighted the effect of cross-cutting and inherited structures on the Lees Valley Fault, resulting in a step-over development in the centre of the eastern range-bounding trace. Paleoseismic trenching provided evidence of at least two earthquakes, which were constrained to post 21.6 ± 2.3 ka by optically stimulated luminescence dating. Single event displacements (1.48 ± 0.08 m), surface rupture earthquake magnitudes (Mw 6.7 ± 0.1, with potential to produce ≥ 7.0), and a minimum recurrence interval (3.6 ± 0.3 ka) indicated the Lees Valley Fault is an active structure capable of producing significant earthquake events. Results from this study indicate that the Lees Valley Fault Zone accommodates an important component of the Porters Pass - Amberley Fault Zone deformation and confirms the fault as a source of potentially damaging, peak ground accelerations in the Canterbury region. Remnants of previous rangefronts indicate a thrust wedge development of the Lees Valley Fault Zone and associated ranges that can potentially be used as a model of development for other thrust-fault bounded basins.

Research papers, University of Canterbury Library

Documenting earthquake-induced ground deformation is significant to assess the characteristics of past and contemporary earthquakes and provide insight into seismic hazard. This study uses airborne light detection and ranging (LiDAR) and conducts multi-disciplinary field techniques to document the surface rupture morphology and evaluate the paleoseismicity and seismic hazard parameters of the Hurunui segment of the Hope Fault in the northern South Island of New Zealand. It also documents and evaluates seismically induced features and ground motion characteristics of the 2010 Darfield and 2011 Christchurch earthquakes in the Port Hills, south of Christchurch. These two studies are linked in that they investigate the near-field coseismic features of large (Mw ~7.1) earthquakes in New Zealand and produce data for evaluating seismic hazards of future earthquakes. In the northern South Island of New Zealand, the Australian-Pacific plate boundary is characterised by strike-slip deformation across the Marlborough Fault System (MFS). The ENE-striking Hope Fault (length: ~230 km) is the youngest and southernmost fault in the MFS, and the second fastest slipping fault in New Zealand. The Hope Fault is a major source of seismic hazard in New Zealand and has ruptured (in-part) historically in the Mw 7.1 1888 Amuri earthquake. In the west, the Hurunui segment of the Hope Fault is covered by beech forest. Hence, its seismic hazard parameters and paleoearthquake chronology were poorly constrained and it was unknown whether the 1888 earthquake ruptured this segment or not and if so, to what extent. Utilising LiDAR and field data, a 29 km-long section of the Hurunui segment of the Hope Fault is mapped. LiDAR-mapping clearly reveals the principal slip zone (PSZ) of the fault and a suite of previously unrecognised structures that form the fault deformation zone (FDZ). FDZ width measurements from 415 locations reveal a spatially-variable, active FDZ up to ~500 m wide with an average width of 200 m. Kinematic analysis of the fault structures shows that the Hurunui segment strikes between 070° and 075° and is optimally oriented for dextral strike-slip within the regional stress field. This implies that the wide FDZ observed is unlikely to result from large-scale fault mis-orientation with respect to regional stresses. The analysis of FDZ width indicates that it increases with increased hanging wall topography and increased topographic relief suggesting that along-strike topographic perturbations to fault geometry and stress states increase fault zone complexity and width. FDZ width also increases where the tips of adjacent PSZ strands locally vary in strike, and where the thickness of alluvial deposits overlying bedrock increases. LiDAR- and photogrammetrically-derived topographic mapping indicates that the boundary between the Hurunui and Hope River segments is characterised by a ~850-m-wide right stepover and a 9º-14° fault bend. Paleoseismic trenching at Hope Shelter site reveals that 6 earthquakes occurred at A.D. 1888, 1740-1840, 1479-1623, 819-1092, 439-551, and 373- 419. These rupture events have a mean recurrence interval of ~298 ± 88 yr and inter-event times ranging from 98 to 595 yrs. The variation in the inter-event times is explained by (1) coalescing rupture overlap from the adjacent Hope River segment on to the Hurunui segment at the study site, (2) temporal clustering of large earthquakes on the Hurunui segment, and/or (3) ‘missing’ rupture events. It appears that the first two options are more plausible to explain the earthquake chronologies and rupture behaviour on the Hurunui segment, given the detailed nature of the geologic and chronologic investigations. This study provides first evidence for coseismic multi-segment ruptures on the Hope Fault by identifying a rupture length of 44-70 km for the 1888 earthquake, which was not confined to the Hope River segment (primary source for the 1888 earthquake). LiDAR data is also used to identify and measure dextral displacements and scarp heights from the PSZ and structures within the FDZ along the Hurunui segment. Reconstruction of large dextrally-offset geomorphic features shows that the vertical component of slip accounts for only ~1% of the horizontal displacements and confirms that the fault is predominantly strike-slip. A strong correlation exists between the dextral displacements and elevations of geomorphic features suggesting the possibility of age correlation between the geomorphic features. A mean single event displacement (SED) of 3.6 ± 0.7 m is determined from interpretation of sets of dextral displacements of ≤ 25 m. Using the available surface age data and the cumulative dextral displacements from Matagouri Flat, McKenzie Fan, Macs Knob and Hope River sites, and the mean SED, a mean slip rate of 12.2 ± 2.4 mm/yr, and a mean recurrence interval of ~320 ± 120 yr, and a potential earthquake magnitude of Mw 7.2 are determined for the Hurunui segment. This study suggests that the fault slip rate has been constant over the last ~15000 yr. Strong ground motions from the 2010 Darfield (Canterbury) earthquake displaced boulders and caused ground damage on some ridge crests in the Port Hills. However, the 2011 Christchurch earthquake neither displaced boulders nor caused ground damage at the same ridge crests. Documentation of locations (~400 m a.s.l.), lateral displacements (8-970 cm), displacement direction (250° ± 20°) of displaced boulders, in addition to their hosting socket geometries (< 1 cm to 50 cm depth), the orientation of the ridges (000°-015°) indicate that boulders have been displaced in the direction of instrumentally recorded transient peak ground horizontal displacements nearby and that the seismic waves have been amplified at the study sites. The co-existence of displaced and non-displaced boulders at proximal sites suggests small-scale ground motion variability and/or varying boulder-ground dynamic interactions relating to shallow phenomena such as variability in soil depth, bedrock fracture density and/or microtopography on the bedrock-soil interface. Shorter shaking duration of the 2011 Christchurch event, differing frequency contents and different source characteristics were all factors that may have contributed to generating circumstances less favourable to boulder displacement in this earthquake. Investigating seismically induced features, fault behaviour, site effects on the rupture behaviour, and site response to the seismic waves provides insights into fault rupture hazards.

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading in large seismic events often results in pervasive and costly damage to engineering structures and lifelines, making it a critical component of engineering design. However, the complex nature of this phenomenon leads to designing for such a hazard extremely challenging and there is a clear for an improved understanding and predicting liquefaction-induced lateral spreading. The 2010-2011 Canterbury (New Zealand) Earthquakes triggered severe liquefaction-induced lateral spreading along the streams and rivers of the Christchurch region, causing extensive damage to roads, bridges, lifelines, and structures in the vicinity. The unfortunate devastation induced from lateral spreading in these events also rendered the rare opportunity to gain an improved understanding of lateral spreading displacements specific to the Christchurch region. As part of this thesis, the method of ground surveying was employed following the 4 September 2010 Darfield (Mw 7.1) and 22 February 2011 Christchurch (Mw 6.2) earthquakes at 126 locations (19 repeated) throughout Christchurch and surrounding suburbs. The method involved measurements and then summation of crack widths along a specific alignment (transect) running approximately perpendicular to the waterway to indicate typically a maximum lateral displacement at the bank and reduction of the magnitude of displacements with distance from the river. Rigorous data processing and comparisons with alternative measurements of lateral spreading were performed to verify results from field observations and validate the method of ground surveying employed, as well as highlight the complex nature of lateral spreading displacements. The welldocumented field data was scrutinized to gain an understanding of typical magnitudes and distribution patterns (distribution of displacement with distance) of lateral spreading observed in the Christchurch area. Maximum displacements ranging from less than 10 cm to over 3.5 m were encountered at the sites surveyed and the area affected by spreading ranged from less than 20 m to over 200 m from the river. Despite the highly non-uniform displacements, four characteristic distribution patterns including large, distributed ground displacements, block-type movements, large and localized ground displacements, and areas of little to no displacements were identified. Available geotechnical, seismic, and topographic data were collated at the ground surveying sites for subsequent analysis of field measurements. Two widely-used empirical models (Zhang et al. (2004), Youd et al. (2002)) were scrutinized and applied to locations in the vicinity of field measurements for comparison with model predictions. The results indicated generally poor correlation (outside a factor of two) with empirical predictions at most locations and further validated the need for an improved, analysis- based method of predicting lateral displacements that considers the many factors involved on a site-specific basis. In addition, the development of appropriate model input parameters for the Youd et al. (2002) model led to a site-specific correlation of soil behavior type index, Ic, and fines content, FC, for sites along the Avon River in Christchurch that matched up well with existing Ic – FC relationships commonly used in current practice. Lastly, a rigorous analysis was performed for 25 selected locations of ground surveying measurements along the Avon River where ground slope conditions are mild (-1 to 2%) and channel heights range from about 2 – 4.5 m. The field data was divided into categories based on the observed distribution pattern of ground displacements including: large and distributed, moderate and distributed, small to negligible, and large and localized. A systematic approach was applied to determine potential critical layers contributing to the observed displacement patterns which led to the development of characteristic profiles for each category considered. The results of these analyses outline an alternative approach to the evaluation of lateral spreading in which a detailed geotechnical analysis is used to identify the potential for large spreading displacements and likely spatial distribution patterns of spreading. Key factors affecting the observed magnitude and distribution of spreading included the thickness of the critical layer, relative density, soil type and layer continuity. It was found that the large and distributed ground displacements were associated with a thick (1.5 – 2.5 m) deposit of loose, fine to silty sand (qc1 ~4-7 MPa, Ic 1.9-2.1, qc1n_cs ~50-70) that was continuous along the bank and with distance from the river. In contrast, small to negligible displacements were characterized by an absence of or relatively thin (< 1 m), discontinuous critical layer. Characteristic features of the moderate and distributed displacements were found to be somewhere between these two extremes. The localized and large displacements showed a characteristic critical layer similar to that observed in the large and distributed sites but that was not continuous and hence leading to the localized zone of displacement. The findings presented in this thesis illustrate the highly complex nature of lateral displacements that cannot be captured in simplified models but require a robust geotechnical analysis similar to that performed for this research.