Search

found 703 results

Research papers, University of Canterbury Library

Shaking table testing of a full-scale three storey resilient and reparable complete composite steel framed building system is being conducted. The building incorporates a number of interchangeable seismic resisting systems of New Zealand and Chinese origin. The building has a steel frame and cold formed steel-concrete composite deck. Energy is dissipated by means of friction connections. These connections are arranged in a number of structural configurations. Typical building non-skeletal elements (NSEs) are also included. Testing is performed on the Jiading Campus shaking table at Tongji University, Shanghai, China. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including the BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. This paper provides a general overview of the project describing a number of issues encountered in the planning of this programme including issues related to international collaboration, the test plan, and technical issues.

Research papers, University of Canterbury Library

Floor systems with precast concrete hollow-core units have been largely used in concrete buildings built in New Zealand during the 1980’s. Recent earthquakes, such as the Canterbury sequence in 2010-2011 and the Kaikoura earthquake in 2016, highlighted that this floor system can be highly vulnerable and potentially lead to the floor collapse. A series of research activities are in progress to better understand the seismic performance of floor diaphragms, and this research focuses on examining the performance of hollow core units running parallel to the walls of wall-resisting concrete structures. This study first focused on the development of fragility functions, which can be quickly used to assess likelihood of the hollow-core being able to survive given the buildings design drift, and secondly to determine the expected performance of hollow-core units that run parallel to walls, focusing on the alpha unit running by the wall. Fragility functions are created for a range of different parameters for both vertical dislocation and crack width that can be used as the basis of a quick analysis or loss estimation for the likely impact of hollow-core floors on building vulnerability and risk. This was done using past experimental tests, and the recorded damage. Using these results and the method developed by Baker fragility curves were able to be created for varying crack widths and vertical dislocations. Current guidelines for analysis of hollow-core unit incompatible displacements are based on experimental vertical displacement results from concrete moment resisting frame systems to determine the capacity of hollow-core elements. To investigate the demands on hollow-core units in a wall-based structure, a fibre-element model in the software Seismostruct is created and subject to quasi-static cyclic loading, using elements which are verified from previous experimental tests. It is shown that for hollow-core units running by walls that the 10 mm displacement capacity used for hollow-core units running by a beam is insufficient for members running by walls and that shear analysis should be used. The fibre-element model is used to simulate the seismic demand induced on the floor system and has shown that the shear demand is a function of drift, wall length, hollow-core span, linking slab length and, to a minor extent, wall elongation.

Research papers, University of Canterbury Library

In response to the February 2011 earthquake, Parliament enacted the Canterbury Earthquake Recovery Act. This emergency legislation provided the executive with extreme powers that extended well beyond the initial emergency response and into the recovery phase. Although New Zealand has the Civil Defence Emergency Management Act 2002, it was unable to cope with the scale and intensity of the Canterbury earthquake sequence. Considering the well-known geological risk facing the Wellington region, this paper will consider whether a standalone “Disaster Recovery Act” should be established to separate an emergency and its response from the recovery phase. Currently, Government policy is to respond reactively to a disaster rather than proactively. In a major event, this typically involves the executive being given the ability to make rules, regulations and policy without the delay or oversight of normal legislative process. In the first part of this paper, I will canvas what a “Disaster Recovery Act” could prescribe and why there is a need to separate recovery from emergency. Secondly, I will consider the shortfalls in the current civil defence recovery framework which necessitates this kind of heavy governmental response after a disaster. In the final section, I will examine how

Research papers, University of Canterbury Library

To this extent, modern buildings generally demonstrated good resistance to collapse during the recent earthquakes in New Zealand. However, damage to non-structural elements (NSE) has been persistent during these events. NSEs include secondary systems or components attached to the floors, roofs, and walls of a building or industrial facility that are not explicitly designed to participate in the main vertical or lateral load-bearing mechanism of the structure. They play a major role in the operational and functional aspects of buildings and contribute a major portion of the building’s overall cost. Therefore, they are expected to accommodate the effects of seismic actions such as drifts and accelerations. Typical examples of NSEs include internal non-loadbearing partitions, suspended ceilings, sprinkler piping systems, architectural claddings, building contents, mechanical/electrical equipment, and furnishings. The main focus of this thesis is the drift sensitive NSEs: precast concrete cladding panels and internal partition walls. Even though most precast concrete cladding panels performed well from a life-safety point of view during recent earthquakes in NZ, some collapsed panels posed a significant threat to life safety. It is, therefore, important that the design and detailing of the panel-to-structure connections ensure that their strength and displacement capacity are adequate to meet the corresponding seismic demands, at least during design level earthquakes. In contrast, the partition wall is likely to get damaged and lose serviceability at a low inter-story drift unless designed to accommodate the relative deformations between them and the structure. Partition walls suffered wide-ranging damage such as screw failures, diagonal cracking, detachments to the gypsum linings, and anchorage failures during the 2011 Canterbury Earthquake Sequence in NZ. Therefore, the thesis is divided into two parts. Part I of the thesis focuses on developing novel low-damage precast concrete cladding panel connections, i.e. “rocking” connection details comprising vertically slotted steel embeds and weld plates. The low-damage seismic performance of novel “rocking” connection details is verified through experimental tests comprising uni-directional, bi-directional, and multi-storey scaled quasi-static cyclic tests. Comparison with the seismic performance of traditional panel connections reported in the literature demonstrated the system’s significantly improved seismic resilience. Furthermore, the finite element models of panel connections and sealants are developed in ABAQUS. The force-drift responses of the “rocking” panel system modelled in SAP2000 is compared with the experimental results to evaluate their accuracy and validity. Part II of the thesis focuses on a) understanding the seismic performance of traditional rigid timber-framed partition wall, b) development and verification of low-damage connections (i.e. “rocking” connection details comprising of dual-slot tracks), and c) seismic evaluation of partition walls with a novel “bracketed and slotted” connections (comprising of innovative fastener and plastic bracket named Flexibracket) under uni-directional and bidirectional quasi-static cyclic loadings. Moreover, parametric investigation of the partition walls was conducted through several experimental tests to understand better the pros and cons of the rocking connection details. The experimental results have confirmed that the implementation of the proposed low damage solutions of precast cladding panels and internal partition walls can significantly reduce their damage in a building.

Research papers, University of Canterbury Library

It is not a matter of if a major earthquake will happen in New Zealand, it is when. Earthquakes wreak havoc, cut off power and water supply, lines of communication, sewer, supply chains, and transport infrastructure. People get injured and whole communities can get cut off the rest of the country for extended periods of time. Countries taking measures to increase the population's preparedness tend to suffer less severe consequences than those that do not. Disaster management authorities deliver comprehensive instructions and preparation guidance, yet communities remain grossly underprepared. There are multiple factors that influence motivation for preparedness. Personal experience is one of the most significant factors that influence preparedness motivation. Not many people will experience a severe and damaging earthquake in their lifetime. A serious game (SG) that is a computer simulation of an earthquake is a tool that can let participants experience the earthquake and its aftermath from the safety of their computer. The main result of this research is a positive answer to the question: Can a serious game motivate people to prepare for earthquakes at least just as good as a personal experience of at least a moderate earthquake? There are different levels of immersion this serious game can be implemented at. In this thesis the same earthquake experience scenario – SG “ShakeUp” is implemented as a desktop application and a virtual reality (VR) application. A user study is conducted with the aim of comparing the motivation level achieved by the two versions of the SG “ShakeUp”. In this study no benefits of using VR over traditional desktop application were found: participants trying both versions of the SG “ShakeUp” reported similar levels of motivation to prepare for earthquakes immediately after the experiment. This means that both versions of the experience were equally effective in motivating participants to prepare for earthquakes. An additional benefit of this result is that the cheaper and easier to deliver desktop version can be widely used in various education campaigns. Participants reported being more motivated to prepare for earthquakes by either version of the SG “ShakeUp” than by any other contributing factor, including their previous earthquake experience or participation in a public education campaign. Both versions of the SG “ShakeUp” can successfully overcome personal bias, unrealistic optimism, pessimism, lack of perceived control over one’s earthquake preparation actions, fatalism, and sense of helplessness in the face of the earthquakes and motivate the individual to prepare for earthquakes. Participants without the prior earthquake experience benefit most from the SG “ShakeUp” regardless of the version tried, compared to the participants who had experienced an earthquake: significantly more of them will reconsider their current level of earthquake preparedness; about 24% more of them attribute their increased level of motivation to prepare for earthquakes to the SG “ShakeUp”. For every earthquake preparation action there is about 25% more people who felt motivated to do it after trying the SG “ShakeUp” than those who have done this preparation action before the experiment. After trying either version of the SG “ShakeUp”, people who live in a free standing house and those who live in a rental property reported highest levels of intent to carry on with the preparation actions. The proposed application prototype has been discussed with the University of Canterbury Earthquake Centre and received very positive feedback as having potential for practical use by various disaster management authorities and training institutions. The research shows that the SG “ShakeUp” motivates people to prepare for earthquakes as good as a personal earthquake experience and can be successfully used in various education campaigns.

Research papers, University of Canterbury Library

INTRODUCTION: Connections between environmental factors and mental health issues have been postulated in many different countries around the world. Previously undertaken research has shown many possible connections between these fields, especially in relation to air quality and extreme weather events. However, research on this subject is lacking in New Zealand, which is difficult to analyse as an overall nation due to its many micro-climates and regional differences.OBJECTIVES: The aim of this study and subsequent analysis is to explore the associations between environmental factors and poor mental health outcomes in New Zealand by region and predict the number of people with mental health-related illnesses corresponding to the environmental influence.METHODS: Data are collected from various public-available sources, e.g., Stats NZ and Coronial services of New Zealand, which comprised four environmental factors of our interest and two mental health indicators data ranging from 2016 up until 2020. The four environmental factors are air pollution, earthquakes, rainfall and temperature. Two mental health indicators include the number of people seen by District Health Boards (DHBs) for mental health reasons and the statistics on suicide deaths. The initial analysis is carried out on which regions were most affected by the chosen environmental factors. Further analysis using Auto-Regressive Integrated Moving Average(ARIMA) creates a model based on time series of environmental data to generate estimation for the next two years and mental health projected from the ridge regression.RESULTS: In our initial analysis, the environmental data was graphed along with mental health outcomes in regional charts to identify possible associations. Different regions of New Zealand demonstrate quite different relationships between the environmental data and mental health outcomes. The result of later analysis predicts that the suicide rate and DHB mental health visits may increase in Wellington, drop-in Hawke's Bay and slightly increase in Canterbury for the year 2021 and 2022 with different environmental factors considered.CONCLUSION: It is evident that the relationship between environmental and mental health factors is regional and not national due to the many micro-climates that exist around the nation. However, it was observed that not all factors displayed a good relationship between the regions. We conclude that our hypotheses were partially correct, in that increased air pollution was found to correlate to increased mental health-related DHB visits. Rainfall was also highly correlated to some mental health outcomes. Higher levels of rainfall reduced DHB visits and suicide rates in some areas of the country.

Research papers, University of Canterbury Library

The Eastern Humps and Leader faults, situated in the Mount Stewart Range in North Canterbury, are two of the ≥17 faults which ruptured during the 2016 MW7.8 Kaikōura Earthquake. The earthquake produced complex, intersecting ground ruptures of these faults and the co-seismic uplift of the Mount Stewart Range. This thesis aims to determine how these two faults accommodated deformation during the 2016 earthquake and how they interact with each other and with pre-existing geological structures. In addition, it aims to establish the most likely subsurface geometry of the fault complex across the Mount Stewart Range, and to investigate the paleoseismic history of the Leader Fault. The Eastern Humps Fault strikes ~240° and dips 80° to 60° to the northwest and accommodated right- lateral – reverse-slip, with up to 4 m horizontal and 2 m vertical displacement in the 2016 earthquake. The strike of the Leader Fault varies from ~155 to ~300°, and dips ~30 to ~80° to the west/northwest, and mainly accommodated left-lateral – reverse-slip of up to 3.5 m horizontal and 3.5 m vertical slip in the 2016 earthquake. On both the Eastern Humps and Leader faults the slip is variable along strike, with areas of low total displacement and areas where horizontal and vertical displacement are negatively correlated. Fault traces with low total displacement reflect the presence of off-fault (distributed) displacement which is not being captured with field measurements. The negative correlation of horizontal and vertical displacement likely indicates a degree of slip partitioning during the 2016 earthquake on both the Eastern Humps and Leader faults. The Eastern Humps and Leader faults have a complex, interdependent relationship with the local bedrock geology. The Humps Fault appears to be a primary driver of ongoing folding and deformation of the local Mendip Syncline and folding of the Mount Stewart Range, which probably began prior to, or synchronous with, initial rupture of The Humps Fault. The Leader Fault appears to use existing lithological weaknesses in the Cretaceous-Cenozoic bedrock stratigraphy to rupture to the surface. This largely accounts for the strong variability on the strike and dip of the Leader Fault, as the geometry of the surface ruptures tend to reflect the strike and dip of the geological strata which it is rupturing through. The Leader Fault may also accommodate some degree of flexural slip in the Cenozoic cover sequence of the Mendip Syncline, contributing to the ongoing growth of the fold. The similarity between topography and uplift profiles from the 2016 earthquake suggest that growth of the Mount Stewart Range has been primarily driven by multiple (>500) discrete earthquakes that rupture The Humps and Leader faults. The spatial distribution of surface displacements across the Mount Stewart Range is more symmetrical than would be expected if uplift is driven primarily by The Humps and Leader faults alone. Elastic dislocation forward models were used to model potential sub-surface geometries and the resulting patterns of deformation compared to photogrammetry-derived surface displacements. Results show a slight preference for models with a steeply southeast-dipping blind fault, coincident with a zone of seismicity at depth, as a ‘backthrust’ to The Humps and Leader faults. This inferred Mount Stewart Fault accommodated contractional strain during the 2016 earthquake and contributes to the ongoing uplift of the Mount Stewart Range with a component of folding. Right-lateral and reverse shear stress change on the Hope Fault was also modelled using Coulomb 3.3 software to examine whether slip on The Humps and Leader faults could transfer enough stress onto the Hope Fault to trigger through-going rupture. Results indicate that during the 2016 earthquake right-lateral shear and reverse stress only increased on the Hope Fault in small areas to the west of the Leader Fault, and similar ruptures would be unlikely to trigger eastward propagating rupture unless the Hope Fault was close to failure prior to the earthquake. Paleoseismic trenches were excavated on the Leader Fault at four locations from 2018 to 2020, revealing near surface (< 4m depth) contractional deformation of Holocene stratigraphy. Three of the trench locations uncovered clear evidence for rupture of the Leader Fault prior to 2016, with fault displacement of near surface stratigraphy being greater than displacement recorded during the 2016 earthquake. Radiocarbon dating of in-situ organic material from two trenches indicate a date of the penultimate earthquake on the Leader Fault within the past 1000 years. This date is consistent with The Humps and Leader faults having ruptured simultaneously in the past, and with multi-fault ruptures involving The Humps, Leader, Hundalee and Stone Jug faults having occurred prior to the 2016 Kaikōura earthquake. Overall, the results contribute to an improved understanding of the Kaikōura earthquake and highlight the importance of detailed structural and paleoseismic investigations in determining controls on earthquake ‘complexity’.

Research papers, University of Canterbury Library

This study investigates the uncertainty of simulated earthquake ground motions for smallmagnitude events (Mw 3.5 – 5) in Canterbury, New Zealand. 148 events were simulated with specified uncertainties in: event magnitude, hypocentre location, focal mechanism, high frequency rupture velocity, Brune stress parameter, the site 30-m time-averaged shear wave velocity (Vs30), anelastic attenuation (Q) and high frequency path duration. In order to capture these uncertainties, 25 realisations for each event were generated using the Graves and Pitarka (2015) hybrid broadband simulation approach. Monte-Carlo realisations were drawn from distributions for each uncertainty, to generate a suite of simulation realisations for each event and site. The fit of the multiple simulation realisations to observations were assessed using linear mixed effects regression to generate the systematic source, path and site effects components across all ground motion intensity measure residuals. Findings show that additional uncertainties are required in each of the three source, path, and site components, however the level of output uncertainty is promising considering the input uncertainties included.

Research papers, University of Canterbury Library

A wide range of reinforced concrete (RC) wall performance was observed following the 2010/2011 Canterbury earthquakes, with most walls performing as expected, but some exhibiting undesirable and unexpected damage and failure characteristics. A comprehensive research programme, funded by the Building Performance Branch of the New Zealand Ministry of Business, Innovation and Employment, and involving both numerical and experimental studies, was developed to investigate the unexpected damage observed in the earthquakes and provide recommendations for the design and assessment procedures for RC walls. In particular, the studies focused on the performance of lightly reinforced walls; precast walls and connections; ductile walls; walls subjected to bi-directional loading; and walls prone to out-of-plane instability. This paper summarises each research programme and provides practical recommendations for the design and assessment of RC walls based on key findings, including recommended changes to NZS 3101 and the NZ Seismic Assessment Guidelines.

Research papers, University of Canterbury Library

High-quality ground motion records are required for engineering applications including response history analysis, seismic hazard development, and validation of physics-based ground motion simulations. However, the determination of whether a ground motion record is high-quality is poorly handled by automation with mathematical functions and can become prohibitive if done manually. Machine learning applications are well-suited to this problem, and a previous feed-forward neural network was developed (Bellagamba et al. 2019) to determine high-quality records from small crustal events in the Canterbury and Wellington regions for simulation validation. This prior work was however limited by the omission of moderate-to-large magnitude events and those from other tectonic environments, as well as a lack of explicit determination of the minimum usable frequency of the ground motion. To address these shortcomings, an updated neural network was developed to predict the quality of ground motion records for all magnitudes and all tectonic sources—active shallow crustal, subduction intraslab, and subduction interface—in New Zealand. The predictive performance of the previous feed-forward neural network was matched by the neural network in the domain of small crustal records, and this level of predictive performance is now extended to all source magnitudes and types in New Zealand making the neural network applicable to global ground motion databases. Furthermore, the neural network provides quality and minimum usable frequency predictions for each of the three orthogonal components of a record which may then be mapped into a binary quality decision or otherwise applied as desired. This framework provides flexibility for the end user to predict high-quality records with various acceptability thresholds allowing for this neural network to be used in a range of applications.

Research papers, University of Canterbury Library

The QuakeCoRE Emerging Researchers Chapter (QERC) is a network of students and emerging researchers composed of three chapters: Auckland, Canterbury, and Wellington. Our aim is to promote networking, collaboration, and knowledge sharing among emerging researchers in the earthquake resilience community. QERC does this by organising technical, social, and outreach events. As with everyone else during the pandemic crisis, QERC had to change its approach in organising events. However, instead of treating it as an obstacle, QERC utilised the lockdown period as an opportunity to connect the three chapters and organised more events than they usually would during normal times. In the 11 weeks that universities were closed and New Zealand was under Alert Levels 2, 3 and 4, QERC organised 15 various events such as research presentations, well-being workshops, a women's catch-up, and a trivia night. However, as the weeks went by, the novelty of online meetings faded and fewer people came to the virtual events. Therefore as soon as the country moved to Alert Level 1, the Chapters started organising in-person events, which members were eager to attend. Nonetheless, the option to join events remotely still remains and the three chapters continue to collaborate for various events.

Research papers, University of Canterbury Library

This document reviews research-based understandings of the concept of resilience. A conceptual model is developed which identifies a number of the factors that influence individual and household resilience. Guided by the model, a series of recommendations are developed for practices that will support individual and household resilience in Canterbury in the aftermath of the 2010-2011 earthquakes.

Research papers, University of Canterbury Library

In recent years, rocking isolation has become an effective approach to improve seismic performance of steel and reinforced concrete structures. These systems can mitigate structural damage through rigid body displacement and thus relatively low requirements for structural ductility, which can significantly improve seismic resilience of structures and reduce repairing costs after strong earthquakes. A number of base rocking structural systems with only a single rocking interface have been proposed. However, these systems can have significant high mode effect for high rise structures due to the single rocking interface. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including the BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. A number of structural configurations will be tested [1, 2], and non-structural elements including ceilings, infilling walls, glazed curtain walls, precast concrete panels, piping system will also be tested in this project [3]. Within this study, a multiple rocking column steel structural system was proposed and investigated mainly by Tongji team with assistance of NZ members. The concept of rocking column system initiates from the structure of Chinese ancient wooden pagoda. In some of Chinese wooden pagodas, there are continuous core columns hanged only at the top of each pagoda, which is not connected to each stories. This core column can effectively avoid collapse of the whole structure under large storey drifts. Likewise, there are also central continuous columns in the newly proposed steel rocking column system, which can avoid weak story failure mechanism and make story drifts more uniform. In the proposed rocking column system, the structure can switch between an elastic rigidly connected moment resisting frame and a controlled rocking column system when subjected to strong ground motion excitations. The main seismic energy can be dissipated by asymmetric friction beam–column connections, thereby effectively reducing residual displacement of the structure under seismic loading without causing excessive damage to structural members. Re–centering of the structure is provided not only by gravity load carried by rocking columns, but also by mould coil springs. To investigate dynamic properties of the proposed system under different levels of ground excitations, a full-scale threestory steel rocking column structural system with central continuous columns is to be tested using the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China and an analytical model is established. A finite element model is also developed using ABAQUS to simulate the structural dynamic responses. The rocking column system proposed in this paper is shown to produce resilient design with quick repair or replacement.

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 4 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 4th instalment covers recent work on seaweed recovery in the subtidal zone, ecological engineering in Waikoau / Lyell Creek, and a sneak preview of drone survey results!

Research papers, University of Canterbury Library

This dissertation addresses a diverse range of topics in the physics-based broadband ground motion simulation, with a focus on New Zealand applications. In particular the following topics are addressed: the methodology and computational implementation of a New Zealand Velocity Model for broadband ground motion simulation; generalised parametric functions and spatial correlations for seismic velocities in the Canterbury, New Zealand region from surface-wave-based site characterisation; and ground motion simulations of Hope Fault earthquakes. The paragraphs below outline each contribution in more detail. A necessary component in physics-based ground motion simulation is a 3D model which details the seismic velocities in the region of interest. Here a velocity model construction methodology, its computational implementation, and application in the construction of a New Zealand velocity model for use in physics-based broadband ground motion simulation are presented. The methodology utilises multiple datasets spanning different length scales, which is enabled via the use of modular sub-regions, geologic surfaces, and parametric representations of crustal velocity. A number of efficiency-related workflows to decrease the overall computational construction time are employed, while maintaining the flexibility and extensibility to incorporate additional datasets and re- fined velocity parameterizations as they become available. The model comprises explicit representations of the Canterbury, Wellington, Nelson-Tasman, Kaikoura, Marlborough, Waiau, Hanmer and Cheviot sedimentary basins embedded within a regional travel-time tomography-based velocity model for the shallow crust and provides the means to conduct ground motion simulations throughout New Zealand for the first time. Recently developed deep shear-wave velocity profiles in Canterbury enabled models that better characterise the velocity structure within geologic layers of the Canterbury sedimentary basin to be developed. Here the development of depth- and Vs30-dependent para-metric velocity and spatial correlation models to characterise shear-wave velocities within the geologic layers of the Canterbury sedimentary basin are presented. The models utilise data from 22 shear-wave velocity profiles of up to 2.5km depth (derived from surface wave analysis) juxtaposed with models which detail the three-dimensional structure of the geologic formations in the Canterbury sedimentary basin. Parametric velocity equations are presented for Fine Grained Sediments, Gravels, and Tertiary layer groupings. Spatial correlations were developed and applied to generate three-dimensional stochastic velocity perturbations. Collectively, these models enable seismic velocities to be realistically represented for applications such as 3D ground motion and site response simulations. Lastly the New Zealand velocity model is applied to simulate ground motions for a Mw7.51 rupture of the Hope Fault using a physics-based simulation methodology and a 3D crustal velocity model of New Zealand. The simulation methodology was validated for use in the region through comparison with observations for a suite of historic small magnitude earthquakes located proximal to the Hope Fault. Simulations are compared with conventionally utilised empirical ground motion models, with simulated peak ground velocities being notably higher in regions with modelled sedimentary basins. A sensitivity analysis was undertaken where the source characteristics of magnitude, stress parameter, hypocentre location and kinematic slip distribution were varied and an analysis of their effect on ground motion intensities is presented. It was found that the magnitude and stress parameter strongly influenced long and short period ground motion amplitudes, respectively. Ground motion intensities for the Hope Fault scenario are compared with the 2016 Kaikoura Mw7.8 earthquake, it was found that the Kaikoura earthquake produced stronger motions along the eastern South Island, while the Hope Fault scenario resulted in stronger motions immediately West of the near-fault region. The simulated ground motions for this scenario complement prior empirically-based estimates and are informative for mitigation and emergency planning purposes.

Research papers, University of Canterbury Library

New Zealand has a long tradition of using light timber frame for construction of its domestic dwellings. After the most recent earthquakes (e.g. Canterbury earthquakes sequence), wooden residential houses showed satisfactory life safety performance which aligns with New Zealand design codes requirements. However, poor performance was reported in terms of their seismic resilience that can be generally associated with community demands. Future expectations of the seismic performance of wooden-framed houses by homeowners were assessed in this research. Homeowners in the Wellington region were asked in a survey about the levels of safety and expected possible damage in their houses after a seismic event. Findings bring questions about whether New Zealand code requirements are good enough to satisfy community demands. Also, questions whether available information of strengthening techniques to structurally prepare wooden-framed houses to face future major earthquakes can help to make homeowners feel safer at home during major seismic events.

Research papers, University of Canterbury Library

This report contributes to a collaborative project between the Marlborough District Council (MDC) and University of Canterbury (UC) which aims to help protect and promote the recovery of native dune systems on the Marlborough coast. It is centred around the mapping of dune vegetation and identification of dune protection zones for old-growth seed sources of the native sand-binders spinifex (Spinifex sericeus) and pīngao (Ficinia spiralis). Both are key habitat-formers associated with nationally threatened dune ecosystems, and pīngao is an important weaving resource and Ngāi Tahu taonga species. The primary goal is to protect existing seed sources that are vital for natural regeneration following major disturbances such as the earthquake event. Several additional protection zones are also identified for areas where new dunes are successfully regenerating, including areas being actively restored in the Beach Aid project that is assisting new native dunes to become established where there is available space.

Research papers, University of Canterbury Library

The Canterbury earthquakes, which started with the 7.1 magnitude event on September 4, 2010, caused significant damage in the region. The September 4 earthquakes brought substantial damage to land, buildings, and infrastructure, while the 6.3 magnitude earthquake on February 22, 2011 (and its subsequent aftershocks), brought even greater property damage, but also significant loss of life in addition to the region. Thousands were injured, and 185 persons died. A national State of Emergency was declared and remained in effect until April 30, 2011. A significant number of people required immediate assistance and support to deal with loss, injury, trauma experiences, and property damages. Many had to find alternate accommodation as their houses were too damaged to stay in. Of those affected, many were already vulnerable, and others had been too traumatized by the events to effectively deal with the challenges they were faced with. A number of human service organizations in the region, from both government and non-government sectors, joined forces to be able to more effectively and efficiently help those in need. This was the start of what would become known as the Earthquake Support Coordination Service. The aim of this report is to present an evaluation of the Earthquake Support Coordination Service and its collaborative organization, based on documentation and interviews with key stakeholders of the service. The aim is also to evaluate the service based on perspectives gathered among the clients as well as the coordinators working in the service. The final aim is to offer a reflection on the service model, and on what factors enabled the service, as well as recommendations regarding aspects of the service which may require review, and aspects which may be useful in other contexts.

Research papers, University of Canterbury Library

There has been little discussion of what archival accounting evidence can contribute to an understanding of a society’s response to a natural disaster. This article focuses on two severe earthquakes which struck New Zealand in 1929 and 1931 and makes two main contributions to accounting history. First, by discussing evidence from archival sources, it contributes to the literature on accounting in a disaster. This provides a basis for future theory building and for future comparative research related to the response to more recent natural disasters such as the 2010–11 Canterbury earthquakes. Secondly, it questions the conclusions of recently published research concerning the role of central and local government in this and recent earthquakes.

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 6 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 6th instalment features the ‘new land’ created by the earthquake uplift of the coastline, recreational uses of beaches in Marlborough, and pāua survey work and hatchery projects with our partners in Kaikōura.

Research papers, University of Canterbury Library

The initial goal of this research was to explore how SME business models change in response to a crisis. Keeping this in mind, the business model canvas (Osterwalder & Pigneur, 2010) was used as a tool to analyse SME business models in the Canterbury region of New Zealand. The purpose was to evaluate the changes SMEs instituted in their business models after being hit by a series of earthquakes in 2010 and 2011. The idea was to conduct interviews with business owners and analyse them using grounded theory methods. As this method is iterative and requires simultaneous data collection and analysis, a tentative model was proposed after first phase of the data collection and analysis. However, as a result of this process, it became apparent that owner-specific characteristics, action orientation and networks were more prominent in the data than business model elements. Although the SMEs in this study experienced several operational changes in their business models, such as a change of location, modifications to their payment terms or expanded/restricted target markets, the suggested framework highlights how owner-specific attributes ensured the recovery of their businesses. After the initial framework was suggested, subsequent interviews were conducted to test, verify, and modify the tentative model. Three aspects of business recovery emerged: (a) cognitive coping – the business owner’s mind-set and motive; (b) adaptive coping – the ability of business owner to take corrective actions; and (c) social capital – the social network of a business owner, including formal and informal connections and their significance. Three distinct groups were identified; self-sufficient SMEs, socially-based SMEs and surviving SMEs. This thesis proposes a grounded theory of business recovery for SMEs following a disaster. Cognitive coping and social capital enabled the owners to take actions, which eventually led to the desired outcomes for the businesses.

Research papers, University of Canterbury Library

The performance of buildings in recent New Zealand earthquakes (Canterbury, Seddon and Kaikōura), delivered stark lessons on seismic resilience. Most of our buildings, with a few notable exceptions, performed as our Codes intended them to, that is, to safeguard people from injury. Many buildings only suffered minor structural damage but were unable to be reused and occupied for significant periods of time due to the damage and failure of non-structural elements. This resulted in substantial economic losses and major disruptions to our businesses and communities. Research has attributed the damage to poor overall design coordination, inadequate or lack of seismic restraints for non structural elements and insufficient clearances between building components to cater for the interaction of non structural elements under seismic actions. Investigations have found a clear connection between the poor performance of non-structural elements and the issues causing pain in the industry (procurement methods, risk aversion, the lack of clear understanding of design and inspection responsibility and the need for better alignment of the design codes to enable a consistent integrated design approach). The challenge to improve the seismic performance of non structural elements in New Zealand is a complex one that cuts across a diverse construction industry. Adopting the key steps as recommended in this paper is expected to have significant co-benefits to the New Zealand construction industry, with improvements in productivity alongside reductions in costs and waste, as the rework which plagues the industry decreases.

Research papers, University of Canterbury Library

Timber-based hybrid structures provide a prospective solution for utilizing environmentally friendly timber material in the construction of mid-rise or high-rise structures. This study mainly focuses on structural damage evaluation for a type of timber-steel hybrid structures, which incorporate prefabricated light wood frame shear walls into steel moment-resisting frames (SMRFs). The structural damage of such a hybrid structure was evaluated through shake table tests on a four-story large-scale timber-steel hybrid structure. Four ground motion records (i.e., Wenchuan earthquake, Canterbury earthquake, El-Centro earthquake, and Kobe earthquake) were chosen for the tests, with the consideration of three different probability levels (i.e., minor, moderate and major earthquakes) for each record. During the shake table tests, the hybrid structure performed quite well with visual damage only to wood shear walls. No visual damage in SMRF and the frame-to-wall connections was observed. The correlation of visual damage to seismic intensity, modal-based damage index and inter-story drift was discussed. The reported work provided a basis of knowledge for performance-based seismic design (PBSD) for such timber-based hybrid structures.

Research papers, University of Canterbury Library

Post-tensioned timber technology was originally developed and researched at the University of Canterbury (UC) in New Zealand in 2005. It can provide a low-damage seismic design solution for multi-storey mass timber buildings. Since mass timber products, such as cross-laminated timber (CLT), have high in-plane stiffness, a post-tensioned timber shear wall will deform mainly in a rocking mechanism. The moment capacity of the wall at the base is commonly determined using the elastic form of the Modified Monolithic Beam Analogy (MMBA). In the calculation of the moment capacity at the wall base, it is critical to accurately predict the location of the neutral axis and the timber compressive stress distribution. Three 2/3 scale 8.6m tall post-tensioned CLT walls were experimentally tested under quasi-static cyclic loading – both uni-directional and bi-directional- in this study. These specimens included a single wall, a coupled wall, and a C-shaped core-wall. The main objective was to develop post-tensioned C-shaped timber core-walls for tall timber buildings with enhanced lateral strength and stiffness. To better understand the timber compressive stress distributions at the wall base, particle tracking technology (PTT) technology was applied for the first time to investigate the behaviour of the compression toe. Previous post-tensioned timber testing primarily used the displacement measurements to determine the timber compressive behavior at the wall base or rocking interfaces. However, by using PTT technology, the timber strain measurements in the compression zone can be much more accurate as PTT is able to track the movement of many particles on the timber surface. This paper presents experimental testing results of post-tensioned CLT walls with a focus on capturing timber compressive behavior using PTT. The PTT measurements were able to better capture small base rotations which occurred at the onset of gap opening and capture unexpected phenomena in core-wall tests. The single wall test result herein presented indicates that while the MMBA could predict the moment rotation behavior with reasonable accuracy, the peak strain response was under predicted in the compression toe. Further detailed study is required to better understand the complex strain fields generated reflective of the inherent cross-thickness inhomogeneity and material variability of CLT.

Research papers, University of Canterbury Library

Describes an extensive experimental program at the University of Canterbury, for the development of new structural systems and connections for multi-storey laminated veneer lumber (LVL) timber buildings in earthquake-prone areas. The proposed innovative ductile timber connections are conceptually similar to recent seismic solutions successfully developed for precast concrete multi- storey buildings. The paper gives an overview of the research program, and the results of quasi-static cyclic tests on frame subassemblies, including exterior beam-column joints and cantilever columns, as well as pseudo-dynamic tests on cantilever columns. The experimental results showed significant dissipation of hysteretic energy, good self-centering capacity and no appreciable damage of the structural elements, confirming the expected enhanced performance of the proposed structural systems.

Research papers, University of Canterbury Library

This paper describes part of an extensive experimental programme in progress at the University of Canterbury to develop Laminated Veneer Lumber (LVL) structural systems and connections for multistorey timber buildings in earthquake-prone areas. The higher mechanical properties of LVL, when compared to sawn timber, in addition to its low mass, flexibility of design and rapidity of construction, create the potential for increased use of LVL in multi-storey buildings. The development of these innovative ductile connections in LVL, proposed here for frame systems, have been based on the successful implementation of jointed ductile connections for precast concrete systems, started in the early 1990s with the PRESSS Program at the University of California, San Diego, further developed in Italy and currently under further refinement at the University of Canterbury. This paper investigates the seismic behaviour of the so-called “hybrid” connection, characterised by the combination of unbonded post-tensioned tendons and either external or internal energy dissipaters passing through the critical contact surface between the structural elements. Experimental results on hybrid exterior beam-to-column and column-to-foundation subassemblies under cyclic quasi-static unidirectional loading are presented. The proposed innovative solutions exhibit a very satisfactory seismic performance characterised by an appreciable energy dissipation capacity (provided by the dissipaters) combined with self-centring properties (provided by the unbonded tendons) and negligible damage of the LVL structural elements.

Research papers, University of Canterbury Library

Recent major earthquakes such as Northridge 1994 and Izmit Kocaeli 1999 highlighted the poor performance of existing buildings constructed prior to the early 1970’s. Low lateral seismic design coefficients and the adopted “working stress design” methodology (essentially an elastic design) lacked any inelastic design considerations, thus leading to inadequate detailing. Insufficient development lengths, lapping within potential plastic hinge regions, lack, or total absence of joint transverse reinforcement, and the use of plain round reinforcement and hooked end anchorages were common throughout the structure. The behaviour is generally dominated by brittle local failure mechanisms (e.g. joint or element shear failures) as well as possible soft-storey mechanisms at a global level. Amongst several possible retrofit interventions, a typical solution is to provide the structure with additional structural walls i.e. external buttressing or column in-fills. Extensive developments on precast, post-tensioned, dissipative systems have shown promise for the use of rocking wall systems to retrofit existing poorly detailed frame structures. In this contribution, the feasibility of such a retrofit intervention is investigated. A displacement-based retrofit procedure is developed and proposed, based on targeting pre-defined performance criteria, such as joint shear and/or column curvature deformation limits. A design example, using the proposed retrofit strategy on a prototype frame is presented. A brief overview on experimental work ongoing at the University of Canterbury investigating the dynamic response of advanced rocking walls for retrofit purposes will be provided.

Research papers, University of Canterbury Library

Reinforced concrete structures designed in pre-1970s are vulnerable under earthquakes due to lack of seismic detailing to provide adequate ductility. Typical deficiencies of pre-1970s reinforced concrete structures are (a) use of plain bars as longitudinal reinforcement, (b) inadequate anchorage of beam longitudinal reinforcement in the column (particularly exterior column), (c) lack of joint transverse reinforcement if any, (d) lapped splices located just above joint, and (e) low concrete strength. Furthermore, the use of infill walls is a controversial issue because it can help to provide additional stiffness to the structure on the positive side and on the negative side it can increase the possibility of soft-storey mechanisms if it is distributed irregularly. Experimental research to investigate the possible seismic behaviour of pre-1970s reinforced concrete structures have been carried out in the past. However, there is still an absence of experimental tests on the 3-D response of existing beam-column joints under bi-directional cyclic loading, such as corner joints. As part of the research work herein presented, a series of experimental tests on beam-column subassemblies with typical detailing of pre-1970s buildings has been carried out to investigate the behaviour of existing reinforced concrete structures. Six two-third scale plane frame exterior beam-column joint subassemblies were constructed and tested under quasi-static cyclic loading in the Structural Laboratory of the University of Canterbury. The reinforcement detailing and beam dimension were varied to investigate their effect on the seismic behaviour. Four specimens were conventional deep beam-column joint, with two of them using deformed longitudinal bars and beam bars bent in to the joint and the two others using plain round longitudinal bars and beam bars with end hooks. The other two specimens were shallow beam-column joint, one with deformed longitudinal bars and beam bars bent in to the joint, the other with plain round longitudinal bars and beam bars with end hooks. All units had one transverse reinforcement in the joint. The results of the experimental tests indicated that conventional exterior beam-column joint with typical detailing of pre-1970s building would experience serious diagonal tension cracking in the joint panel under earthquake. The use of plain round bars with end hooks for beam longitudinal reinforcement results in more severe damage in the joint core when compared to the use of deformed bars for beam longitudinal reinforcement bent in to the joint, due to the combination of bar slips and concrete crushing. One interesting outcome is that the use of shallow beam in the exterior beam-column joint could avoid the joint cracking due to the beam size although the strength provided lower when compared with the use of deep beam with equal moment capacity. Therefore, taking into account the low strength and stiffness, shallow beam can be reintroduced as an alternative solution in design process. In addition, the presence of single transverse reinforcement in the joint core can provide additional confinement after the first crack occurred, thus delaying the strength degradation of the structure. Three two-third scale space frame corner beam-column joint subassemblies were also constructed to investigate the biaxial loading effect. Two specimens were deep-deep beam-corner column joint specimens and the other one was deep-shallow beam-corner column joint specimen. One deep-deep beam-corner column joint specimen was not using any transverse reinforcement in the joint core while the two other specimens were using one transverse reinforcement in the joint core. Plain round longitudinal bars were used for all units with hook anchorage for the beam bars. Results from the tests confirmed the evidences from earthquake damage observations with the exterior 3-D (corner) beam-column joint subjected to biaxial loading would have less strength and suffer higher damage in the joint area under earthquake. Furthermore, the joint shear relation in the two directions is calibrated from the results to provide better analysis. An analytical model was used to simulate the seismic behaviour of the joints with the help of Ruaumoko software. Alternative strength degradation curves corresponding to different reinforcement detailing of beam-column joint unit were proposed based on the test results.