Search

found 728 results

Research papers, University of Canterbury Library

Most people exposed to disasters cope well. Others, however, develop posttraumatic stress disorder (PTSD)–a mental disorder characterised by symptoms of intrusion, avoidance, and hyperarousal–requiring input from specialist mental health services. To date, relatively little research has evaluated these services, and less is known about characteristics of people seeking treatment and their treatment outcomes. In 2010 and 2011, a series of major earthquakes occurred in the Canterbury region of Aotearoa New Zealand, resulting in initiation of the Adult Specialist Services for Earthquake Trauma Treatment (ASSETT) service to provide cognitive behavioural therapy (CBT) for people with earthquake-related PTSD or subthreshold PTSD symptoms. The current research used systematic literature review methods, in conjunction with data collected from people seeking treatment with the ASSETT service, to address issues relevant to the development of disaster mental health responses, particularly specialist mental health services. A systematic review was conducted synthesising research examining mental health service use among adults exposed to natural disasters. A second systematic review and meta-analysis evaluated psychological interventions for earthquake-related PTSD. A series of studies then utilised diagnostic interview and self-report data collected from people seeking treatment with the ASSETT service (n = 184). Data were collected on factors relating to sociodemographics, pre-earthquake mental disorders, current psychological functioning, degree of objective and subjective earthquake exposure, and life events. These studies examined factors distinguishing treatment-seeking participants from earthquake-exposed Canterbury residents who coped well; differences associated with different prior mental disorders and timing of treatment presentation; and outcomes of CBT provided by the service. Four overarching themes emerged across study findings. The first related to the role of objective and subjective disaster exposure in the development of post-disaster mental health outcomes. Subjective peritraumatic responses were found to be an important factor distinguishing treatment-seeking participants from those who coped well following the earthquakes, independent of objective exposure severity. Heightened peritraumatic responses were also associated with poorer treatment outcome, although not beyond their association with pre-treatment PTSD severity and degree of comorbidity. The second theme related to the role of pre-trauma mental health in the development of post-disaster mental health outcomes. Participants with a history of pre-earthquake mental disorder presented with more comorbid disorders than participants with no prior disorder, but reported comparable degrees of PTSD severity and similar treatment outcomes. The third theme related to temporal considerations for disaster mental health responses. Participants who presented at later time points tended to be older and were more likely to have subthreshold PTSD symptoms, but had similar treatment outcomes as those who presented at earlier time points. The fourth theme related to treatment of severe and ongoing earthquake-related distress. CBT without a formal exposure component was associated with clinically significant improvements on a range of outcome measures, with group and individual-based treatment associated with comparable outcomes. Findings of the current research suggest people seeking treatment for severe and ongoing disaster-related distress are not homogenous, and are likely to present for treatment at different time points, have varied mental health histories, and report diverse disaster experiences. CBT is an effective treatment for severe and ongoing post-disaster distress when delivered in real-world mental health service settings. Group CBT represents an efficient, scalable, and effective treatment format for post-disaster distress, and may be an attractive option for treating widespread need using limited resources.

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 6 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 6th instalment features the ‘new land’ created by the earthquake uplift of the coastline, recreational uses of beaches in Marlborough, and pāua survey work and hatchery projects with our partners in Kaikōura

Research papers, University of Canterbury Library

According to TS 1170.5, designing a building to satisfy code-prescribed criteria (e.g., drift limit, member safety, P-Δ stability) at the ultimate limit state and relying on the inherent margins within the design code would lead to an acceptable mean annual frequency of collapse (λ꜀) in the range of 10−⁴ to 10−⁵. Modern performance objectives, such as λ꜀ and expected annual loss (EAL), are not explicitly considered. Although buckling-restrained braced frame (BRBF) buildings were widely adopted as lateral load-resisting systems for office and car park buildings in the Christchurch rebuild following the Canterbury earthquakes in New Zealand, there are currently no official guidelines for their design. The primary focus of this study is to develop a risk-targeted design framework for BRBF buildings that can achieve the performance objectives desired by stakeholders. To this extent, key factors influencing λ꜀ and EAL of BRBF buildings are identified. These factors include gusset plate design, number of storeys, design drift limit, BRBF beam-column connection, brace configuration, brace angle, brace material grade, and analysis method (equivalent lateral force vs. modal response spectrum). A novel 3D BRBF modelling approach capable of simulating out-of-plane buckling failure of buckling-restrained brace (BRB) gusset plates is developed. Prior experimental studies on sub-assemblies conducted elsewhere have demonstrated that gusset plates and end zones may buckle out of plane prematurely, before BRBs reach their maximum axial compression load carrying capacity. Current 2D BRBF macro models, typically used in research, cannot simulate this failure mode. A conventional 2D BRBF model underestimates the λ꜀ of a case-study 4-storey super-X configured steel BRBF building (designed according to NZS-3404) by a factor of two compared to the estimate from the proposed 3D model. These findings suggest that the current NZS-3404 gusset plate design method may undersize gusset plates and that using a 2D BRBF model in this case can significantly underestimate λ꜀. Three improved alternative gusset plate design methods that are easy to implement in practice are identified from the literature. Gusset plates in two case-study 4-storey steel BRBF buildings with super-X and diagonal configurations are designed using both the NZS-3404 method and alternative methods. All three alternative design methods are found to be conservative, resulting in an almost three-fold lower λ꜀ for both case-study BRBF buildings compared to those designed using the NZS-3404 method. Analysis results indicate that (i) bidirectional interaction has no significant effect on gusset plate buckling and (ii) mid-span gusset plates are more susceptible to buckling than corner gusset plates. A framework for seismic loss assessment using incremental dynamic analysis (IDA), called loss-oriented hazard-consistent incremental dynamic analysis (LOHC-IDA), is developed. IDA can be conducted with a generic record set, eliminating the arduous site-specific record selection required to conduct multiple stripe analysis (MSA). Traditional IDA, however, is limited in producing hazard-consistent estimates of engineering demand parameters (EDPs), which LOHC-IDA overcomes. LOHC-IDA improves upon existing methods by: (i) incorporating correlations among engineering demand parameters across intensity levels and (ii) using peak ground acceleration (PGA) to predict peak floor acceleration (PFA). For two case-study steel BRBF buildings, LOHC-IDA estimates the EAL and loss distributions conditioned on the intensity level that closely match the MSA results, with an average absolute error of 5%. The influence of factors beyond gusset plate design on the λ꜀ and EAL of 26 case-study steel BRBF buildings (designed in accordance with TS 1170.5) is examined. Hazard-consistent λ꜀ and EAL for these buildings are estimated using the FEMA P-58 loss and risk assessment framework. Among the 26 case-study buildings, 23 satisfy the maximum code-specified λ꜀ limit of 10−⁴. The EAL, normalised by the total building replacement cost, is highest for 2-storey BRBFs (0.22% on average), followed by 4-storey BRBFs (0.16% on average) and 8-storey BRBFs (0.11% on average). Reducing the design drift limit has the most significant effect on lowering λ꜀ (all BRBF designs were drift governed), followed by transitioning from pinned to moment-resisting beam-column connections, reducing the brace angle, and increasing brace strength. BRBF buildings designed using the equivalent lateral force method, on average, have a lower λ꜀ compared to those designed using the modal response spectrum method. Diagonally configured BRBFs exhibit the lowest λ꜀, followed by super- X and chevron configured BRBFs. Most design variables, apart from drift limit and beam-column connection, have limited influence on EAL. A simple method for EDP-targeted design of steel BRBF buildings is proposed. For this purpose, linear regression and CatBoost machine learning models are developed to predict steel BRBF building EDPs using peak storey drift ratio (PSDR) and PFA estimates from the 26 case-study buildings at intensity levels ranging from 80% to 0.5% probability of exceedance in 50 years. The R²ₐₔⱼ of these models is around 0.98, while the average prediction error is less than 10%. Fundamental period (T₁), total building height (Hₜ), and pseudospectral acceleration at T₁, denoted as Sₐ(T₁), are selected as the features to predict PSDR, while T₁, Hₜ, and PGA are the features selected to predict PFA. The EDP-targeted design has three steps: (i) for a given Hₜ value, the PSDR prediction model is used to identify a suitable T₁ that can achieve a desired PSDR target at the design intensity, (ii) a force-based design is then conducted iteratively to achieve the target T₁ by using an appropriate ductility factor and design drift limit, and (iii) based on the T₁ in the final design iteration, the PFA demand estimated by the PFA prediction models is used as a conservative input for the design of acceleration-sensitive non-structural elements. An equation to predict λ꜀ at the design stage is proposed for collapse risk-targeted seismic design of buildings. This equation comprises three principal components: reserve building strength, a proxy for effective structural stiffness, and reserve building deformation capacity. This equation is calibrated for the collapse risk-targeted design of BRBF buildings in New Zealand using results from 26 case-study BRBF buildings. The validity of this equation is demonstrated with three design verification examples designed to specific λ꜀ targets. Considering λ꜀ from hazard-consistent incremental dynamic analysis as the benchmark, the mean absolute percentage error in the design-stage prediction of λ꜀ of the verification buildings is approximately 10%.

Research papers, University of Canterbury Library

Contemporary organisations operate in rapidly evolving complex and ambiguous environments for which traditional change management approaches are insufficient. Under these conditions, organisations need to demonstrate learning and adaptive capabilities to effectively manage crises. Yet, the swift development and enactment of these capabilities can be particularly challenging for large, operationally diverse, and financially constrained public-sector organisations such as universities. Despite growing need for evidence-based research to guide crisis and change management in the higher education sector, the organisational literature offers limited insights. The combined impact of the 2010 and 2011 Canterbury earthquakes with a well-advanced restructure provided an opportunity to investigate institutional adaptation to and management of a compounded planned change (i.e., restructure) and an unplanned change (i.e., natural disaster response) at a university. Beginning in 2016, individual semi-structured interviews were conducted with 20 middle and senior university managers to capture their perspectives of compounded planned and unplanned change management, covering views of leadership, and of operational, structural, relational, and extra-organisational factors. Data were analysed using reflexive thematic analysis. The analysis coalesced into two overarching themes: Change Management Approaches and Lessons Learned through Change. Change Management Approaches evince institutional adaptation factors, along with barriers and enablers to effective change management, arising from the interplay of, and tensions between, leadership capabilities and a longstanding participatory culture. Lessons Learned through Change encompass business continuity mechanisms, and the learning opportunities seized and missed by leaders. The findings assert the primacy of workforce capabilities to 21st-century organisational success and thriving and substantiate that the calibre and availability of workforce capability is contingent on organisational culture and leadership. Leaders must ensure organisational agility by empowering employees, leveraging and integrating their contributions within and across functional units, and promoting effective two-way communication. The research argues for a hybrid repertoire of versatile dynamic organisational leadership qualities and capabilities to effectively navigate the multidimensional challenges and uncertainties in this sector and 21st-century business conditions. Of overarching significance to this repertoire is purpose-oriented emotionally intelligent leadership that honours the individual and collective dignity, diversity, and intelligence of all employees. This research empirically evidences the co-occurrence of planned and unplanned change in contemporary society, and continuous organisational adaptation and resilience to navigate the persistent volatility during a protracted crisis. Accordingly, the thesis argues that continued bifurcation of planned and unplanned change fields, and strategic and change management leadership theories is untenable, and that an integrated framework of organisational leadership and change management methodologies is required for organisations to effectively respond to and navigate the challenges and volatility of contemporary organisational contexts.

Research papers, University of Canterbury Library

In their everyday practice, social workers support those experiencing distress, poverty, oppression, and marginalisation in recovering from past and present crises and trauma. This expertise and knowledge is highly relevant in the aftermath of disasters, which disproportionately impact those on the margins of society. This research examines the experiences of social workers who responded to two major disaster events in Ōtautahi Christchurch, Aotearoa New Zealand: the Canterbury earthquakes of 2010 and 2011, and the Christchurch mosque attacks of 2019. This qualitative study was interpreted through a theoretical framework comprised of posttraumatic growth (PTG), ecological systems theory, the notion of ‘place’, and social capital. Data for this research was collected in two phases; individual interviews with 23 registered social workers who practised through both disaster sequences, and two focus groups which reviewed the findings of the interviews and contributed further reflections on their experiences. The data was analysed through a reflexive thematic analysis (RTA). Analysis of the data revealed three major themes from the individual interviews, and one overall theme from the focus groups. The first theme from the interviews explored participants’ feelings around the challenges associated with disaster practice and how these had enhanced their practice skills, expanded their knowledge, and aided in the development of new skills. The second theme investigated participants’ new understandings of trauma. This theme included a greater appreciation for the negative toll of trauma and how it can manifest, and the unexpected positive changes which can occur as a result of reflecting on traumatic experiences. The third theme from the individual interviews examined how participants felt their sense of resilience was connected to their experiences of support. Through the focus groups, participants contributed further data and knowledge. Participants in the focus groups identified and discussed principles that they felt were necessary for disaster practice, including being trauma attuned, culturally aware, and adaptable individually and organisationally to the changing needs of disaster. These findings have important implications for social work disaster practice and everyday work, both in Aotearoa New Zealand and internationally. The participants’ experiences and perspectives were analysed to develop a model for disaster practice.

Research papers, University of Canterbury Library

This community-partnered thesis explores the impact of ReVision Youth Audits in promoting youth-friendly community spaces in Christchurch, a city undergoing long-term urban transformation following the 2010–2011 earthquakes. In partnership with ReVision, a not-for-profit organisation facilitating youth-led audits of public and community spaces, this research examines how audit recommendations have been implemented by organisations responsible for 23 previously audited sites. Using a mixed-methods approach, including an online stakeholder survey (n = 16) and semi-structured interviews (n = 2), the study identified variation in implementation outcomes, with non-profit organisations reporting higher adoption levels than local government entities. Stakeholders reported that commonly implemented recommendations included enhanced lighting, inclusive signage, additional seating, and youth-focused amenities such as murals, free Wi-Fi, and gender-neutral toilets. The average youth-friendliness score increased from 4.7 to 7.5 out of 10 following implementations, reflecting tangible improvements in accessibility, inclusivity, and youth engagement. Despite these gains, several barriers limited full implementation. Local government stakeholders cited procedural delays, regulatory frameworks, and funding cycles tied to long- term planning. At the same time, non-profits stakeholders faced constraints such as property ownership and limited influence over shared spaces. Challenges related to timing, staffing capacity, and the absence of follow-up mechanisms were also reported. Stakeholders recomended integrating youth input in the design process earlier, as several audits occurred after key planning phases. Feedback on the audit process was largely positive, with high ratings for the clarity of recommendations and the tool's credibility. However, stakeholders advocated for refinements when recording the audit recommendations to capture young people's lived experiences better and sustain youth involvement beyond the initial audit phase. The research demonstrates that the ReVision Youth Audit framework contributes to meaningful improvements in public spaces especially for youth and reinforces the value of youth-informed urban design. This research provides practical guidance for enhancing youth engagement in urban planning and improving the long-term utility of participatory audit frameworks, based on an analysis of both the factors that enabled and those that constrained the implementation of audit recommendations.

Research papers, University of Canterbury Library

Research undertaken and literature reviewed show that major natural disasters present considerable risk to Governors Bay. Earthquakes, and resulting secondary hazards from natural disasters, could lead to the isolation of the Governors Bay community for an extended period. In particular, the rupture of the Alpine Fault and the resulting mega-quake could leave Governors Bay isolated for well over three weeks. Weaknesses in existing infrastructure in Governors Bay further places residents at risk. Therefore, it is essential that residents are prepared for a period of extended isolation, with little to no access to clean water, power, internet and cellular coverage. Ultimately, community preparedness will be the key to maintaining social cohesion and saving lives during an emergency event. The community hub in Governors Bay establishes a pre-determined locale for community co-ordination, collection, and distribution of supplies as well as a functional place to go when all else fails.

Research papers, University of Canterbury Library

In Aotearoa, New Zealand people are living longer, alongside a slowing birthrate, the older population is growing faster than the younger population. As people live longer, there is an increased need for social services and support that cater for older persons, including care takers, mental health services, and community groups. Social work plays an important role in an ageing society because it addresses the multifaceted needs for older people. While there has been recent research conducted on the experiences of older persons, none have been undertaken in the unique context of the Eastern suburbs of Ōtautahi, Christchurch, an area adversely impacted by the 2011 earthquakes. This research specifically looks at the experiences of older residents in the East, considering various intersecting characteristics such as age, gender, ethnicity, socioeconomic status, available supports, community engagement and relationships to explore the multifaceted experiences and needs of this cohort. This research is a qualitative study influenced by intersectionality and place theories. Both underpinning theories are important in understanding social dynamics, identities, and lived experiences within this community research project. I interviewed nine participants from the Eastern suburbs of Ōtautahi, Christchurch using semi-structured interviews. Interviews were analysed using thematic analysis and detailed journaling. The data from these interviews generated the main themes discussed in this thesis: community connections, places with meaning, and accessing social support services.

Research papers, University of Canterbury Library

This survey was established by the University of Canterbury (UC) to assist the Marlborough community in recording and understanding the level and types of recreational beach uses that are occurring at present on the earthquake-affected coast. The questions were designed to capture a comprehensive view of recreational activities and interests and allowed for any activity, view or perspective to be recorded. All responses were anonymous and no identifying information was collected. The survey used an online format open to all interested people 18+ years of age (for informed consent reasons) over a two month period (October – November 2020). The geographic focus of the survey was the coastline between Marfells Beach and the Waima / Ure River which is the area under currently under consideration by Marlborough District Council for development of a new bylaw. However, the design of the survey questions also allowed respondents to record information pertaining to any other area.

Research papers, University of Canterbury Library

Effective management of waste and debris generated by a disaster event is vital to ensure rapid and efficient response and recovery that supports disaster risk reduction (DRR). Disaster waste refers to any stream of debris that is created from a natural disaster that impacts the environment, infrastructure, and property. This waste can be problematic due to extensive volumes, environmental contamination and pollution, public health risks, and the disruption of response and recovery efforts. Due to the complexities in dealing with these diverse and voluminous materials, having disaster waste management (DWM) planning in place pre-event is crucial. In particular, coordinated, interagency plans that have been informed by estimates of waste volumes and types are vital to ensure management facilities, personnel, and recovery resources do not become overwhelmed. Globally, a priority when formulating DWM plans is the robust estimation of disaster waste stream types and volumes. This is a relatively under-researched area, despite the growing risk of natural disasters and increasingly inadequate waste management facilities. In Aotearoa New Zealand, a nation-wide DWM planning tool has been proposed for local government use, and waste amounts from events such as the Christchurch Earthquakes have been estimated. However, there has been little work undertaken to estimate waste types and volumes with a region-specific, multi-hazard focus, which is required to facilitate detailed regional DWM planning. This research provides estimates of potential disaster waste volumes and types in the Waitaha-Canterbury region of the South Island (Te Waipounamu) for three key hazard scenarios: a M8.0 Alpine Fault earthquake with a south-to-north rupture pattern, a far-sourced tsunami using a maximum credible event model for a Peru-sourced event, and major flooding using geospatial datasets taken from available local government modelling. Conducted in partnership with Environment Canterbury and Canterbury CDEM, this estimation work informed stakeholder engagement through multi-agency workshops at the district level. This research was comprised of two key parts. The first was enhancing and extending a disaster waste estimation model used in Wellington and applying it to the Canterbury region to quantify waste volumes and types. The second part was using this model and its estimates to inform engagement with stakeholders in multi-agency, district-level workshops in Kaikōura, Hurunui, and Waimakariri. In these workshops, the waste estimates were used to catalyse discussion around potential issues associated with the management of disaster waste. Regionally, model estimates showed that the earthquake scenario would generate the highest total volume of disaster waste (1.94 million m³), compared to the tsunami scenario (1.89 million m³) and the flood scenario (173,900 m³). Flood waste estimates are likely underrepresented due to limited flood modelling coverage, but still provide a valuable comparison. Whilst waste estimates differ significantly between districts, waste volumes were shown to be not solely dependent on building/population density. The district-level workshops showed that DWM challenges revolved around logistical constraints, public concerns, governance complexities, and environmental issues. Future work should further enhance this estimation model and apply it to other regions of Aotearoa New Zealand, to help develop a set of cohesive DWM plans for each region. The waste estimation model could also be adapted and applied internationally. The findings from this research provide a foundation for advancing DWM planning and stakeholder engagement in the Waitaha-Canterbury region. By offering region-specific waste estimates across multiple hazard scenarios, this work supports district councils and emergency managers in developing informed, proactive strategies for disaster preparedness and response. The insights gained from district-level workshops highlight key challenges that must be addressed in future planning. These outcomes contribute to a broader research agenda for DWM in Aotearoa New Zealand, and offer a framework adaptable to international contexts.

Research papers, University of Canterbury Library

The North Canterbury and Marlborough regions of Aotearoa | New Zealand were severely impacted by almost 30,000 landslides triggered during the 2016 Kaikōura Earthquake. Of these landslides approximately 200 dammed rivers. In the study area near Waiau, rupture of The Humps and Leader faults (and associated ground motions) initiated at least 42 co-seismic landslides. The Leader Landslide is the largest of these landslides, with an area of approximately 600,000 m2 and a volume of 6-8 million m3. The landslide buried approximately 980 m of active Leader River bed length and dammed the river. The dam produced four lakes, with two remaining today and two having been breached by partial landslide collapse and knickpoint migration in the year following the earthquake. As of 2025, the landslide dam has not been completely breached and Lake Rebekah remains. The Leader Landslide dam presents a unique opportunity to chart the evolution of the active riverbed pre- and post-earthquake, for up to 2 km downstream of Lake Rebekah. The river’s evolutionary timeline was observed using LiDAR, satellite aerial imagery, and drone surveys from 2001 to 2024 to develop maps and topographic difference models. Key timeframes for riverbed change events were also constrained with information and dated photography gathered from previous communications with the landowners at Woodchester Station, where the landslide is located. Finally, Schmidt Hammer testing of the Pliocene-Miocene Greta Siltstone Formation was conducted to investigate the role of bedrock strength on the rate of riverbed erosion. I present the history of evolution of the Leader River, pre- and post-earthquake, and consider factors impacting riverbed morphology changes. Despite the stability of Lake Rebekah, these data show that the position and morphology of the Leader River has changed significantly in response to the landslide, with the formation of two knickpoint waterfalls up to 14 m-high, four waterbodies, and diversion of the river around the landslide toe. Evolution of the river is characterised by longer periods of stasis (e.g., months to years) punctuated by rapid changes in riverbed morphology (e.g., hours to weeks) associated with incision and aggradation. In particular, the knickpoints migrated upstream at variable spatial and temporal rates. Factors controlling the rates of processes include; rain-storm events, partial lake outburst flooding, spatial changes in Pliocene-Miocene siltstone bed induration and landowner intervention to stabilise the landslide dam. An overarching conclusion of this thesis is that landforms can develop rapidly (i.e., hours to weeks) and in the absence of historical accounts, could be interpreted to have formed over hundreds to thousands of years.

Research papers, University of Canterbury Library

When researchers seek to understand community resilience, it often centres on individual agents and actors. They look at the traits individuals have in order to help recover from adverse events, as well as the decisionmaking processes required to plan and adapt. In Aotearoa New Zealand, Māori forms of organising can challenge these. This research was about uncovering Māori forms organising and practices in the context of resilience. The methodology I used was He Awa Whiria/Braided Rivers and storytelling analysis in kanohi ki te kanohi/semi-structured interviews to understand how Māori communities responded to and recovered from the 2010 Darfield (Canterbury), 2011 Ōtautahi/Christchurch, and 2016 Kaikōura earthquakes. Five themes emerged from the project: (i) the importance of marae as a powerful physical location, (ii) the value in building strong reciprocal connections and cultural relationships, (iii) the stronghold that kai/food has in helping to heal communities, (iv) the exchange and trading of resources, and (v) being practical when move forward after a disaster event. As a non-Māori researcher, I have been an outsider to te Ao Māori and to Aotearoa. In using this blended methodology, it became apparent that there are many socio-cultural and historical contentions from the effects of colonisation, assimilation, to grappling with Western norms. Notably, the findings pointed to more similarities than differences, such as taking care of family and communities, being community-driven, and ways of coping with adverse events. This revealed that there are similar ways of doing things regardless of having different customs. This research makes several contributions. It contributes to the field of management studies by addressing gaps in how the concept of resilience is viewed from a practical Māori perspective. The research presents emergency management professionals with similar blended and practical strategies to co-design approaches for collaborative readiness, response, and recovery plans and programmes. The study further demonstrates the localised and tangible benefits that can be gained from utilising a blended methodology and storying method. Ultimately, the purpose of the thesis was to start bridging the gap between agencies and communities, to shift to more Indigenous-led approaches, integrating local Indigenous practices and knowledges that lead to more prepared communities in managing, responding to, and recovering from earthquake hazard events.

Research papers, University of Canterbury Library

Welcome to the first Recover newsletter from the Marine Ecology Research Group (MERG) at the University of Canterbury. Recover is designed to keep you updated on our MBIE funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Ecosystem Recovery). This first issue provides a summary of some of the big changes we’ve seen. In the next issue we’ll be profiling some of the current research as well as ways you can get involved!

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence (CES) was a monumental natural disaster in Aotearoa New Zealand that permanently altered Ōtautahi Christchurch’s geography. Following the earthquake events, the central city was in need of recovery and regeneration to return to being an enhanced and thriving space. The Christchurch Central Recovery Plan (CCRP) was developed to outline the aspirations, visions and challenges associated with rebuilding the central city. The purpose of this research was to review the current status of the CCRP, with a particular focus on identifying the projects that have or have not progressed. This research sought to understand which aspects of a post-disaster recovery plan have contributed to successful post-disaster recovery in Ōtautahi Christchurch. Secondary data was used to identify successes and failures in this regard. The results highlighted the top-down approach taken by the central government in the recovery process and a notable lack of community engagement throughout the CCRP. However, there were some projects and aspirations that have enabled Ōtautahi Christchurch to become a thriving city and express its regenerated identity at a local, national, and international level.

Research papers, University of Canterbury Library

Climate change and population growth will increase vulnerability to natural and human-made disasters or pandemics. Longitudinal research studies may be adversely impacted by a lack of access to study resources, inability to travel around the urban environment, reluctance of sample members to attend appointments, sample members moving residence and potentially also the destruction of research facilities. One of the key advantages of longitudinal research is the ability to assess associations between exposures and outcomes by limiting the influence of sample selection bias. However, ensuring the validity and reliability of findings in longitudinal research requires the recruitment and retention of respondents who are willing and able to be repeatedly assessed over an extended period of time. This study examined recruitment and retention strategies of 11 longitudinal cohort studies operating during the Christchurch, New Zealand earthquake sequence which began in September 2010, including staff perceptions of the major impediments to study operations during/after the earthquakes and respondents’ barriers to participation. Successful strategies to assist recruitment and retention after a natural disaster are discussed. With the current COVID-19 pandemic, longitudinal studies are potentially encountering some of the issues highlighted in this paper including: closure of facilities, restricted movement of research staff and sample members, and reluctance of sample members to attend appointments. It is possible that suggestions in this paper may be implemented so that longitudinal studies can protect the operation of their research programmes.<br /><br />Key messages<br /><ul><li>Recruitment and retention of longitudinal study participants is challenging following a natural disaster.</li><br /><li>The long-lasting, global effects of the Covid 19 pandemic will increase this problem.</li><br /><li>Longitudinal study researchers should develop protocols to support retention before a disaster occurs.</li><br /><li>Researchers need to be pragmatic and flexible in the design and implementation of their studies.</li></ul>

Research papers, University of Canterbury Library

Supplemental energy dissipation devices are increasingly used to protect structures, limit loads transferred to structural elements and absorbing significant response energy without sacrificial structural damage. Lead extrusion dampers are supplemental energy dissipation devices, where recent development of smaller volumetric size with high force capacities, called high force to volume (HF2V) devices, has seen deployment in a large series of scaled and full-scaled experiments, as well as in three new structures in Christchurch, NZ and San Francisco, USA. HF2V devices have previously been designed using limited precision models, so there is variation in force prediction capability. Further, while the overall resistive force is predicted, the knowledge of the relative contributions of the different internal reaction mechanisms to these overall resistive forces is lacking, limiting insight and predictive accuracy in device design. There is thus a major need for detailed design models to better understand force generation, and to aid precision device design. These outcomes would speed the overall design and implementation process for uptake and use, reducing the need for iterative experimental testing. Design parameters from 17 experimental HF2V device tests are used to create finite element models using ABAQUS. The analysis is run using ABAQUS Explicit, in multiple step times of 1 second with automatic increments, to balance higher accuracy and computational time. The output is obtained from the time- history output of the contact pressure forces including the normal and friction forces on the lead along the shaft. These values are used to calculate the resistive force on the shaft as it moves through the lead, and thus the device force. Results of these highly nonlinear, high strain analyses are compared to experimental device force results. Model errors compared to experimental results for all 17 devices ranged from 0% to 20% with a mean absolute error of 6.4%, indicating most errors were small. In particular, the standard error in manufacturing is SE = ±14%. In this case, 15 of 17 devices (88%) are within ±1SE (±14%) and 2 of 17 devices (12%) are within ±2SE (±28). These results show low errors and a distribution of errors compared to experimental results that are within experimental device construction variability. The overall modelling methodology is objective and repeatable, and thus generalizable. The exact same modelling approach is applied to all devices with only the device geometry changing. The results validate the overall approach with relatively low error, providing a general modelling methodology for accurate design of HF2V devices.

Research papers, University of Canterbury Library

Media law developments have continued across many areas in the period to mid-2013. In defamation, the New Zealand courts have begun to consider the issue of third party liability for publication on the internet, with cases involving Google searches and comments on a Facebook page. A parliamentary inquiry into a case that restricted parliamentary privilege has recommended a Parliamentary Privilege Act containing a definition of ‘proceedings in Parliament’. A satirical website increased its popularity when it fought off threatened defamation proceedings. In breach of confidence, a government body, the Earthquake Commission, obtained an interim injunction prohibiting publication of information accidentally released that dealt with the repair of earthquake-damaged properties in Christchurch, and a blogger made the information available online in breach of the order.

Research papers, University of Canterbury Library

Reconnaissance reports have highlighted the poor performance of non-ductile reinforced concrete buildings during the 2010-11 Canterbury earthquakes. These buildings are widely expected to result in significant losses under future earthquakes due to their seismic vulnerability and prevalence in densely populated urban areas. Wellington, for example, contains more than 70 pre-1970s multi-storey reinforced concrete buildings, ranging in height from 5 to 18 storeys. This study seeks to characterise the seismic performance and evaluate the likely failure modes of a typical pre-1970s reinforced concrete building in Wellington, by conducting advanced numerical simulations to evaluate its 3D nonlinear dynamic response. A representative 9-storey office building constructed in 1951 is chosen for this study and modelled in the finite element analysis programme DIANA, using a previously developed and validated approach to predict the failure modes of doubly reinforced walls with confined boundary regions. The structure consists of long walls and robust framing elements resulting in a stiff lateral load resisting system. Barbell-shaped walls are flanked by stiff columns with sufficient transverse reinforcement to serve as boundary regions. Curved shell elements are used to model the walls and their boundary columns, for which the steel reinforcement is explicitly modelled. Line elements are used to model the frame elements. The steel reinforcement in each member is explicitly modelled. The floor slabs are modelled using elastic shell elements. The model is analysed under short and long duration ground motions selected to match site specific targets in Wellington at the DBE and MCE intensity levels. The observed response of the building including drift profiles at each intesity level, strain localization effects around wall openings, and the influence of bidirectional loading are discussed.

Research papers, University of Canterbury Library

This study explores the nature of smaller businesses’ resilience following two major earthquakes that severely disrupted their place of doing business. Data from the owners of ten smaller businesses are qualitative and longitudinal, spanning the period 2011 through 2018, providing first-hand narrative accounts of their responses in the earthquakes’ aftermath. All ten owners showed some individual resilience; six businesses survived through to 2018, of which three have recovered strongly. All three owned their premises; operated business-tobusiness models; and were able to adapt and continue to follow path-extension strategies. All the other businesses had direct business-to-customer models operating from leased premises, typically in major retail malls. Four eventually recognised path-exhaustion at different times and so did not survive through to 2018. We conclude however that post-disaster recovery is best explained in terms of business model resilience. Even the most resilient of individual owners will struggle to survive if their business model is either not resilient or cannot be made so. Individual resilience is necessary but not sufficient.

Research papers, University of Canterbury Library

This article explores the scope of small-scale radio to create an auditory geography of place. It focuses on the short-term art radio project The Stadium Broadcast, which was staged in November 2014 in an earthquake-damaged sports stadium in Christchurch, New Zealand. Thousands of buildings and homes in Christchurch have been demolished since the February 22, 2011, earthquake, and by the time of the broadcast the stadium at Lancaster Park had been unused for three years and nine months, and its future was uncertain. The Stadium Broadcast constructed a radio memorial to the Park’s 130-year history through archival recordings, the memories of local people, observation of its current state, and a performed site-specificity. The Stadium Broadcast reflected on the spatiality of radio sounds and transmissions, memory, postdisaster transitionality, and the impermanence of place.

Research papers, University of Canterbury Library

Recent tsunami events have highlighted the importance of effective tsunami risk management strategies (including land-use planning, structural and natural mitigation, warning systems, education and evacuation planning). However, the rarity of tsunami means that empirical data concerning reactions to tsunami warnings and evacuation behaviour is rare when compared to findings for evacuations from other hazards. More knowledge is required to document the full evacuation process, including responses to warnings, pre-evacuation actions, evacuation dynamics, and the return home. Tsunami evacuation modelling has the potential to inform evidence-based tsunami risk planning and response. However, to date, tsunami evacuation models have largely focused on the timings of evacuations, rather than behaviours of those evacuating. In this research, survey data was gathered from coastal communities in Banks Peninsula and Christchurch, New Zealand, relating to behaviours and actions during the November 14th 2016 Kaikōura earthquake tsunami. Survey questions asked about immediate actions following the earthquake shaking, reactions to tsunami warnings, pre-evacuation actions, evacuation dynamics and details on congestion. This data was analysed to characterise trends and identify factors that influenced evacuation actions and behaviour, and was further used to develop a realistic evacuation model prototype to evaluate the capacity of the roading network in Banks Peninsula during a tsunami evacuation. The evacuation model incorporated tsunami risk management strategies that have been implemented by local authorities, and exposure and vulnerability data, alongside the empirical data collected from the survey. This research enhances knowledge of tsunami evacuation behaviour and reactions to tsunami warnings, and can be used to refine evacuation planning to ensure that people can evacuate efficiently, thereby reducing their tsunami exposure and personal risk.

Research papers, University of Canterbury Library

Designing a structure for higher- than-code seismic performance can result in significant economic and environmental benefits. This higher performance can be achieved using the principles of Performance-Based Design, in which engineers design structures to minimize the probabilistic lifecycle seismic impacts on a building. Although the concept of Performance-Based Design is not particularly new, the initial capital costs associated with designing structures for higher performance have historically hindered the widespread adoption of performance-based design practices. To overcome this roadblock, this research is focused on providing policy makers and stakeholders with evidence-based environmental incentives for designing structures in New Zealand for higher seismic performance. In the first phase of the research, the environmental impacts of demolitions in Christchurch following the Canterbury Earthquakes were quantified to demonstrate the environmental consequences of demolitions following seismic events. That is the focus here. A building data set consisting of 142 concrete buildings that were demolished following the earthquake was used to quantify the environmental impacts of the demolitions in terms of the embodied carbon and energy in the building materials. A reduced set of buildings was used to develop a material takeoff model to estimate material quantities in the entire building set, and a lifecycle assessment tool was used to calculate the embodied carbon and energy in the materials. The results revealed staggering impacts in terms of the embodied carbon and energy in the materials in the demolished buildings. Ongoing work is focused developing an environmental impact framework that incorporates all the complex factors (e.g. construction methodologies, repair methodologies (if applicable), demolition methodologies (if applicable), and waste management) that contribute to the environmental impacts of building repair and demolition following earthquakes.

Research papers, University of Canterbury Library

Shaking table testing of a full-scale three storey resilient and reparable complete composite steel framed building system is being conducted. The building incorporates a number of interchangeable seismic resisting systems of New Zealand and Chinese origin. The building has a steel frame and cold formed steel-concrete composite deck. Energy is dissipated by means of friction connections. These connections are arranged in a number of structural configurations. Typical building nonskeletal elements (NSEs) are also included. Testing is performed on the Jiading Campus shaking table at Tongji University, Shanghai, China. This RObust BUilding SysTem (ROBUST) project is a collaborative China-New Zealand project sponsored by the International Joint Research Laboratory of Earthquake Engineering (ILEE), Tongji University, and a number of agencies and universities within New Zealand including BRANZ, Comflor, Earthquake Commission, HERA, QuakeCoRE, QuakeCentre, University of Auckland, and the University of Canterbury. This paper provides a general overview of the project describing a number of issues encountered in the planning of this programme including issues related to international collaboration, the test plan, and technical issues.

Research papers, University of Canterbury Library

Disaster recovery involves the restoration, repair and rejuvenation of both hard and soft infrastructure. In this report we present observationsfrom seven case studies of collaborative planning from post-earthquake Canterbury, each of which was selected as a means of better understanding ‘soft infrastructure for hard times’. Though our investigation is located within a disaster recovery context, we argue that the lessons learned are widely applicable. Our seven case studies highlighted that the nature of the planning process or journey is as important as the planning objective or destination. A focus on the journey can promote positive outcomes in and of itself through building enduring relationships, fostering diverse leaders, developing new skills and capabilities, and supporting translation and navigation. Collaborative planning depends as much upon emotional intelligence as it does technical competence, and we argue that having a collaborative attitude is more important than following prescriptive collaborative planning formulae. Being present and allowing plenty of time are also key. Although deliberation is often seen as an improvement on technocratic and expertdominated decision-making models, we suggest that the focus in the academic literature on communicative rationality and discursive democracy has led us to overlook other more active forms of planning that occur in various sites and settings. Instead, we offer an expanded understanding of what planning is, where it happens and who is involved. We also suggest more attention be given to values, particularly in terms of their role as a compass for navigating the terrain of decision-making in the collaborative planning process. We conclude with a revised model of a (collaborative) decision-making cycle that we suggest may be more appropriate when (re)building better homes, towns and cities.

Research papers, University of Canterbury Library

This study provides an initial examination of source parameter uncertainty in a New Zealand ground motion simulation model, by simulating multiple event realisations with perturbed source parameters. Small magnitude events in Canterbury have been selected for this study due to the small number of source input parameters, the wealth of recorded data, and the lack of appreciable off-fault non-linear effects. Which provides greater opportunity to identify systematic source, path and site effects, required to robustly investigate the causes of uncertainty.

Research papers, University of Canterbury Library

Recent severe earthquakes, such as Christchurch earthquake series, worldwide have put emphasis on building resilience. In resilient systems, not only life is protected, but also undesirable economic effects of building repair or replacement are minimized following a severe earthquake. Friction connections are one way of providing structure resilience. These include the sliding hinge joint with asymmetric friction connections (SHJAFCs) in beam-to-column connections of the moment resisting steel frames (MRSFs), and the symmetric friction connections (SFCs) in braces of the braced frames. Experimental and numerical studies on components have been conducted internationally. However, actual building performance depends on the many interactions, occurring within a whole building system, which may be difficult to determine accurately by numerical modelling or testing of structural components alone. Dynamic inelastic testing of a full-scale multi-storey composite floor building with full range of non-structural elements (NSEs) has not yet been performed, so it is unclear if surprises are likely to occur in such a system. A 9 m tall three-storey configurable steel framed composite floor building incorporating friction-based connections is to be tested using two linked bi-directional shake tables at the International joint research Laboratory of Earthquake Engineering (ILEE) facilities, Shanghai, China. Beams and columns are designed to remain elastic during an earthquake event, with all non-linear behaviour occurring through stable sliding frictional behaviour, dissipating energy by SHJAFCs used in MRFs and SFCs in braced frames, with and without Belleville springs. Structural systems are configurable, allowing different moment and braced frame structural systems to be tested in two horizontal directions. In some cases, these systems interact with rocking frame or rocking column system in orthogonal directions subjected to unidirectional and bidirectional horizontal shaking. The structure is designed and detailed to undergo, at worst, minor damage under series of severe earthquakes. NSEs applied include precast-concrete panels, glass curtain walling, internal partitions, suspended ceilings, fire sprinkler piping as well as some other common contents. Some of the key design considerations are presented and discussed herein

Research papers, University of Canterbury Library

Recycling is often employed as part of a disaster waste management system. However, the feasibility, method and effectiveness of recycling varies between disaster events. This qualitative study is based on literature reviews, expert interviews and active participatory research of five international disaster events in developed countries (2009 Victorian Bushfires, Australia; 2009 L’Aquila earthquake, Italy; 2005 Hurricane Katrina, United States; 2010 and 2011 Canterbury earthquakes, New Zealand; 2011 Great East Japan earthquake) to answer three questions: What are the main factors that affect the feasibility of recycling post-disaster? When is on-site or off-site separation more effective? What management approaches improve recycling effectiveness? Seven disaster-specific factors need to be assessed to determine the feasibility of disaster waste recycling programmes: volume of waste; degree of mixing of waste; human and environmental health hazards; areal extent of the waste; community priorities; funding mechanisms; and existing and disaster-specific regulations. The appropriateness of on or off-site waste separation depends on four factors: time constraints; resource availability; degree of mixing of waste and human and public health hazards. Successful recycling programmes require good management including clear and well enforced policies (through good contracts or regulations) and pre-event planning. Further research into post-disaster recycling markets, funding mechanisms and recycling in developing countries is recommended.

Research papers, University of Canterbury Library

Lake Taupō in New Zealand is associated with frequent unrest and small to moderate eruptions. It presents a high consequence risk scenario with immense potential for destruction to the community and the surrounding environment. Unrest associated with eruptions may also trigger earthquakes. While it is challenging to educate people about the hazards and risks associated with multiple eruptive scenarios, effective education of students can lead to better mitigation strategies and risk reduction. Digital resources with user-directed outcomes have been successfully used to teach action oriented skills relevant for communication during volcanic crisis [4]. However, the use of choose your own adventure strategies to enhance low probability risk literacy for Secondary school outreach has not been fully explored. To investigate how digital narrative storytelling can mediate caldera risk literacy, a module “The Kid who cried Supervolcano” will be introduced in two secondary school classrooms in Christchurch and Rotorua. The module highlights four learning objectives: (a) Super-volcanoes are beautiful but can be dangerous (b) earthquake (unrest) activity is normal for super-volcanoes (c) Small eruptions are possible from super-volcanoes and can be dangerous in our lifetimes (d) Super-eruptions are unlikely in our lifetimes. Students will create their digital narrative using the platform Elementari (www.elementari.io). The findings from this study will provide clear understanding of students’ understanding of risk perceptions of volcanic eruption scenarios and associated hazards and inform the design of educational resources geared towards caldera risk literacy.