Roz Johnson's Blog 15/12/2013: From the Ground Up part three
Articles, UC QuakeStudies
An entry from Roz Johnson's blog for 15 December 2013 entitled, "From the Ground Up part three".
An entry from Roz Johnson's blog for 15 December 2013 entitled, "From the Ground Up part three".
An entry from Roz Johnson's blog for 15 December 2013 entitled, "From the Ground Up part one".
An entry from Roz Johnson's blog for 15 December 2013 entitled, "From the Ground Up part two".
An entry from Roz Johnson's blog for 15 December 2013 entitled, "From the Ground Up part four".
Build up of liquefaction that has seeped from the ground onto the road and footpath.
A 'sand volcano' of liquefaction silt in Bexley. The photographer comments, "Liquefaction is just a mixture of sand and water squeezed up from the ground, but with a little imagination it has a beauty in its untouched state".
A motion-blurred photograph of houses, with the Port Hills in the background. The photographer comments, "This I hope gives you a feel of what it feels like in an earthquake. When you spend your whole life thinking that you and your home are built on solid ground, it can be quite a shock when you find it is not. You can feel the house shaking like a dog with a toy, rising up violently underneath you or the most gentle form which is when the ground moves gently like a wave moving under a rowing boat. It is not just the movement, you often get a rumbling sound which can precede a violent shake or can result in no movement at all. This means that some vehicles can sound like the rumbling initially and in the early days would get your heart racing. Another form of stress is when big excavators as heavy as a tank move as you can feel the ground shake from streets away, but you do not always hear the engine. For most of us the problem when the shaking starts, is wondering if this is the start of an extremely violent earthquake or will it peter out".
The previously unknown Greendale Fault ruptured to the ground surface, causing up to 5 metres horizontal and 1 metre vertical permanent offset of the ground, during the September 2010 Darfield (Canterbury) earthquake. Environment Canterbury commissioned GNS Science, with help from the University of Canterbury, to define a fault avoidance zone and to estimate the fault recurrence interval. There is little evidence for past movement on the fault in the past 16,000 years. However, because of the uncertainties involved, a conservative approach was taken and the fault has been categorised as a Recurrence Interval Class IV fault (a recurrence interval of between 5,000 and 10,000 years). A PhD study by a University of Canterbury student will work towards refining the Recurrence Interval Class over the next three years. Taking a risk-based approach, the Ministry for the Environment Active Fault Guidelines recommend that normal residential development be allowed within the fault avoidance zone for faults of this Recurrence Interval Class, but recommends restrictions for larger community buildings or facilities with post-disaster functions. The report is assisting Selwyn District Council in granting consents for rebuilding houses on or near the Greendale Fault that were damaged by permanent distortion of the ground due to the fault rupture in the September 2010 earthquake. The report provides specific recommendations for building on or close to the Greendale Fault, which are being implemented by Selwyn District Council. See Object Overview for background and usage information.
Two images of a house, taken before and after the earthquakes. In the after photograph the chimneys are gone, a column supporting the car port has partly collapsed, windows are broken, and the previously neat lawn and driveway are overgrown. The photographer comments, "This was a house that I was selling up to the September 2010 earthquake in Christchurch. It was on Avonside Drive, which was an area that has been badly hit in every earthquake that has hit the area. In the September quake parts of the house moved in different directions and one of the upstairs doors had to be smashed open to release one of the sons from his bedroom. This occurred in the dark with numerous aftershocks shaking the house. Liquefaction poured up through the floor and flowed down the drive. Everyone got out OK, but soon after the house was red stickered meaning it was dangerous to enter. The house was looted many times even though there was constant police patrols. When the most violent earthquake occurred on 22 February 2012 both the tall heavy chimneys came crashing through into the living areas. Subsequent earthquakes and aftershocks have caused one of the brick fence pillars to fall and the front garage pillar to break up and twist. The family's troubles did not end there. They moved into the home of one of their parents and this mansion of a home was so badly affected by the February earthquake that no one could enter to collect any of their or their parents' belongings. They now own a new home, which they are fond of except when the ground shakes yet again. There has been to date 10,712 earthquakes and aftershocks since 4 September 2010".
The Christchurch liquefaction study was initiated to better determine liquefaction susceptibility in Christchurch city. It aimed to improve on earlier liquefaction susceptibility maps, which were based on soil type and distribution, by incorporating soil strength data into liquefaction analysis. This stage of the study included collating available geological and geotechnical data from Environment Canterbury and Christchurch City Council into a database, modelling liquefaction hazard and ground damage and presenting these as maps. The report contains many recommendations, which were taken up in subsequent stages of the study. (Note that the results of Stage 1 of the Christchurch liquefaction study were provided to Environment Canterbury as a letter rather than a report. This was a summary of work completed to 30 June 2001, including a review of geological and geotechnical data available within Environment Canterbury and Christchurch City Council records.) See Object Overview for background and usage information.