Search

found 22 results

Images, UC QuakeStudies

A 'sand volcano' of liquefaction silt in Bexley. The photographer comments, "Liquefaction is just a mixture of sand and water squeezed up from the ground, but with a little imagination it has a beauty in its untouched state".

Images, UC QuakeStudies

Looking through the cordon fence on Worcester Boulevard towards the Cathedral. Beams propping up Our City are visible on the left, and the dome of the Regent Theatre, removed and placed on the ground to protect it from further damage, is in front of the Cathedral.

Images, UC QuakeStudies

A photograph of stencilled words on a footpath on Peterborough Street. The words read, "On Peterborough Street the houses are wonky. The ground has been pulled out from underneath them. The trick worked and the houses stayed up, but they are wonky. If you lived in them you might become wonky too".

Images, UC QuakeStudies

A photograph looking north up an alleyway on Tuam Street. The alleyway leads to Sol Square. There is a road cone in the middle of the alleyway. The message 'keep out' has been spray-painted on the ground on each side of the cone. In the distance there are bricks from several earthquake-damaged buildings in the alleyway.

Articles, UC QuakeStudies

An PDF copy of a poster featuring Northcote resident Sandy Otunfangavalu. The poster quotes Otufangavalu: "I am grateful for my kids and family, who light up my life and help keep me grounded." The poster is from the All Right? I am ... Identity project, which sought to celebrate identity and its importance to Pacific youth and their wellbeing.

Images, UC QuakeStudies

A motion-blurred photograph of houses, with the Port Hills in the background. The photographer comments, "This I hope gives you a feel of what it feels like in an earthquake. When you spend your whole life thinking that you and your home are built on solid ground, it can be quite a shock when you find it is not. You can feel the house shaking like a dog with a toy, rising up violently underneath you or the most gentle form which is when the ground moves gently like a wave moving under a rowing boat. It is not just the movement, you often get a rumbling sound which can precede a violent shake or can result in no movement at all. This means that some vehicles can sound like the rumbling initially and in the early days would get your heart racing. Another form of stress is when big excavators as heavy as a tank move as you can feel the ground shake from streets away, but you do not always hear the engine. For most of us the problem when the shaking starts, is wondering if this is the start of an extremely violent earthquake or will it peter out".

Images, UC QuakeStudies

Cars crushed between the collapsed levels of the Smiths City car park. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones ... eventually made it to Colombo Street where we slowly crawled past the horrific sight of the Colombo Street Smiths City over-bridge car park. Layers had collapsed onto each other and cars were sticking out of the gaps. Hopefully if anyone was inside they would have hit the ground and would be safe under the support of the cars either side of them".

Images, UC QuakeStudies

Cars crushed between the collapsed levels of the Smiths City car park. The photographer comments, "Just after the aftershock settled on Tuesday afternoon, myself and colleagues fled our Tuam Street office to absolute devastation outside. We couldn't see more than a block in either direction due to the clouds of dust that had arisen from buildings that had just collapsed ... From here, we picked up our vehicles from the CCC car park and headed out to get out of the chaos to a position where we could check on loved ones ... eventually made it to Colombo Street where we slowly crawled past the horrific sight of the Colombo Street Smiths City over-bridge car park. Layers had collapsed onto each other and cars were sticking out of the gaps. Hopefully if anyone was inside they would have hit the ground and would be safe under the support of the cars either side of them".

Articles, UC QuakeStudies

The previously unknown Greendale Fault ruptured to the ground surface, causing up to 5 metres horizontal and 1 metre vertical permanent offset of the ground, during the September 2010 Darfield (Canterbury) earthquake. Environment Canterbury commissioned GNS Science, with help from the University of Canterbury, to define a fault avoidance zone and to estimate the fault recurrence interval. There is little evidence for past movement on the fault in the past 16,000 years. However, because of the uncertainties involved, a conservative approach was taken and the fault has been categorised as a Recurrence Interval Class IV fault (a recurrence interval of between 5,000 and 10,000 years). A PhD study by a University of Canterbury student will work towards refining the Recurrence Interval Class over the next three years. Taking a risk-based approach, the Ministry for the Environment Active Fault Guidelines recommend that normal residential development be allowed within the fault avoidance zone for faults of this Recurrence Interval Class, but recommends restrictions for larger community buildings or facilities with post-disaster functions. The report is assisting Selwyn District Council in granting consents for rebuilding houses on or near the Greendale Fault that were damaged by permanent distortion of the ground due to the fault rupture in the September 2010 earthquake. The report provides specific recommendations for building on or close to the Greendale Fault, which are being implemented by Selwyn District Council. See Object Overview for background and usage information.

Images, UC QuakeStudies

Two images of a house, taken before and after the earthquakes. In the after photograph the chimneys are gone, a column supporting the car port has partly collapsed, windows are broken, and the previously neat lawn and driveway are overgrown. The photographer comments, "This was a house that I was selling up to the September 2010 earthquake in Christchurch. It was on Avonside Drive, which was an area that has been badly hit in every earthquake that has hit the area. In the September quake parts of the house moved in different directions and one of the upstairs doors had to be smashed open to release one of the sons from his bedroom. This occurred in the dark with numerous aftershocks shaking the house. Liquefaction poured up through the floor and flowed down the drive. Everyone got out OK, but soon after the house was red stickered meaning it was dangerous to enter. The house was looted many times even though there was constant police patrols. When the most violent earthquake occurred on 22 February 2012 both the tall heavy chimneys came crashing through into the living areas. Subsequent earthquakes and aftershocks have caused one of the brick fence pillars to fall and the front garage pillar to break up and twist. The family's troubles did not end there. They moved into the home of one of their parents and this mansion of a home was so badly affected by the February earthquake that no one could enter to collect any of their or their parents' belongings. They now own a new home, which they are fond of except when the ground shakes yet again. There has been to date 10,712 earthquakes and aftershocks since 4 September 2010".

Articles, UC QuakeStudies

The Christchurch liquefaction study was initiated to better determine liquefaction susceptibility in Christchurch city. It aimed to improve on earlier liquefaction susceptibility maps, which were based on soil type and distribution, by incorporating soil strength data into liquefaction analysis. This stage of the study included collating available geological and geotechnical data from Environment Canterbury and Christchurch City Council into a database, modelling liquefaction hazard and ground damage and presenting these as maps. The report contains many recommendations, which were taken up in subsequent stages of the study. (Note that the results of Stage 1 of the Christchurch liquefaction study were provided to Environment Canterbury as a letter rather than a report. This was a summary of work completed to 30 June 2001, including a review of geological and geotechnical data available within Environment Canterbury and Christchurch City Council records.) See Object Overview for background and usage information.