Background: Up to 6 years after the 2011 Christchurch earthquakes, approximately one-third of parents in the Christchurch region reported difficulties managing the continuously high levels of distress their children were experiencing. In response, an app named Kākano was co-designed with parents to help them better support their children’s mental health. Objective: The objective of this study was to evaluate the acceptability, feasibility, and effectiveness of Kākano, a mobile parenting app to increase parental confidence in supporting children struggling with their mental health. Methods: A cluster-randomized delayed access controlled trial was carried out in the Christchurch region between July 2019 and January 2020. Parents were recruited through schools and block randomized to receive immediate or delayed access to Kākano. Participants were given access to the Kākano app for 4 weeks and encouraged to use it weekly. Web-based pre- and postintervention measurements were undertaken. Results: A total of 231 participants enrolled in the Kākano trial, with 205 (88.7%) participants completing baseline measures and being randomized (101 in the intervention group and 104 in the delayed access control group). Of these, 41 (20%) provided full outcome data, of which 19 (18.2%) were for delayed access and 21 (20.8%) were for the immediate Kākano intervention. Among those retained in the trial, there was a significant difference in the mean change between groups favoring Kākano in the brief parenting assessment (F1,39=7, P=.012) but not in the Short Warwick-Edinburgh Mental Well-being Scale (F1,39=2.9, P=.099), parenting self-efficacy (F1,39=0.1, P=.805), family cohesion (F1,39=0.4, P=.538), or parenting sense of confidence (F1,40=0.6, P=.457). Waitlisted participants who completed the app after the waitlist period showed similar trends for the outcome measures with significant changes in the brief assessment of parenting and the Short Warwick-Edinburgh Mental Well-being Scale. No relationship between the level of app usage and outcome was found. Although the app was designed with parents, the low rate of completion of the trial was disappointing. Conclusions: Kākano is an app co-designed with parents to help manage their children’s mental health. There was a high rate of attrition, as is often seen in digital health interventions. However, for those who did complete the intervention, there was some indication of improved parental well-being and self-assessed parenting. Preliminary indications from this trial show that Kākano has promising acceptability, feasibility, and effectiveness, but further investigation is warranted. Trial Registration: Australia New Zealand Clinical Trials Registry ACTRN12619001040156; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=377824&isReview=true
Mechanistic and scientific approaches to resilience assume that there is a “tipping point” at which a system can no longer absorb adversity; after this point, it is liable to collapse. Some of these perspectives, particularly those stemming from ecology and psychology, recognise that individuals and communities cannot be perpetually resilient without limits. While the resilience paradigm has been imported into the social sciences, the limits to resilience have often been disregarded. This leads to an overestimation of “human resourcefulness” within the resilience paradigm. In policy discourse, practice, and research, resilience seems to be treated as a “limitless” and human quality in which individuals and communities can effectively cope with any hazard at any time, for as long as they want and with any people. We critique these assumptions with reference to the recovery case in Ōtautahi Christchurch, Aotearoa New Zealand following the 2010-11 Canterbury earthquake sequence. We discuss the limits to resilience and reconceptualise resilience thinking for disaster risk reduction and sustainable recovery and development.
The full scale, in-situ investigations of instrumented buildings present an excellent opportunity to observe their dynamic response in as-built environment, which includes all the real physical properties of a structure under study and its surroundings. The recorded responses can be used for better understanding of behavior of structures by extracting their dynamic characteristics. It is significantly valuable to examine the behavior of buildings under different excitation scenarios. The trends in dynamic characteristics, such as modal frequencies and damping ratios, thus developed can provide quantitative data for the variations in the behavior of buildings. Moreover, such studies provide invaluable information for the development and calibration of realistic models for the prediction of seismic response of structures in model updating and structural health monitoring studies. This thesis comprises two parts. The first part presents an evaluation of seismic responses of two instrumented three storey RC buildings under a selection of 50 earthquakes and behavioral changes after Ms=7.1 Darfield (2010) and Ms=6.3 Christchurch (2011) earthquakes for an instrumented eight story RC building. The dynamic characteristics of the instrumented buildings were identified using state-of-the-art N4SID system identification technique. Seismic response trends were developed for the three storey instrumented buildings in light of the identified frequencies and the peak response accelerations (PRA). Frequencies were observed to decrease with excitation level while no trends are discernible for the damping ratios. Soil-structure interaction (SSI) effects were also determined to ascertain their contribution in the seismic response. For the eight storey building, it was found through system identification that strong nonlinearities in the structural response occurred and manifested themselves in all identified natural frequencies of the building that exhibited a marked decrease during the strong motion duration compared to the pre-Darfield earthquakes. Evidence of foundation rocking was also found that led to a slight decrease in the identified modal frequencies. Permanent stiffness loss was also observed after the strong motion events. The second part constitutes developing and calibrating finite element model (FEM) of the instrumented three storey RC building with a shear core. A three dimensional FEM of the building is developed in stages to analyze the effect of structural, non-structural components (NSCs) and SSI on the building dynamics. Further to accurately replicate the response of the building following the response trends developed in the first part of the thesis, sensitivity based model updating technique was applied. The FEMs were calibrated by tuning the updating parameters which are stiffnesses of concrete, NSCs and soil. The updating parameters were found to generally follow decreasing trends with the excitation level. Finally, the updated FEM was used in time history analyses to assess the building seismic performance at the serviceability limit state shaking. Overall, this research will contribute towards better understanding and prediction of the behavior of structures subjected to ground motion.
This thesis investigates life-safety risk in earthquakes. The first component of the thesis utilises a dataset of earthquake injuries and deaths from recent earthquakes in New Zealand to identify cause, context, and risk factors of injury and death in the 2011 MW6.3 Christchurch earthquake and 2016 MW7.8 Kaikōura earthquake. Results show that nearly all deaths occurred from being hit by structural elements from buildings, while most injuries were caused by falls, strains and being hit by contents or non-structural elements. Statistical analysis of injured cases compared to an uninjured control group found that age, gender, building damage, shaking intensity, and behaviour during shaking were the most significant risk factors for injury during these earthquakes. The second part of the thesis uses the empirical findings from the first section to develop two tools for managing life-safety risk in earthquakes. The first tool is a casualty estimation model for health system and emergency response planning. An existing casualty model used in New Zealand was validated against observed data from the 2011 Christchurch earthquake and found to underestimate moderate and severe injuries by an order of magnitude. The model was then updated to include human behaviour such as protective actions, falls and strain type injuries that are dependent on shaking intensity, as well as injuries and deaths outside buildings. These improvements resulted in a closer fit to observed casualties for the 2011 Christchurch earthquake. The second tool that was developed is a framework to set seismic loading standards for design based on fatality risk targets. The proposed framework extends the risk-targeted hazard method, by moving beyond collapse risk targets, to fatality risk targets for individuals in buildings and societal risk in cities. The framework also includes treatment of epistemic uncertainty in seismic hazard to allow this uncertainty to be used in risk-based decision making. The framework is demonstrated by showing how the current New Zealand loading standards could be revised to achieve uniform life-safety risk across the country and how the introduction of a new loading factor can reduce risk aggregation in cities. Not on Alma, moved and emailed. 1/02/2023 ce