Search

found 13 results

Research papers, The University of Auckland Library

Following a damaging earthquake, the immediate emergency response is focused on individual collapsed buildings or other "hotspots" rather than the overall state of damage. This lack of attention to the global damage condition of the affected region can lead to the reporting of misinformation and generate confusion, causing difficulties when attempting to determine the level of postdisaster resources required. A pre-planned building damage survey based on the transect method is recommended as a simple tool to generate an estimate of the overall level of building damage in a city or region. A methodology for such a transect survey is suggested, and an example of a similar survey conducted in Christchurch, New Zealand, following the 22 February 2011 earthquake is presented. The transect was found to give suitably accurate estimates of building damage at a time when information was keenly sought by government authorities and the general public. VoR - Version of Record

Research papers, The University of Auckland Library

The Canterbury region experienced widespread damage due to liquefaction induced by seismic shaking during the 4 September 2010 earthquake and the large aftershocks that followed, notably those that occurred on 22 February, 13 June and 23 December 2011. Following the 2010 earthquake, the Earthquake Commission directed a thorough investigation of the ground profile in Christchurch, and to date, more than 7500 cone penetration tests (CPT) have been performed in the region. This paper presents the results of analyses which use a subset of the geotechnical database to evaluate the liquefaction process as well as the re-liquefaction that occurred following some of the major events in Christchurch. First, the applicability of existing CPT-based methods for evaluating liquefaction potential of Christchurch soils was investigated using three methods currently available. Next, the results of liquefaction potential evaluation were compared with the severity of observed damage, categorised in terms of the land damage grade developed from Tonkin & Taylor property inspections as well as from observed severity of liquefaction from aerial photography. For this purpose, the Liquefaction Potential Index (LPI) was used to represent the damage potential at each site. In addition, a comparison of the CPT-based strength profiles obtained before each of the major aftershocks was performed. The results suggest that the analysis of spatial and temporal variations of strength profiles gives a clear indication of the resulting liquefaction and re-liquefaction observed in Christchurch. The comparison of a limited number of CPT strength profiles before and after the earthquakes seems to indicate that no noticeable strengthening has occurred in Christchurch, making the area vulnerable to liquefaction induced land damage in future large-scale earthquakes.

Research papers, The University of Auckland Library

Description: Observations of RC building performance in recent earthquakes with a special focus on the devastating events in Christchurch, New Zealand. These events have highlighted the complexity of post-earthquake decisions for damaged buildings and the impacts on communities. The presentation will reflect on factors influencing demolition decisions and emerging challenges for the earthquake engineering community. http://atc-sei.org/

Research papers, The University of Auckland Library

The sequence of earthquakes that has affected Christchurch and Canterbury since September 2010 has caused damage to a great number of buildings of all construction types. Following post-event damage surveys performed between April 2011 and June 2011, an inventory of the stone masonry buildings in Christchurch and surrounding areas was carried out in order to assemble a database containing the characteristic features of the building stock, as a basis for studying the vulnerability factors that might have influenced the seismic performance of the stone masonry building stock during the Canterbury earthquake sequence. The damage suffered by unreinforced stone masonry buildings is reported and different types of observed failures are described using a specific survey procedure currently in use in Italy. The observed performance of seismic retrofit interventions applied to stone masonry buildings is also described, as an understanding of the seismic response of these interventions is of fundamental importance for assessing the utility of such strengthening techniques when applied to unreinforced stone masonry structures. AM - Accepted Manuscript

Research papers, The University of Auckland Library

There is very little research on total house strength that includes contributions of non-structural elements. This testing programme provides inclusive stiffness and response data for five houses of varying ages. These light timber framed houses in Christchurch, New Zealand had minor earthquake damage from the 2011 earthquakes and were lateral load tested on site to determine their strength and/or stiffness, and to identify damage thresholds. Dynamic characteristics including natural periods, which ranged from 0.14 to 0.29s were also investigated. Two houses were quasi-statically loaded up to approximately 130kN above the foundation in one direction. Another unidirectional test was undertaken on a slab-on-grade two-storey house, which was also snapback tested. Two other houses were tested using cyclic quasi-static loading, and between cycles snapback tests were undertaken to identify the natural period of each house, including foundation and damage effects. A more detailed dynamic analysis on one of the houses provided important information on seismic safety levels of post-quake houses with respect to different hazard levels in the Christchurch area. While compared to New Zealand Building Standards all tested houses had an excess of strength, damage is a significant consideration in earthquake resilience and was observed in all of the houses. http://www.aees.org.au/downloads/conference-papers/2015-2/

Research papers, The University of Auckland Library

The Global Earthquake Model’s (GEM) Earthquake Consequences Database (GEMECD) aims to develop, for the first time, a standardised framework for collecting and collating geocoded consequence data induced by primary and secondary seismic hazards to different types of buildings, critical facilities, infrastructure and population, and relate this data to estimated ground motion intensity via the USGS ShakeMap Atlas. New Zealand is a partner of the GEMECD consortium and to-date has contributed with 7 events to the database, of which 4 are localised in the South Pacific area (Newcastle 1989; Luzon 1990; South of Java 2006 and Samoa Islands 2009) and 3 are NZ-specific events (Edgecumbe 1987; Darfield 2010 and Christchurch 2011). This contribution to GEMECD represented a unique opportunity for collating, comparing and reviewing existing damage datasets and harmonising them into a common, openly accessible and standardised database, from where the seismic performance of New Zealand buildings can be comparatively assessed. This paper firstly provides an overview of the GEMECD database structure, including taxonomies and guidelines to collect and report on earthquake-induced consequence data. Secondly, the paper presents a summary of the studies implemented for the 7 events, with particular focus on the Darfield (2010) and Christchurch (2011) earthquakes. Finally, examples of specific outcomes and potentials for NZ from using and processing GEMECD are presented, including: 1) the rationale for adopting the GEM taxonomy in NZ and any need for introducing NZ-specific attributes; 2) a complete overview of the building typological distribution in the Christchurch CBD prior to the Canterbury earthquakes and 3) some initial correlations between the level and extent of earthquake-induced physical damage to buildings, building safety/accessibility issues and the induced human casualties.

Research papers, The University of Auckland Library

Churches are an important part of New Zealand's historical and architectural heritage. Various earthquakes around the world have highlighted the significant seismic vulnerability of religious buildings, with the extensive damage that occurred to stone and clay-brick unreinforced masonry churches after the 2010-2011 Canterbury earthquakes emphasising the necessity to better understand this structural type. Consequently, a country-wide inventory of unreinforced masonry churches is here identified. After a bibliographic and archival investigation, and a 10 000 km field trip, it is estimated that currently 297 unreinforced masonry churches are present throughout New Zealand, excluding 12 churches demolished in Christchurch because of heavy damage sustained during the Canterbury earthquake sequence. The compiled database includes general information about the buildings, their architectural features and structural characteristics, and any architectural and structural transformations that have occurred in the past. Statistics about the occurrence of each feature are provided and preliminary interpretations of their role on seismic vulnerability are discussed. The list of identified churches is reported in annexes, supporting their identification and providing their address.

Research papers, The University of Auckland Library

Unrestrained unreinforced clay brick masonry (URM) parapets are found atop a large number of vintage URM buildings. Parapets are typically non-structural cantilevered wall elements that form a fire barrier and in most cases form decorative and ornamental features of vintage URM buildings. Parapets are considered to be one of the most vulnerable elements that are prone to out-of-plane collapse when subjected to earthquake induced shaking. An in-depth analysis of the damage database collected following the 2010/2011 Canterbury earthquakes was performed to obtain information about the distribution, characteristics and observed performance of both the as-built and retrofitted parapets in the Christchurch region. Results, statistical interpretation and implications are presented herein. http://www.aees.org.au/downloads/conference-papers/2015-2/

Research papers, The University of Auckland Library

Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/

Research papers, The University of Auckland Library

Recent earthquakes have shown that liquefaction and associated ground deformations are major geotechnical hazards to civil engineering infrastructures, such as pipelines. In particular, sewer pipes have been damaged in many areas in Christchurch as a result of liquefaction-induced lateral spreading near waterways and ground oscillation induced by seismic shaking. In this paper, the addition of a flexible AM liner as a potential countermeasure to increase sewer pipe capacity was investigated. Physical testing through 4-point loading test was undertaken to characterise material properties and the response of both unlined pipe and its lined counterpart. Next, numerical models were created using SAP2000 and ABAQUS to analyse buried pipeline response to transverse permanent ground displacement and to quantify, over a range of pipe segment lengths and soil parameters, the effectiveness of the AM liner in increasing displacement capacity. The numerical results suggest that the addition of the AM liner increases the deformation capacity of the unlined sewer pipe by as much as 50 times. The results confirmed that AM liner is an effective countermeasure for sewer pipes in liquefied ground not only in terms of increased deformation capacity but also the fact that AM-Liner can prevent influx of sand and water through broken pipes, making sewer pipes with liner remaining serviceable even under severe liquefaction condition.

Research papers, The University of Auckland Library

As part of a seismic retrofit scheme, surface bonded glass fiber-reinforced polymer (GFRP) fabric was applied to two unreinforced masonry (URM) buildings located in Christchurch, New Zealand. The unreinforced stone masonry of Christchurch Girls’ High School (GHS) and the unreinforced clay brick masonry Shirley Community Centre were retrofitted using surface bonded GFRP in 2007 and 2009, respectively. Much of the knowledge on the seismic performance of GFRP retrofitted URM was previously assimilated from laboratory-based experimental studies with controlled environments and loading schemes. The 2010/2011 Canterbury earthquake sequence provided a rare opportunity to evaluate the GFRP retrofit applied to two vintage URM buildings and to document its performance when subjected to actual design-level earthquake-induced shaking. Both GFRP retrofits were found to be successful in preserving architectural features within the buildings as well as maintaining the structural integrity of the URM walls. Successful seismic performance was based on comparisons made between the GFRP retrofitted GHS building and the adjacent nonretrofitted Boys’ High School building, as well as on a comparison between the GFRP retrofitted and nonretrofitted walls of the Shirley Community Centre building. Based on detailed postearthquake observations and investigations, the GFRP retrofitted URM walls in the subject buildings exhibited negligible to minor levels of damage without delamination, whereas significant damage was observed in comparable nonretrofitted URM walls. AM - Accepted Manuscript

Research papers, The University of Auckland Library

The Canterbury earthquakes in New Zealand caused significant damage to a number of reinforced concrete (RC) walls and subsequent research that has been conducted to investigate the design provisions for lightly reinforced RC walls and precast concrete wall connection details is presented. A combination of numerical modelling and large-scale tests were conducted to investigate the seismic behaviour of lightly RC walls. The model and test results confirmed the observed behaviour of an RC wall building in Christchurch that exhibited a single flexural crack and also raised questions regarding the ability of current minimum reinforcement requirements to prevent the concentration of inelastic deformation at a small number of flexural cracks. These findings have led to changes to the minimum vertical reinforcement limits for RC walls in in the Concrete Structures Standard (NZS 3101:2006), with increased vertical reinforcement required in the end region of ductile RC walls. An additional series of wall tests were conducted to investigate the seismic behaviour of panel-to-foundation connections in singly reinforced precast concrete panels that often lack robustness. Both in-plane and out-of-plane panel tests were conducted to assess both grouted connections and dowel connections that use shallow embedded inserts. The initial test results have confirmed some of the previously identified vulnerabilities and tests are ongoing to refine the connection designs. http://www.aees.org.au/downloads/conference-papers/2015-2/

Research papers, The University of Auckland Library

During the recent devastating earthquakes in Christchurch, many residential houses were damaged due to widespread liquefaction of the ground. In-situ testing is widely used as a convenient method for evaluating liquefaction potential of soils. Cone penetration test (CPT) and standard penetration test (SPT) are the two popular in situ tests which are widely used in New Zealand for site characterization. The Screw Driving Sounding (SDS) method is a relatively new operating system developed in Japan consisting of a machine that drills a rod into the ground by applying torque at seven steps of axial loading. This machine can continuously measure the required torque, load, speed of penetration and rod friction during the test, and therefore can give a clear overview of the soil profile along the depth of penetration. In this paper, based on a number of SDS tests conducted in Christchurch, a correlation was developed between tip resistance of CPT test and SDS parameters for layers consisting of different fines contents. Moreover, using the obtained correlation, a chart was proposed which relates the cyclic resistance ratio to the appropriate SDS parameter. Using the proposed chart, liquefaction potential of soil can be estimated directly using SDS data. As SDS method is simpler, faster and more economical test than CPT and SPT, it can be a reliable alternative in-situ test for soil characterization, especially in residential house constructions.