Search

found 116 results

Research papers, The University of Auckland Library

The 2010/2011 Canterbury earthquakes have provided a unique opportunity to investigate the seismic performance of both traditional and modern buildings constructed in New Zealand. It is critical that the observed performance is examined and compared against the expected levels of performance that are outlined by the Building Code and Design Standards. In particular, in recent years there has been a significant amount of research into the seismic behaviour of precast concrete floor systems and the robustness of the support connections as a building deforms during an earthquake. An investigation of precast concrete floor systems in Christchurch has been undertaken to assess both the performance of traditional and current design practice. The observed performance for each type of precast floor unit was collated from a number of post-earthquake recognisance activities and compared against the expected performance determined for previous experimental testing and analysis. Possible reasons for both the observed damage, and in some cases the lack of damage, were identified. This critical review of precast concrete floor systems will assist in determining the success of current design practice as well as identify any areas that require further research and/or changes to design standards.

Research papers, The University of Auckland Library

This thesis presents an assessment of historic seismic performance of the New Zealand stopbank network from the 1968 Inangahua earthquake through to the 2016 Kaikōura earthquake. An overview of the types of stopbanks and the main aspects of the design and construction of earthen stopbanks was presented. Stopbanks are structures that are widely used on the banks of rivers and other water bodies to protect against the impact of flood events. Earthen stopbanks are found to be the most used for such protection measures. Different stopbank damage or failure modes that may occur due to flooding or earthquake excitation were assessed with a focus on past earthquakes internationally, and examples of these damage and failure modes were presented. Stopbank damage and assessment reports were collated from available reconnaissance literature to develop the first geospatial database of stopbank damage observed in past earthquakes in New Zealand. Damage was observed in four earthquakes over the past 50 years, with a number of earthquakes resulting in no stopbank damage. The damage database therefore focussed on the Edgecumbe, Darfield, Christchurch and Kaikōura earthquakes. Cracking of the crest and liquefaction-induced settlement were the most common forms of damage observed. To understand the seismic demand on the stopbank network in past earthquakes, geospatial analyses were undertaken to approximate the peak ground acceleration (PGA) across the stopbank network for ten large earthquakes that have occurred in New Zealand over the past 50 years. The relationship between the demand, represented by the peak ground acceleration (PGA) and damage is discussed and key trends identified. Comparison of the seismic demand and the distribution of damage suggested that the seismic performance of the New Zealand stopbank network has been generally good across all events considered. Although a significant length of the stopbank networks were exposed to high levels of shaking in past events, the overall damage length was a small percentage of this. The key aspect controlling performance was the performance of the underlying foundation soils and the effect of this on the stopbank structure and stability.

Research papers, The University of Auckland Library

The influence of nonlinear soil-foundation-structure interaction (SFSI) on the performance of multi-storey buildings during earthquake events has become increasingly important in earthquake resistant design. For buildings on shallow foundations, SFSI refers to nonlinear geometric effects associated with uplift of the foundation from the supporting soil as well as nonlinear soil deformation effects. These effects can potentially be beneficial for structural performance, reducing forces transmitted from ground shaking to the structure. However, there is also the potential consequence of residual settlement and rotation of the foundation. This Thesis investigates the influence of SFSI in the performance of multi-storey buildings on shallow foundations through earthquake observations, experimental testing, and development of spring-bed numerical models that can be incorporated into integrated earthquake resistant design procedures. Observations were made following the 22 February 2011 Christchurch Earthquake in New Zealand of a number of multi-storey buildings on shallow foundations that performed satisfactorily. This was predominantly the case in areas where shallow foundations, typically large raft foundations, were founded on competent gravel and where there was no significant manifestation of liquefaction at the ground surface. The properties of these buildings and the soils they are founded on directed experimental work that was conducted to investigate the mechanisms by which SFSI may have influenced the behaviour of these types of structure-foundation systems. Centrifuge experiments were undertaken at the University of Dundee, Scotland using a range of structure-foundation models and a layer of dense cohesionless soil to simulate the situation in Christchurch where multi-storey buildings on shallow foundations performed well. Three equivalent single degree of freedom (SDOF) models representing 3, 5, and 7 storey buildings with identical large raft foundations were subjected to a range of dynamic Ricker wavelet excitations and Christchurch Earthquake records to investigate the influence of SFSI on the response of the equivalent buildings. The experimental results show that nonlinear SFSI has a significant influence on structural response and overall foundation deformations, even though the large raft foundations on competent soil meant that there was a significant reserve of bearing capacity available and nonlinear deformations may have been considered to have had minimal effect. Uplift of the foundation from the supporting soil was observed across a wide range of input motion amplitudes and was particularly significant as the amplitude of motion increased. Permanent soil deformation represented by foundation settlement and residual rotation was also observed but mainly for the larger input motions. However, the absolute extent of uplift and permanent soil deformation was very small compared to the size of the foundation meaning the serviceability of the building would still likely be maintained during large earthquake events. Even so, the small extent of SFSI resulted in attenuation of the response of the structure as the equivalent period of vibration was lengthened and the equivalent damping in the system increased. The experimental work undertaken was used to validate and enhance numerical modelling techniques that are simple yet sophisticated and promote interaction between geotechnical and structural specialists involved in the design of multi-storey buildings. Spring-bed modelling techniques were utilised as they provide a balance between ease of use, and thus ease of interaction with structural specialists who have these techniques readily available in practice, and theoretically rigorous solutions. Fixed base and elastic spring-bed models showed they were unable to capture the behaviour of the structure-foundation models tested in the centrifuge experiments. SFSI spring-bed models were able to more accurately capture the behaviour but recommendations were proposed for the parameters used to define the springs so that the numerical models closely matched experimental results. From the spring-bed modelling and results of centrifuge experiments, an equivalent linear design procedure was proposed along with a procedure and recommendations for the implementation of nonlinear SFSI spring-bed models in practice. The combination of earthquake observations, experimental testing, and simplified numerical analysis has shown how SFSI is influential in the earthquake performance of multi-storey buildings on shallow foundations and should be incorporated into earthquake resistant design of these structures.

Research papers, The University of Auckland Library

Reinforced concrete buildings that satisfied modern seismic design criteria generally behaved as expected during the recent Canterbury and Kaikoura earthquakes in New Zealand, forming plastic hinges in intended locations. While this meant that life-safety performance objectives were met, widespread demolition and heavy economic losses took place in the aftermath of the earthquakes.The Christchurch central business district was particularly hard hit, with over 60% of the multistorey reinforced concrete buildings being demolished. A lack of knowledge on the post-earthquake residual capacity of reinforced concrete buildings was a contributing factor to the mass demolition.Many aspects related to the assessment of earthquake-damaged reinforced concrete buildings require further research. This thesis focusses on improving the state of knowledge on the post earthquakeresidual capacity and reparability of moderately damaged plastic hinges, with an emphasis on plastic hinges typical of modern moment frame structures. The repair method focussed on is epoxy injection of cracks and patching of spalled concrete. A targeted test program on seventeen nominally identical large-scale ductile reinforced concrete beams, three of which were repaired by epoxy injection following initial damaging loadings, was conducted to support these objectives. Test variables included the loading protocol, the loading rate, and the level of restraint to axial elongation.The information that can be gleaned from post-earthquake damage surveys is investigated. It is shown that residual crack widths are dependent on residual deformations, and are not necessarily indicative of the maximum rotation demands or the plastic hinge residual capacity. The implications of various other types of damage typical of beam and column plastic hinges are also discussed.Experimental data are used to demonstrate that the strength and deformation capacity of plastic hinges with modern seismic detailing are often unreduced as a result of moderate earthquake induced damage, albeit with certain exceptions. Special attention is given to the effects of prior yielding of the longitudinal reinforcement, accounting for the low-cycle fatigue and strain ageing phenomena. A material-level testing program on the low-cycle fatigue behaviour of grade 300E reinforcing steel was conducted to supplement the data available in the literature.A reduction in stiffness, relative to the initial secant stiffness to yield, occurs due to moderate plastic hinging damage. This reduction in stiffness is shown to be correlated with the ductility demand,and a proposed model gives a conservative lower-bound estimate of the residual stiffness following an arbitrary earthquake-type loading. Repair by epoxy injection is shown to be effective in restoring the majority of stiffness to plastic hinges in beams. Epoxy injection is also shown to have implications for the residual strength and elongation characteristics of repaired plastic hinges.

Research papers, The University of Auckland Library

This thesis investigates life-safety risk in earthquakes. The first component of the thesis utilises a dataset of earthquake injuries and deaths from recent earthquakes in New Zealand to identify cause, context, and risk factors of injury and death in the 2011 MW6.3 Christchurch earthquake and 2016 MW7.8 Kaikōura earthquake. Results show that nearly all deaths occurred from being hit by structural elements from buildings, while most injuries were caused by falls, strains and being hit by contents or non-structural elements. Statistical analysis of injured cases compared to an uninjured control group found that age, gender, building damage, shaking intensity, and behaviour during shaking were the most significant risk factors for injury during these earthquakes. The second part of the thesis uses the empirical findings from the first section to develop two tools for managing life-safety risk in earthquakes. The first tool is a casualty estimation model for health system and emergency response planning. An existing casualty model used in New Zealand was validated against observed data from the 2011 Christchurch earthquake and found to underestimate moderate and severe injuries by an order of magnitude. The model was then updated to include human behaviour such as protective actions, falls and strain type injuries that are dependent on shaking intensity, as well as injuries and deaths outside buildings. These improvements resulted in a closer fit to observed casualties for the 2011 Christchurch earthquake. The second tool that was developed is a framework to set seismic loading standards for design based on fatality risk targets. The proposed framework extends the risk-targeted hazard method, by moving beyond collapse risk targets, to fatality risk targets for individuals in buildings and societal risk in cities. The framework also includes treatment of epistemic uncertainty in seismic hazard to allow this uncertainty to be used in risk-based decision making. The framework is demonstrated by showing how the current New Zealand loading standards could be revised to achieve uniform life-safety risk across the country and how the introduction of a new loading factor can reduce risk aggregation in cities. Not on Alma, moved and emailed. 1/02/2023 ce

Research papers, The University of Auckland Library

The current seismic design practice for reinforced concrete (RC) walls has been drawn into question following the unsatisfactory performance of several RC wall buildings during the Canterbury earthquakes. An overview of current research being undertaken at the University of Auckland into the seismic behaviour of RC walls is presented. The main objectives of this research project are to understand the observed performance of RC walls in Christchurch, quantify the seismic loads on RC walls, and developed improved design procedures for RC walls that will assist in revisions to the New Zealand Concrete Structures Standard. A database summarising the performance of RC wall buildings in the Christchurch CBD was collated to identify damage modes and case-study buildings. A detailed investigation is underway to verify the seismic performance of lightly reinforced concrete walls and initial numerical modeling and small-scale tests are presented in addition to details of planned experimental tests of RC walls. Numerical modelling is being used to understand the potential influence that interactions between walls and other structural elements have on the seismic response of buildings and the loads generated on RC walls. The results from finite element analysis of a severely damaged RC wall in Christchurch highlighted the effect that the floor diaphragms have on the distribution of shear stains in the wall.

Research papers, The University of Auckland Library

As a result of the 4 September 2010 Darfield earthquake and the more damaging 22 February 2011 Christchurch earthquake, considerable damage occurred to a significant number of buildings in Christchurch. The damage that occurred to the Christchurch Roman Catholic Cathedral of the Blessed Sacrament (commonly known as the Christchurch Basilica) as a result of the Canterbury earthquakes is reported, and the observed failure modes are identified. A previous strengthening intervention is outlined and the estimated capacity of the building is discussed. This strengthening was completed in 2004, and addressed the worst aspects of the building's seismic vulnerability. Urgent work was undertaken post-earthquake to secure parts of the building in order to limit damage and prevent collapse of unstable parts of the building. The approach taken for this securing is outlined, and the performance of the building and the previously installed earthquake strengthening intervention is evaluated.A key consideration throughout the project was the interaction between the structural securing requirements that were driven by the requirement to limit damage and mitigate hazards, and the heritage considerations. Lessons learnt from the strengthening that was carried out, the securing work undertaken, and the approach taken in making the building "safe" are discussed. Some conclusions are drawn with respect to the effectiveness of strengthening similar building types, and the approach taken to secure the building under active seismic conditions. AM - Accepted Manuscript

Research papers, The University of Auckland Library

Unrestrained unreinforced clay brick masonry (URM) parapets are found atop a large number of vintage URM buildings. Parapets are typically non-structural cantilevered wall elements that form a fire barrier and in most cases form decorative and ornamental features of vintage URM buildings. Parapets are considered to be one of the most vulnerable elements that are prone to out-of-plane collapse when subjected to earthquake induced shaking. An in-depth analysis of the damage database collected following the 2010/2011 Canterbury earthquakes was performed to obtain information about the distribution, characteristics and observed performance of both the as-built and retrofitted parapets in the Christchurch region. Results, statistical interpretation and implications are presented herein. http://www.aees.org.au/downloads/conference-papers/2015-2/

Research papers, The University of Auckland Library

Though generally considered “natural” disasters, cyclones and earthquakes are increasingly being associated with human activities, incubated through urban settlement patterns and the long-term redistribution of natural resources. As society is becoming more urbanized, the risk of human exposure to disasters is also rising. Architecture often reflects the state of society’s health: architectural damage is the first visible sign of emergency, and reconstruction is the final response in the process of recovery. An empirical assessment of architectural projects in post-disaster situations can lead to a deeper understanding of urban societies as they try to rebuild. This thesis offers an alternative perspective on urban disasters by looking at the actions and attitudes of disaster professionals through the lens of architecture, situated in recent events: the 2010 Christchurch earthquake, the 2010 Haiti earthquake, and the 2005 Hurricane Katrina. An empirical, multi-hazard, cross-sectional case study methodology was used, employing grounded theory method to build theory, and a critical constructivist strategy to inform the analysis. By taking an interdisciplinary approach to understanding disasters, this thesis positions architecture as a conduit between two divergent approaches to disaster research: the hazards approach, which studies the disaster cycles from a scientific perspective; and the sociological approach, which studies the socially constructed vulnerabilities that result from disasters, and the elements of social change that accompany such events. Few studies to date have attempted to integrate the multi-disciplinary perspectives that can advance our understanding of societal problems in urban disasters. To bridge this gap, this thesis develops what will be referred to as the “Rittelian framework”—based on the work of UC Berkeley’s architecture professor Horst Rittel (1930-1990). The Rittelian framework uses the language of design to transcend the multiple fields of human endeavor to address the “design problems” in disaster research. The processes by which societal problems are addressed following an urban disaster involve input by professionals from multiple fields—including economics, sociology, medicine, and engineering—but the contribution from architecture has been minimal to date. The main impetus for my doctoral thesis has been the assertion that most of the decisions related to reconstruction are made in the early emergency recovery stages where architects are not involved, but architects’ early contribution is vital to the long-term reconstruction of cities. This precipitated in the critical question: “How does the Rittelian framework contribute to the critical design decisions in modern urban disasters?” Comparative research was undertaken in three case studies of recent disasters in New Orleans (2005), Haiti (2010) and Christchurch (2010), by interviewing 51 individuals who were selected on the basis of employing the Rittelian framework in their humanitarian practice. Contextualizing natural disaster research within the robust methodological framework of architecture and the analytical processes of sociology is the basis for evaluating the research proposition that architectural problem solving is of value in addressing the ‘Wicked Problems’ of disasters. This thesis has found that (1) the nuances of the way disaster agents interpret the notion of “building back better” can influence the extent to which architectural professionals contribute in urban disaster recovery, (2) architectural design can be used to facilitate but also impede critical design decisions, and (3) framing disaster research in terms of design decisions can lead to innovation where least expected. This empirical research demonstrates how the Rittelian framework can inform a wider discussion about post-disaster human settlements, and improve our resilience through disaster research.

Research papers, The University of Auckland Library

The Canterbury earthquakes of 2010 and 2011 generated hundreds of thousands of insurance claims, many of which were disputed. The New Zealand justice system faced the same challenge encountered by other jurisdictions following a natural disaster: how to resolve these disputes quickly and at minimal cost but also fairly, to avoid compounding the disaster with injustice? The thesis is of this article is that although the earthquakes were catastrophic for New Zealand, they also created a unique opportunity to design an innovative civil justice process—the Christchurch High Court Earthquake List—and to test, over a relatively short timeframe, how well that process works. This article describes the Christchurch High Court Earthquake List and analyses it by reference to civil justice theory about the relative normative values of public adjudication and private settlement and the dialogic relationship between them. It then evaluates the List, using statistics available five years on from the earthquakes and by reference to the author’s own experience mediating earthquake disputes.

Research papers, The University of Auckland Library

To address the provocation provided by the editors I wish to reflect upon the ongoing civic and artistic responses to the earthquakes in Christchurch, New Zealand, 2010-11, in which 185 people lost their lives (largely due to poor engineering and construction practices). Whilst the example is very different in character from that of efforts to memorialize July 22, 2011, I wish to use the case to briefly respond to the issue of temporality as raised by Jacques Rancière in his critique of the ‘endless work of mourning’ produced by testimonial art. The orientation of this mourning, he argues, is always backward-looking, characterized by, ‘a reversal of the flow of time: the time turned towards an end to be accomplished – progress, emancipation or the Other – is replaced by that turned towards the catastrophe behind us.’ How might memorial practices divide their gaze between remembered pasts and possible futures? AM - Accepted Manuscript

Research papers, The University of Auckland Library

Following the 2010/2011 Canterbury, New Zealand earthquakes, a detailed door-to-door survey was conducted in the Christchurch region to establish the earthquake performance of lightweight timber-framed residential dwellings with a masonry veneer external cladding system. The post-earthquake survey involved documenting the condition of dwellings in areas that had experienced different levels of earthquake shaking, allowing comparison between the performance of different veneer systems and different shaking intensities. In total, just fewer than 1,100 residential dwellings were inspected throughout the wider Christchurch area. The survey included parameters such as level of veneer damage, type of veneer damage, observed crack widths, and level of repair required. It is concluded that based on observed earthquake performance at the shaking intensities matching or exceeding ultimate limit state loading, the post-1996 veneer fixing details performed satisfactorily and continued use of the detail is recommended without further modification. AM - Accepted Manuscript

Research papers, The University of Auckland Library

Axial elongation of reinforced concrete (RC) plastic hinges has previously been observed in a range of laboratory experiments, and more recently was observed in several Christchurch buildings following the 2010/2011 Canterbury earthquakes. Axial restraint to plastic hinges is provided by adjacent structural components such as floors as the plastic hinges elongate, which can significantly alter the performance of the plastic hinge and potentially invalidate the capacity design strength hierarchy of the building. Coupling beams in coupled wall systems are particularly susceptible to axial restraint effects due to their importance in the strength hierarchy, the high ductility demands that they experience, and the large stiffness of bounding walls. From computational modelling it has been found that ignoring axial restraint effects when designing coupled walls can result in significantly increased strength, reduced ductility and reduced energy dissipation capacity. The complexity of the topic merits further research to better account for realistic restraint effects when designing coupled walls.

Research papers, The University of Auckland Library

In 2010 and 2011, Aotearoa New Zealand was hit by a number of major disasters involving loss of human life and severe disruption to social, ecological and economic wellbeing. The Pike River mine explosions were closely followed by a sequence of major earthquakes in Christchurch, seismic events that have permanently altered the lives of thousands of people in our third largest city, the closure of the central business district and the effective abandonment of whole residential areas. In early October 2011, the ship, Rena, grounded on a reef off the port of Tauranga and threatened a major oil spill throughout the Bay of Plenty, where local communities with spiritual and cultural connections to the land depend on sea food as well as thrive on tourism. The Council for Social Work Education Aotearoa New Zealand (CSWEANZ), representing all the Schools of Social Work in New Zealand, held a ‘Disaster Curriculum’ day in November 2011, at which social workers and Civil Defence leaders involved in the Christchurch earthquakes, the Rena Disaster, Fiji floods and the Boxing Day tsunami presented their narrative experience of disaster response and recovery. Workshops discussed and identified core elements that participants considered vital to a social work curriculum that would enable social work graduates in a range of community and cultural settings to respond in safe, creative and informed ways. We present our core ideas for a social work disaster curriculum and consider a wide range of educational content based on existing knowledge bases and new content within a disaster framework. http://www.swsd-stockholm-2012.org/

Research papers, The University of Auckland Library

Livelihood holds the key to a rapid recovery following a large-scale devastating disaster, building its resilience is of paramount importance. While much attention has been given to how to help people who are displaced from their jobs to regain employment, little research on livelihood resilience has been undertaken for those relocated communities following a disaster event. By studying five re-located villages post-2004 Indian Ocean Tsunami in Banda Aceh and Aceh Besar, Indonesia, this research has identified the indicators of livelihood resilience and the critical factors driving it for post-disaster relocated communities. A mixed approach, combining questionnaire surveys, semistructured interviews, and field observations, was used for the collection of data. Housing entitlement, the physical and mental health of residents, access to external livelihood support and the provision of infrastructure and basic services were identified as amongst the most critical indicators that represent the level of livelihood resilience. Early recovery income support, physical and mental health, availability and timeliness of livelihood support, together with cultural sensitivity and governance structure, are amongst the most important factors. Given the nature of resettlement, access to infrastructure, location of relocated sites, the safety of the neighbourhood and the ability to transfer to other jobs/skills also play an important role in establishing sustained employment for relocated communities in Indonesia. Those indicators and factors were synthesised into a framework which was further tested in the recovery of Christchurch, and Kaikoura, New Zealand during their recovery from devastating earthquakes. It is suggested that the framework can be used by government agencies and aid organisations to assess the livelihood resilience of post-disaster relocated communities. This will help better them plan support policies and/or prioritise resilience investment strategies to ensure that the recovery needs of those relocated are best met.

Research papers, The University of Auckland Library

This thesis revisits the topic of earthquake recovery in Christchurch City more than a decade after the Canterbury earthquakes. Despite promising visions of a community reconnected and a sustainable and liveable city, significant portions of the city’s core – the Red Zone – remain dilapidated and “eerily empty”. At the same time, new developments in other areas have proven to be alienated or underutilised. Currently, the Canterbury Earthquake Recovery Authority’s plans for the rebuilding highlight the delivery of more residential housing to re-populate the city centre. However, prevalent approaches to housing development in Christchurch are ineffective for building an inclusive and active community. Hence, the central inquiry of the thesis is how the development of housing complexes can revitalise the Red Zone within the Christchurch city centre. The inquiry has been carried out through a research-through-design methodology, recognising the importance of an in-depth investigation that is contextualised and combined with the intuition and embodied knowledge of the designer. The investigation focuses on a neglected site in the Red Zone in the heart of Christchurch city, with significant Victorian and Edwardian Baroque heritage buildings, including Odeon Theatre, Lawrie & Wilson Auctioneers, and Sol Square, owned by The Regional Council Environment Canterbury. The design inquiry argues, develops, and is carried through a place-assemblage lens to housing development for city recovery, which recognizes the significance of socially responsive architecture that explores urban renewal by forging connections within the social network. Therefore, place-assemblage criteria and methods for developing socially active and meaningful housing developments are identified. Firstly, this thesis argues that co-living housing models are more focused on people relations and collective identity than the dominant developer-driven housing rebuilds, as they prioritise conduits for interaction and shared social meaning and practices. Secondly, the adaptive reuse of derelict heritage structures is proposed to reinvigorate the urban fabric, as heritage is seen to be conceived as and from a social assemblage of people. The design is realised by the principles outlined in the ICOMOS charter, which involves incorporating the material histories of existing structures and preserving the intangible heritage of the site by ensuring the continuity of cultural practices. Lastly, design processes and methods are also vital for place-sensitive results, which pay attention to the site’s unique characteristics to engage with local stakeholders and communities. The research explores place-assemblage methods of photographic extraction, the drawing of story maps, precedent studies, assemblage maps, bricolages, and paper models, which show an assembly of layers that piece together the existing heritage, social conduits, urban commons and housing to conceptualise the social network within its place.

Research papers, The University of Auckland Library

This article is a critical commentary of how political documentary embodies the traits and functions of alternative journalism. I explore this notion through Obrero (‘worker’) my independent documentary project about the labour migration of Filipino workers to Christchurch, Aotearoa New Zealand, after the earthquake in 2011. This article maps out the points at where the theories and practices of alternative media and documentary intersect. Analysing political documentary as a format of alternative journalism has links to the long tradition of film and video production as a tool for social critique. As a form of practice-based research, Obrero falls under the rubric of alternative journalism—able to represent the politically marginal sectors of the polity and report on issues underreported in the mainstream press. This article concludes that a distribution plan that is responsive to fragmenting audiences works best when alternative journalism no longer targets a niche but transborder audiences.

Research papers, The University of Auckland Library

The 2011, 6.3 magnitude Christchurch earthquake in New Zealand caused considerable structural damage. It is believed that this event has now resulted in demolition of about 65-70% of the building stock in the Central Business District (CBD), significantly crippling economic activities in the city of Christchurch. A major concern raised from this event was adequacy of the current seismic design practice adopted for reinforced concrete walls due to their poor performance in modern buildings. The relatively short-duration earthquake motion implied that the observed wall damage occurred in a brittle manner despite adopting a ductile design philosophy. This paper presents the lessons learned from the observed wall damage in the context of current state of knowledge in the following areas: concentrating longitudinal reinforcement in wall end regions; determining wall thickness to prevent out-of-plane wall buckling; avoiding lap splices in plastic hinge zones; and quantifying minimum vertical reinforcement. http://www.2eceesistanbul.org/

Research papers, The University of Auckland Library

Between September 4, 2010 and December 23, 2011, a series of earthquakes struck the South Island of New Zealand including the city of Christchurch producing heavy damage. During the strongest shaking, the unreinforced masonry (URM) building stock in Christchurch was subjected to seismic loading equal to approximately 150-200% of code values. Post-earthquake reconnaissance suggested numerous failures of adhesive anchors used for retrofit connection of roof and floor diaphragms to masonry walls. A team of researchers from the Universities of Auckland (NZ) and Minnesota (USA) conducted a field investigation on the performance of new adhesive anchors installed in existing masonry walls. Variables included adhesive type, anchor diameter, embedment length, anchor inclination, and masonry quality. Buildings were selected that had been slated for demolition but which featured exterior walls that had not been damaged. A summary of the deformation response measured during the field tests are presented. AM - Accepted Manuscript

Research papers, The University of Auckland Library

This thesis aims to find a new weld sizing criterion for the steel construction industry in New Zealand. Current standards, such as NZS 3404, ANSI/AISC 360-16, and Eurocode 3 use a factor of 0.6 to calculate weld capacity from the weld metal’s ultimate tensile strength (UTS). This difference between weld capacity and UTS is thought to have arisen from the need for a large factor of safety to ensure welds perform correctly during an earthquake. The events in Christchurch proved that this criterion was able to work as intended. Several papers have been published by P. Dong from University of Michigan, and alongside other researchers, they investigate a new definition of weld shear strength by using a traction stress-based method. This new method not only allows realistic angles of weld fracture to be investigated, but also different weld geometries such as partial penetration butt welds. Ongoing research at HERA is showing how this welding technique is a more economical option than larger fillet welds with similar performance. For this thesis a range of sample types were statically tested until failure. UTS of several weld metals was found and then compared with transverse shear results to see if 0.6 is indeed correct. It was found that if the results from the standardized transverse shear samples was used, this ratio could be increased to 1.0. But if the results from cruciform joint samples was used, which still load the weld in a transverse direction but with a higher stress concentration, required the ratio to be 0.8 for welds that could be welded with a single pass, and decreased further to 0.75 for large welds with 3 passes. Two types of partial penetration butt weld (PPBW) geometries were compared to a comparatively sized fillet weld. These tests showed the PPBWs were the best performers, with all PPBWs surviving testing compared to only 33% of fillet welds.

Research papers, The University of Auckland Library

Courage has remained an elusive concept to define despite having been in the English lexicon for hundreds of years. The Canterbury earthquake sequence that began in 2010 provided a unique context in which to undertake research that would contribute to further conceptualisation of courage. This qualitative study was undertaken in Christchurch, New Zealand, with adults over the age of 70 who experienced the Canterbury earthquakes and continued to live in the Canterbury region. The population group was chosen because it is an under researched group in post-disaster environments, and one that offers valuable insights because of members' length and breadth of life experiences, and likely reminiscent and reflective life stage. A constructivist grounded theory approach was utilised, with data collected through semi-structured focus groups and individual key informant interviews. The common adverse experience of the participants initially discussed was the earthquakes, which was followed by exploration of courage in their other lived experiences. Through an inductive process of data analysis, conceptual categories were identified, which when further analysed and integrated, contributed to a definition of courage. The definition was subsequently discussed with social work professionals who had remained working in the Canterbury region after experiencing the earthquakes. From the examples and the actions described within these, a process model was developed to support the application of courage. The model includes five steps: recognising an adverse situation, making a conscious decision to act, accessing sources of motivation, mastering emotion and taking action. Defining and utilising courage can help people to face adversity associated with everyday life and ultimately supports self-actualisation and self-development. Recommendations from the study include teaching about courage within social work education, utilising the process model within supervision, intentionally involving older adults in emergency management planning and developing specific social work tasks in hospital settings following a disaster.

Research papers, The University of Auckland Library

Following the devastation of the Canterbury earthquake sequence a unique opportunity exists to rebuild and restructure the city of Christchurch, ensuring that its infrastructure is constructed better than before and is innovative. By installing an integrated grid of modern sensor technologies into concrete structures during the rebuild of the Christchurch CBD, the aim is to develop a network of self-monitored ‘digital buildings’. A diverse range of data will be recorded, potentially including parameters such as concrete stresses, strains, thermal deformations, acoustics and the monitoring of corrosion of reinforcement bars. This procedure will allow an on-going complete assessment of the structure’s performance and service life, both before and after seismic activity. The data generated from the embedded and surface mounted sensors will be analysed to allow an innovative and real-time health monitoring solution where structural integrity is continuously known. This indication of building performance will allow the structure to alert owners, engineers and asset managers of developing problems prior to failure thresholds being reached. A range of potential sensor technologies for monitoring the performance of existing and newly constructed concrete buildings is discussed. A description of monitoring work conducted on existing buildings during the July 2013 Cook Strait earthquake sequence is included, along with details of current work that investigates the performance of sensing technologies for detecting crack formation in concrete specimens. The potential market for managing the real-time health of installed infrastructure is huge. Civil structures all over the world require regular visual inspections in order to determine their structural integrity. The information recorded during the Christchurch rebuild will generate crucial data sets that will be beneficial in understanding the behaviour of concrete over the complete life cycle of the structure, from construction through to operation and building repairs until the time of failure. VoR - Version of Record

Research papers, The University of Auckland Library

The city of Christchurch has experienced over 10,000 aftershocks since the 4th of September 2010 earthquake of which approximately 50 have been greater than magnitude 5. The damage caused to URM buildings in Christchurch over this sequence of earthquakes has been well documented. Due to the similarity in age and construction of URM buildings in Adelaide, South Australia and Christchurch (they are sister cities, of similar age and heritage), an investigation was conducted to learn lessons for Adelaide based on the Christchurch experience. To this end, the number of URM buildings in the central business districts of both cities, the extent of seismic strengthening that exists in both cities, and the relative earthquake hazards for both cities were considered. This paper will report on these findings and recommend strategies that the city of Adelaide could consider to significantly reduce the seismic risk posed by URM buildings in future earthquake.

Research papers, The University of Auckland Library

Mechanistic and scientific approaches to resilience assume that there is a “tipping point” at which a system can no longer absorb adversity; after this point, it is liable to collapse. Some of these perspectives, particularly those stemming from ecology and psychology, recognise that individuals and communities cannot be perpetually resilient without limits. While the resilience paradigm has been imported into the social sciences, the limits to resilience have often been disregarded. This leads to an overestimation of “human resourcefulness” within the resilience paradigm. In policy discourse, practice, and research, resilience seems to be treated as a “limitless” and human quality in which individuals and communities can effectively cope with any hazard at any time, for as long as they want and with any people. We critique these assumptions with reference to the recovery case in Ōtautahi Christchurch, Aotearoa New Zealand following the 2010-11 Canterbury earthquake sequence. We discuss the limits to resilience and reconceptualise resilience thinking for disaster risk reduction and sustainable recovery and development.

Research papers, The University of Auckland Library

This thesis presents the application of data science techniques, especially machine learning, for the development of seismic damage and loss prediction models for residential buildings. Current post-earthquake building damage evaluation forms are developed for a particular country in mind. The lack of consistency hinders the comparison of building damage between different regions. A new paper form has been developed to address the need for a global universal methodology for post-earthquake building damage assessment. The form was successfully trialled in the street ‘La Morena’ in Mexico City following the 2017 Puebla earthquake. Aside from developing a framework for better input data for performance based earthquake engineering, this project also extended current techniques to derive insights from post-earthquake observations. Machine learning (ML) was applied to seismic damage data of residential buildings in Mexico City following the 2017 Puebla earthquake and in Christchurch following the 2010-2011 Canterbury earthquake sequence (CES). The experience showcased that it is readily possible to develop empirical data only driven models that can successfully identify key damage drivers and hidden underlying correlations without prior engineering knowledge. With adequate maintenance, such models have the potential to be rapidly and easily updated to allow improved damage and loss prediction accuracy and greater ability for models to be generalised. For ML models developed for the key events of the CES, the model trained using data from the 22 February 2011 event generalised the best for loss prediction. This is thought to be because of the large number of instances available for this event and the relatively limited class imbalance between the categories of the target attribute. For the CES, ML highlighted the importance of peak ground acceleration (PGA), building age, building size, liquefaction occurrence, and soil conditions as main factors which affected the losses in residential buildings in Christchurch. ML also highlighted the influence of liquefaction on the buildings losses related to the 22 February 2011 event. Further to the ML model development, the application of post-hoc methodologies was shown to be an effective way to derive insights for ML algorithms that are not intrinsically interpretable. Overall, these provide a basis for the development of ‘greybox’ ML models.

Research papers, The University of Auckland Library

The quality of multi-owned residential buildings and the capability to maintain that quality into the future is important in preserving not only the monetary value of such housing (Lujanen, 2010) but also the quality of life for its residents. The aim of this paper is to examine the governance and decision-making rules and regulations as they relate to the undertaking of major repairs in multi-owned residential buildings in Finland and New Zealand with particular regard to the Finnish Limited Liability Housing Companies Act 2010 (LLHCA 2010) and the New Zealand Unit Titles Act 2010 (UTA 2010). Currently, major building repairs are topical issues in both countries; in Finland as a result of ageing buildings requiring major re-fitting of pipes and other infrastructure, and in New Zealand as a result of earthquake damage in Christchurch and Leaky Building Syndrome nationwide. Major repairs can be a significant financial burden to unit owners and collective decisions can be difficult to achieve. Interestingly, new legislation that governs multi-owned housing was enacted in both countries in 2010. The recent enactment of this legislation provides an opportunity to examine the UTA 2010 and LLHCA 2010 with regard to how they address major repairs, improvements in housing stock and the financing possibilities associated with these undertakings. More specifically this paper explores housing intensification (i.e. building up, out or alongside existing multi-owned residential buildings on commonly owned land) as a means of financing major repairs. The comparison of governance and decision-making in two different shared ownership systems with different histories and cultural contexts provides a chance to explore the possibilities and challenges that each country faces, and the potential to learn from each other’s practices and develop these further. In this regard the findings from this paper contribute to the academic literature (Bugden 2005; Easthope & Randolph 2009; Dupuis & Dixon 2010; Lujanen 2010; Easthope, Hudson & Randolph 2013) concerning to the governance of multi-owned housing as it relates to intensive housing development and its wider social and economic implications.

Research papers, The University of Auckland Library

The sequence of earthquakes that has affected Christchurch and Canterbury since September 2010 has caused damage to a great number of buildings of all construction types. Following post-event damage surveys performed between April 2011 and June 2011, an inventory of the stone masonry buildings in Christchurch and surrounding areas was carried out in order to assemble a database containing the characteristic features of the building stock, as a basis for studying the vulnerability factors that might have influenced the seismic performance of the stone masonry building stock during the Canterbury earthquake sequence. The damage suffered by unreinforced stone masonry buildings is reported and different types of observed failures are described using a specific survey procedure currently in use in Italy. The observed performance of seismic retrofit interventions applied to stone masonry buildings is also described, as an understanding of the seismic response of these interventions is of fundamental importance for assessing the utility of such strengthening techniques when applied to unreinforced stone masonry structures. AM - Accepted Manuscript

Research papers, The University of Auckland Library

The M7.1 Darfield earthquake shook the town of Christchurch (New Zealand) in the early morning on Saturday 4th September 2010 and caused damage to a number of heritage unreinforced masonry buildings. No fatalities were reported directly linked to the earthquake, but the damage to important heritage buildings was the most extensive to have occurred since the 1931 Hawke‟s Bay earthquake. In general, the nature of damage was consistent with observations previously made on the seismic performance of unreinforced masonry buildings in large earthquakes, with aspects such as toppled chimneys and parapets, failure of gables and poorly secured face-loaded walls, and in-plane damage to masonry frames all being extensively documented. This report on the performance of the unreinforced masonry buildings in the 2010 Darfield earthquake provides details on typical building characteristics, a review of damage statistics obtained by interrogating the building assessment database that was compiled in association with post-earthquake building inspections, and a review of the characteristic failure modes that were observed.

Research papers, The University of Auckland Library

Having a quick but reliable insight into the likelihood of damage to bridges immediately after an earthquake is an important concern especially in the earthquake prone countries such as New Zealand for ensuring emergency transportation network operations. A set of primary indicators necessary to perform damage likelihood assessment are ground motion parameters such as peak ground acceleration (PGA) at each bridge site. Organizations, such as GNS in New Zealand, record these parameters using distributed arrays of sensors. The challenge is that those sensors are not installed at, or close to, bridge sites and so bridge site specific data are not readily available. This study proposes a method to predict ground motion parameters for each bridge site based on remote seismic array recordings. Because of the existing abundant source of data related to two recent strong earthquakes that occurred in 2010 and 2011 and their aftershocks, the city of Christchurch is considered to develop and examine the method. Artificial neural networks have been considered for this research. Accelerations recorded by the GeoNet seismic array were considered to develop a functional relationship enabling the prediction of PGAs. http://www.nzsee.org.nz/db/2013/Posters.htm

Research papers, The University of Auckland Library

This research is a creative exploration of transmedia’s ability to offer up a model of distribution and audience engagement for political documentary. Transmedia, as is well known, is a fluid concept. It is not restricted to the activities of the entertainment industry and its principles also reverberate in the practice of political and activist documentary projects. This practice-led research draws on data derived from the production and circulation of Obrero, an independent transmedia documentary. The project explores the conditions and context of the Filipino rebuild workers who migrated to Christchurch, New Zealand after the earthquake in 2011. Obrero began as a film festival documentary that co-exists with two other new media iterations, each reaching its respective target audience: a web documentary, and a Facebook-native documentary. This study argues that relocating the documentary across new media spaces not only expands the narrative but also extends the fieldwork and investigation, forms like-minded publics, and affords the creation of an organised hub of information for researchers, academics and the general public. Treating documentary as research can represent a novel pathway to knowledge generation and the present case study, overall, provides an innovative model for future scholarship.