Search

found 149 results

Research papers, The University of Auckland Library

This article is a critical commentary of how political documentary embodies the traits and functions of alternative journalism. I explore this notion through Obrero (‘worker’) my independent documentary project about the labour migration of Filipino workers to Christchurch, Aotearoa New Zealand, after the earthquake in 2011. This article maps out the points at where the theories and practices of alternative media and documentary intersect. Analysing political documentary as a format of alternative journalism has links to the long tradition of film and video production as a tool for social critique. As a form of practice-based research, Obrero falls under the rubric of alternative journalism—able to represent the politically marginal sectors of the polity and report on issues underreported in the mainstream press. This article concludes that a distribution plan that is responsive to fragmenting audiences works best when alternative journalism no longer targets a niche but transborder audiences.

Research papers, The University of Auckland Library

Description: Observations of RC building performance in recent earthquakes with a special focus on the devastating events in Christchurch, New Zealand. These events have highlighted the complexity of post-earthquake decisions for damaged buildings and the impacts on communities. The presentation will reflect on factors influencing demolition decisions and emerging challenges for the earthquake engineering community. http://atc-sei.org/

Research papers, The University of Auckland Library

The performance of retrofitted unreinforced masonry (URM) bearing wall buildings in Christchurch is examined, considering ground motion recordings from multiple events. Suggestions for how the experiences in Christchurch might be relevant to retrofit practices common to New Zealand, U.S. and Canada are also provided. Whilst the poor performance of unretrofitted URM buildings in earthquakes is well known, much less is known about how retrofitted URM buildings perform when subjected to strong ground shaking.

Research papers, The University of Auckland Library

This paper analyses the city of Christchurch, New Zealand, which has been through dramatic changes since it was struck by a series of earthquakes of different intensities between 2010 and 2011. The objective is to develop a deeper understanding of resilience by looking at changes in green and grey infrastructures. The study can be helpful to reveal a way of doing comparative analysis using resilience as a theoretical framework. In this way, it might be possible to assess the blueprint of future master plans by considering how important the interplay between green and grey infrastructure is for the resilience capacity of cities.

Research papers, The University of Auckland Library

Five years on since the first major earthquake struck the Canterbury region, the reconstruction is well advanced. Christchurch is a city in transition. This report considers trends in resourcing and employment practice of Canterbury construction organisations in response to the projected market changes (2015-2016). The report draws on the interviews with 18 personnel from 16 construction organisations and recovery agencies in October 2015. It provides a summary of perceived changes in the construction market in Canterbury, evidence of what steps construction businesses have been taking, how they have prepared for likely changes in the reconstruction sector, as well as the perceived alignment of public policies with the industry response.

Research papers, The University of Auckland Library

The Darfield earthquake caused widespread damage in the Canterbury region of New Zealand, with the majority of damage resulting from liquefaction and lateral spreading. One of the worst hit locations was the small town of Kaiapoi north of Christchurch, an area that has experienced liquefaction during past events and has been identified as highly susceptible to liquefaction. The low lying town sits on the banks of the Kaiapoi River, once a branch of the Waimakariri, a large braided river transporting gravelly sediment. The Waimakariri has been extensively modified both by natural and human processes, consequently many areas in and around the town were once former river channels.

Research papers, The University of Auckland Library

Terminus calving of icebergs is a common mass-loss mechanism from water-terminating glaciers globally, including the lake-calving glaciers in New Zealand’s central Southern Alps. Calving rates can increase dramatically in response to increases in ice velocity and/or retreat of the glacier margin. Here, we describe a large calving event (c. 4.5 × 106 m3) observed at Tasman Glacier, which initiated around 30 min after the MW 6.2 Christchurch earthquake of 22 February 2011. The volume of this calving event was equalled or exceeded only once in a subsequent 13-month-long study. While the temporal association with the earthquake remains intriguing, the effects of any preconditioning factors remain unclear.

Research papers, The University of Auckland Library

The region in and around Christchurch, encompassing Christchurch city and the Selwyn and Waimakariri districts, contains more than 800 road, rail, and pedestrian bridges. Most of these bridges are reinforced concrete, symmetric, and have small to moderate spans (15–25 m). The 22 February 2011 moment magnitude (Mw) 6.2 Christchurch earthquake induced high levels of localized ground shaking (Bradley and Cubrinovski 2011, page 853 of this issue; Guidotti et al. 2011, page 767 of this issue; Smyrou et al. 2011, page 882 of this issue), with damage to bridges mainly confined to the central and eastern parts of Christchurch. Liquefaction was evident over much of this part of the city, with lateral spreading affecting bridges spanning both the Avon and Heathcote rivers.

Research papers, The University of Auckland Library

The 2010 Darfield earthquake is the largest earthquake on record to have occurred within 40 km of a major city and not cause any fatalities. In this paper the authors have reflected on their experiences in Christchurch following the earthquake with a view to what worked, what didn’t, and what lessons can be learned from this for the benefit of Australian earthquake preparedness. Owing to the fact that most of the observed building damage occurred in Unreinforced Masonry (URM) construction, this paper focuses in particular on the authors’ experience conducting rapid building damage assessment during the first 72 hours following the earthquake and more detailed examination of the performance of unreinforced masonry buildings with and without seismic retrofit interventions.

Research papers, The University of Auckland Library

Perimeter Moment resisting steel frames (PMRSFs) are a commonly used seismic resisting system, placed around the perimeter of the building for maximum torsional stiffness. They are typically designed as “strong column weak beam” systems with fixed column bases. When subjected to severe earthquake demand, sufficient to push the beams into the inelastic range, it is expected that plastic hinging at the column bases will occur. However, the response of PMRSF systems to the severe 2010/2011 Christchurch earthquake series did not generate column base hinging in systems which exhibited beam yielding.

Research papers, The University of Auckland Library

Case study unreinforced masonry (URM) buildings that were seismically retrofitted prior to the 2010/11 Canterbury earthquake sequence and exhibited successful performance during these earthquakes are presented herein. Selected buildings were divided into the following categories based on size and complexity: (1) simple, single storey box type buildings (i.e. electrical substations), (2) common and simple commercial buildings, and (3) large and complex clay brick and stone URM buildings. The retrofitted case study URM buildings were evaluated based on overall structural seismic performance as well as the categories of initial seismic design, heritage preservation, architectural appeal, and cost. Detailed observations of 4 representative case study buildings and a summary of findings are reported herein. http://db.nzsee.org.nz/2017/Orals.htm

Research papers, The University of Auckland Library

The progressive damage and subsequent demolition of unreinforced masonry (URM) buildings arising from the Canterbury earthquake sequence is reported. A dataset was compiled of all URM buildings located within the Christchurch CBD, including information on location, building characteristics, and damage levels after each major earthquake in this sequence. A general description of the overall damage and the hazard to both building occupants and to nearby pedestrians due to debris falling from URM buildings is presented with several case study buildings used to describe the accumulation of damage over the earthquake sequence. The benefit of seismic improvement techniques that had been installed to URM buildings is shown by the reduced damage ratios reported for increased levels of retrofit. Demolition statistics for URM buildings in the Christchurch CBD are also reported and discussed. VoR - Version of Record

Research papers, The University of Auckland Library

The sequence of earthquakes that has affected Christchurch and Canterbury since September 2010 has caused damage to a great number of buildings of all construction types. Following post-event damage surveys performed between April 2011 and June 2011, the damage suffered by unreinforced stone masonry buildings is reported and different types of observed failures are described. A detailed technical description of the most prevalently observed failure mechanisms is provided, with reference to recognised failure modes for unreinforced masonry structures. The observed performance of existing seismic retrofit interventions is also provided, as an understanding of the seismic response of these interventions is of fundamental importance for assessing the vulnerability of similar strengthening techniques when applied to unreinforced stone masonry structures.

Research papers, The University of Auckland Library

Following the magnitude 6.3 aftershock in Christchurch, New Zealand, on 22 February 2011, a number of researchers were sent to Christchurch as part of the New Zealand Natural Hazard Research Platform funded “Project Masonry” Recovery Project. Their goal was to document and interpret the damage to the masonry buildings and churches in the region. Approximately 650 unreinforced and retrofitted clay brick masonry buildings in the Christchurch area were surveyed for commonly occurring failure patterns and collapse mechanisms. The entire building stock of Christchurch, and in particular the unreinforced masonry building stock, is similar to that in the rest of New Zealand, Australia, and abroad, so the observations made here are relevant for the entire world.

Research papers, The University of Auckland Library

Unrestrained unreinforced clay brick masonry (URM) parapets are found atop a large number of vintage URM buildings. Parapets are typically non-structural cantilevered wall elements that form a fire barrier and in most cases form decorative and ornamental features of vintage URM buildings. Parapets are considered to be one of the most vulnerable elements that are prone to out-of-plane collapse when subjected to earthquake induced shaking. An in-depth analysis of the damage database collected following the 2010/2011 Canterbury earthquakes was performed to obtain information about the distribution, characteristics and observed performance of both the as-built and retrofitted parapets in the Christchurch region. Results, statistical interpretation and implications are presented herein. http://www.aees.org.au/downloads/conference-papers/2015-2/

Research papers, The University of Auckland Library

"The nuclear meltdown at Fukushima ... the Fonterra botulism scare ... the Christchurch earthquakes – in all these recent crises the role played by scientists has been under the spotlight. What is the first duty of scientists in a crisis – to the government, to their employer, or to the wider public desperate for information? And what if these different objectives clash? In this penetrating BWB Text, leading scientist Shaun Hendy finds that in New Zealand, the public obligation of the scientist is often far from clear and that there have been many disturbing instances of scientists being silenced. Experts who have information the public seeks, he finds, have been prevented from speaking out. His own experiences have led him to conclude that New Zealanders have few scientific institutions that feel secure enough to criticise the government of the day." - Publisher information. http://librarysearch.auckland.ac.nz/UOA2_A:Combined_Local:uoa_alma21259423940002091

Research papers, The University of Auckland Library

The Canterbury earthquakes of 2010 and 2011 generated hundreds of thousands of insurance claims, many of which were disputed. The New Zealand justice system faced the same challenge encountered by other jurisdictions following a natural disaster: how to resolve these disputes quickly and at minimal cost but also fairly, to avoid compounding the disaster with injustice? The thesis is of this article is that although the earthquakes were catastrophic for New Zealand, they also created a unique opportunity to design an innovative civil justice process—the Christchurch High Court Earthquake List—and to test, over a relatively short timeframe, how well that process works. This article describes the Christchurch High Court Earthquake List and analyses it by reference to civil justice theory about the relative normative values of public adjudication and private settlement and the dialogic relationship between them. It then evaluates the List, using statistics available five years on from the earthquakes and by reference to the author’s own experience mediating earthquake disputes.

Research papers, The University of Auckland Library

To address the provocation provided by the editors I wish to reflect upon the ongoing civic and artistic responses to the earthquakes in Christchurch, New Zealand, 2010-11, in which 185 people lost their lives (largely due to poor engineering and construction practices). Whilst the example is very different in character from that of efforts to memorialize July 22, 2011, I wish to use the case to briefly respond to the issue of temporality as raised by Jacques Rancière in his critique of the ‘endless work of mourning’ produced by testimonial art. The orientation of this mourning, he argues, is always backward-looking, characterized by, ‘a reversal of the flow of time: the time turned towards an end to be accomplished – progress, emancipation or the Other – is replaced by that turned towards the catastrophe behind us.’ How might memorial practices divide their gaze between remembered pasts and possible futures? AM - Accepted Manuscript

Research papers, The University of Auckland Library

The role of belonging in post-disaster environments remains an under-theorised concept, particularly regarding refugee populations. This paper presents a qualitative study with 101 refugee-background participants from varying communities living in Christchurch, New Zealand, about their perspectives and responses to the Canterbury earthquakes of 2010–11. Participants spoke of how a sense of belonging as individuals and as a wider community was important in the recovery effort, and highlighted the multiple ways in which they understood this concept. Their comments demonstrate how belonging can have contextual, chronological and gendered dimensions that can help inform effective and resonant disaster responses with culturally and linguistically diverse populations. This analysis also illustrates how the participants' perspectives of belonging shifted over time, and discusses the corresponding role of social work in supporting post-disaster recovery through the concepts of civic, ethno and ethnic-based belonging. AM - Accepted Manuscript

Research papers, The University of Auckland Library

The Christchurch region of New Zealand experienced a series of major earthquakes and aftershocks between September 2010 and June 2011 which caused severe damage to the city’s infrastructure. The performance of tilt-up precast concrete buildings was investigated and initial observations are presented here. In general, tilt-up buildings performed well during all three major earthquakes, with mostly only minor, repairable damage occurring. For the in-plane loading direction, both loadbearing and cladding panels behaved exceptionally well, with no significant damage or failure observed in panels and their connections. A limited number of connection failures occurred due to large out-of-plane panel inertia forces. In several buildings, the connections between the panel and the internal structural frame appeared to be the weakest link, lacking in both strength and ductility. This weakness in the out-of-plane load path should be prevented in future designs.

Research papers, The University of Auckland Library

This paper presents preliminary field observations on the performance of selected steel structures in Christchurch during the earthquake series of 2010 to 2011. This comprises 6 damaging earthquakes, on 4 September and 26 December 2010, February 22, June 6 and two on June 13, 2011. Most notable of these was the 4 September event, at Ms7.1 and MM7 (MM as observed in the Christchurch CBD) and most intense was the 22 February event at Ms6.3 and MM9-10 within the CBD. Focus is on performance of concentrically braced frames, eccentrically braced frames, moment resisting frames and industrial storage racks. With a few notable exceptions, steel structures performed well during this earthquake series, to the extent that inelastic deformations were less than what would have been expected given the severity of the recorded strong motions. Some hypotheses are formulated to explain this satisfactory performance. http://db.nzsee.org.nz/SpecialIssue/44%284%290297.pdf

Research papers, The University of Auckland Library

Following the 2010/2011 Canterbury, New Zealand earthquakes, a detailed door-to-door survey was conducted in the Christchurch region to establish the earthquake performance of lightweight timber-framed residential dwellings with a masonry veneer external cladding system. The post-earthquake survey involved documenting the condition of dwellings in areas that had experienced different levels of earthquake shaking, allowing comparison between the performance of different veneer systems and different shaking intensities. In total, just fewer than 1,100 residential dwellings were inspected throughout the wider Christchurch area. The survey included parameters such as level of veneer damage, type of veneer damage, observed crack widths, and level of repair required. It is concluded that based on observed earthquake performance at the shaking intensities matching or exceeding ultimate limit state loading, the post-1996 veneer fixing details performed satisfactorily and continued use of the detail is recommended without further modification. AM - Accepted Manuscript

Research papers, The University of Auckland Library

During the Christchurch earthquake of February 2011, several midrise reinforced concrete masonry (RCM) buildings showed performance levels that fall in the range of life safety to near collapse. A case study of one of these buildings, a six-story RCM building deemed to have reached the near collapse performance level, is presented in this paper. The RCM walls on the second floor failed due to toe crushing, reducing the building's lateral resistance in the east–west direction. A three-dimensional (3-D) nonlinear dynamic analysis was conducted to simulate the development of the governing failure mechanism. Analysis results showed that the walls that were damaged were subjected to large compression loads during the earthquake, which caused an increase in their in-plane lateral strength but reduced their ductility capacity. After toe crushing failure, axial instability of the model was prevented by a redistribution of gravity loads. VoR - Version of Record

Research papers, The University of Auckland Library

Unreinforced masonry (URM) buildings have repeatedly been shown to perform poorly in large magnitude earthquakes, with both New Zealand and Australia having a history of past earthquakes that have resulted in fatalities due to collapsed URM buildings. A comparison is presented here of the URM building stock and the seismic vulnerability of Christchurch and Adelaide in order to demonstrate the relevance to Australian cities of observations in Christchurch resulting from the 2010/2011 Canterbury earthquake swarm. It is shown that the materials, architecture and hence earthquake strength of URM buildings in both countries is comparable and that Adelaide and other cities of Australia have seismic vulnerability sufficient to cause major damage to their URM buildings should a design level earthquake occur. Such an earthquake is expected to cause major building damage, and fatalities should be expected.

Research papers, The University of Auckland Library

This paper presents a qualitative study with multiple refugee background communities living in Christchurch, New Zealand about their perspectives and responses to the Canterbury earthquakes of 2010-2011 (32 semi-structured interviews and 11 focus group discussions comprising 112 participants). Whilst the Canterbury earthquakes created significant challenges for the entire region, several refugee background communities found multiple ways to effectively respond to such adversity. Central to this response were their experiences of belonging which were comprised of both ‘civic’ and ‘ethno’ conceptualisations. This discussion includes an analysis on the intersectionality of identity to highlight the gendered, contextual and chronological influences that impact people’s perspectives of and responses to a disaster. As the study was conducted over 18 months, the paper discusses how social capital resources and experiences of belonging can help inform urban disaster risk reduction (DRR) with refugee groups. http://3icudr.org/program

Research papers, The University of Auckland Library

Axial elongation of reinforced concrete (RC) plastic hinges has previously been observed in a range of laboratory experiments, and more recently was observed in several Christchurch buildings following the 2010/2011 Canterbury earthquakes. Axial restraint to plastic hinges is provided by adjacent structural components such as floors as the plastic hinges elongate, which can significantly alter the performance of the plastic hinge and potentially invalidate the capacity design strength hierarchy of the building. Coupling beams in coupled wall systems are particularly susceptible to axial restraint effects due to their importance in the strength hierarchy, the high ductility demands that they experience, and the large stiffness of bounding walls. From computational modelling it has been found that ignoring axial restraint effects when designing coupled walls can result in significantly increased strength, reduced ductility and reduced energy dissipation capacity. The complexity of the topic merits further research to better account for realistic restraint effects when designing coupled walls.

Research papers, The University of Auckland Library

Five years after the devastating series of earthquakes in Christchurch, New Zealand, the structural engineering community is now focussing on low damage design by either proactively reducing the possibility of significant damage to primary steel members (i.e. developing seismic resisting systems that will deliver a high damage threshold in severe earthquakes) or by improved detailing of the primary steel members for rapid replacement. This paper presents a development of Eccentrically Braced Frames (EBFs) with replaceable active links. It uses the bolted flange- and web splicing concept to connect the active link to the collector beam or column. Finite element analyses have been performed to investigate the behaviour and reliability of EBFs with this new type replaceable active link. The results show a stable hysteretic behaviour and more significantly easier replacement of the damaged active link in comparison with conventional EBFs.

Research papers, The University of Auckland Library

Many large-scale earthquakes all over the world have highlighted the impact of soil liquefaction to the built environment, but the scale of liquefaction-induced damage experienced in Christchurch and surrounding areas following the 2010-2011 Canterbury earthquake sequence (CES) was unparalleled, especially in terms of impact to an urban area. The short time interval between the large earthquakes presented a very rare occasion to examine liquefaction mechanism in natural deposits. The re-liquefaction experienced by the city highlighted the high liquefaction susceptibility of soil deposits in Christchurch, and presented a very challenging problem not only to the local residents but to the geotechnical engineering profession. This paper summarises the lessons learned from CES, and the impacts of the observations made to the current practice of liquefaction assessment and mitigation.

Research papers, The University of Auckland Library

Test results are presented for wall-diaphragm plate anchor connections that were axially loaded to rupture. These connection samples were extracted post-earthquake by sorting through the demolition debris from unreinforced masonry (URM) buildings damaged in the Christchurch earthquakes. Unfortunately the number of samples available for testing was small due to the difficulties associated with sample collection in an environment of continuing aftershocks and extensive demolition activity, when personal safety combined with commercial activity involving large demolition machinery were imperatives that inhibited more extensive sample collection for research purposes. Nevertheless, the presented data is expected to be of assistance to structural engineers undertaking seismic assessment of URM buildings that have existing wall-diaphragm anchor plate connections installed, where it may be necessary to estimate the capacity of the existing connection as an important parameter linked with determining the current seismic capacity of the building and therefore influencing the decision regarding whether supplementary connections should be installed.