Search

found 11 results

Research papers, Lincoln University

Global biodiversity is threatened by human actions, including in urban areas. Urbanisation has removed and fragmented indigenous habitats. As one of the 25 biodiversity ’hot spots’, New Zealand is facing the problems of habitat loss and indigenous species extinction. In New Zealand cities, as a result of the land clearance and imported urban planning precepts, many urban areas have little or no original native forest remaining. Urbanisation has also been associated with the introduction of multitudes of species from around the world. Two large earthquakes shook Christchurch in 2010 and 2011 and caused a lot of damage. Parts of the city suffered from soil liquefaction after the earthquakes. In the most damaged parts of Christchurch, particularly in the east, whole neighbourhoods were abandoned and later demolished except for larger trees. Christchurch offers an excellent opportunity to study the biodiversity responses to an urban area with less intensive management, and to learn more about the conditions in urban environments that are most conducive to indigenous plant biodiversity. This study focuses on natural woody plant regeneration of forested sites in Christchurch city, many of which were also surveyed prior to the earthquakes. By repeating the pre-earthquake surveys, I am able to describe the natural regeneration occurring in Christchurch forested areas. By combining this with the regeneration that has occurred in the Residential Red Zone, successional trajectories can be described under a range of management scenarios. Using a comprehensive tree map of the Residential Red Zone, I was also able to document minimum dispersal distances of a range of indigenous trees in Christchurch. This is important for planning reserve connectivity. Moreover, I expand and improve on a previous analysis of the habitat connectivity of Christchurch (made before the earthquakes) to incorporate the Residential Red Zone, to assess the importance for habitat connectivity of restoring the indigenous forest in this area. In combination, these data sets are used to provide patch scenarios and some management options for biodiversity restoration in the Ōtākaro-Avon Red Zone post-earthquake.

Research papers, Lincoln University

Lincoln University was commissioned by the Avon-Otakaro Network (AvON) to estimate the value of the benefits of a ‘recreation reserve’ or ‘river park’ in the Avon River Residential Red Zone (ARRRZ). This research has demonstrated significant public desire and support for the development of a recreation reserve in the Avon River Residential Red Zone. Support is strongest for a unique natural environment with native fauna and flora, healthy wetlands and rivers, and recreational opportunities that align with this vision, such as walking, cycling and water-based sporting and leisure activities. The research also showed support for a reserve that promotes and enables community interaction and wellbeing, and is evident in respondents’ desires for community gardens, regular festivals and markets, and the physical linking of the CBD with eastern suburbs through a green corridor. There is less support for children’s playgrounds, sports fields or open grassed areas, all of which could be considered as more typical of an urban park development. Benefits (willing to pay) to Christchurch residents (excluding tourists) of a recreation reserve could be as high as $35 million each year. Savings to public health costs could be as high as $50.3 million each year. The incorporation or restoration of various ecosystems services, including water quality improvements, flood mitigation and storm water management could yield a further $8.8 million ($19, 600) per hectare/year at 450 ha). Combined annual benefits of a recreational reserve in the ARRRZ are approximately $94.1 million per annum but this figure does not include potentially significant benefits from, for example, tourism, property equity gains in areas adjacent to the reserve, or the effects of economic rejuvenation in the East. Although we were not able to provide costing estimates for park attributes, this study does make available the value of benefits, which can be used as a guide to the scope of expenditure on development of each park attribute.

Research papers, Lincoln University

The 48hr Design Challenge, run by the Christchurch City Council and held at Lincoln University, provided an opportunity for Council to gain inspiration from the design and architecture industry, while testing the draft Central City Plan currently being developed. The Challenge was a response to the recent earthquakes in Christchurch and brought together local and international talent. A total of 15 teams took part in the Challenge, with seven people in each including engineers, planners, urban designers, architects and landscape architects, as well as one student on each team. The four sites within the Red Zone included the Cathedral Square and BNZ Building; 160 Gloucester Street; the Orion NZ Building at 203 Gloucester Street; and 90 Armagh Street, including the Avon River and Victoria Square. The fifth site, which sits outside the Red Zone, is the former Christchurch Women’s Hospital at 885 Colombo Street. This is team SoLA's entry for 160 Gloucester Street.

Research papers, Lincoln University

The recent earthquakes in Canterbury have left thousands of Christchurch residents’ homeless or facing the possibility of homelessness. The New Zealand Government, so far, have announced that 5,100 homes in Christchurch will have to be abandoned as a result of earthquake damaged land (Christchurch City Council, 2011). They have been zoned red on the Canterbury Earthquake Recovery Authority (CERA) map and there are another 10,000 that have been zoned orange, awaiting a decision (Christchurch City Council, 2011). This situation has placed pressures on land developers and local authorities to speed up the process associated with the development of proposed subdivisions in Christchurch to accommodate residents in this situation (Tarrant, 2011).

Research papers, Lincoln University

The Canterbury region of New Zealand was shaken by major earthquakes on the 4th September 2010 and 22nd February 2011. The quakes caused 185 fatalities and extensive land, infrastructure and building damage, particularly in the Eastern suburbs of Christchurch city. Almost 450 ha of residential and public land was designated as a ‘Red Zone’ unsuitable for residential redevelopment because land damage was so significant, engineering solutions were uncertain, and repairs would be protracted. Subsequent demolition of all housing and infrastructure in the area has left a blank canvas of land stretching along the Avon River corridor from the CBD to the sea. Initially the Government’s official – but enormously controversial – position was that this land would be cleared and lie fallow until engineering solutions could be found that enabled residential redevelopment. This paper presents an application of a choice experiment (CE) that identified and assessed Christchurch residents’ preferences for different land use options of this Red Zone. Results demonstrated strong public support for the development of a recreational reserve comprising a unique natural environment with native fauna and flora, healthy wetlands and rivers, and recreational opportunities that align with this vision. By highlighting the value of a range of alternatives, the CE provided a platform for public participation and expanded the conversational terrain upon which redevelopment policy took place. We conclude the method has value for land use decision-making beyond the disaster recovery context.

Research papers, Lincoln University

Predictive modelling provides an efficient means to analyse the coastal environment and generate knowledge for long term urban planning. In this study, the numerical models SWAN and XBeach were incorporated into the ESRI ArcGIS interface by means of the BeachMMtool. This was applied to the Greater Christchurch coastal environment to simulate geomorphological evolution through hydrodynamic forcing. Simulations were performed using the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013) to determine whether the statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 are consistent with central, regional and district designations. Our results indicate that current land use zoning in Greater Christchurch is not consistent with these predictions. This is because coastal hazard risk has not been thoroughly quantified during the process of installing the Canterbury Earthquake Recovery Authority residential red zone. However, the Christchurch City Council’s flood management area does provide an extent to which managed coastal retreat is a real option. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon.

Research papers, Lincoln University

Prognostic modelling provides an efficient means to analyse the coastal environment and provide effective knowledge for long term urban planning. This paper outlines how the use of SWAN and Xbeach numerical models within the ESRI ArcGIS interface can simulate geomorphological evolution through hydrodynamic forcing for the Greater Christchurch coastal environment. This research followed the data integration techniques of Silva and Taborda (2012) and utilises their beach morphological modelling tool (BeachMM tool). The statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 were examined to determine whether these requirements are currently being complied with when applying the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013), and it would appear that it does not meet those requirements. This is because coastal hazard risk has not been thoroughly quantified by the installation of the Canterbury Earthquake Recovery Authority (CERA) residential red zone. However, the Christchurch City Council’s (CCC) flood management area does provide an extent to which managed coastal retreat is a real option. This research assessed the effectiveness of the prognostic models, forecasted a coastline for 100 years from now, and simulated the physical effects of extreme events such as storm surge given these future predictions. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon similar to the CCC’s flood management area. There are complex interactions at the Waimakariri River mouth with very high rates of accretion and erosion within a small spatial scale due to the river discharge. There is domination of the marine environment over the river system determined by the lack of generation of a distinct river delta, and river channel has not formed within the intertidal zone clearly. The Avon-Heathcote ebb tidal delta aggrades on the innner fan and erodes on the outer fan due to wave domination. The BeachMM tool facilitates the role of spatial and temporal analysis effectively and the efficiency of that performance is determined by the computational operating system.

Research papers, Lincoln University

The National Science Challenge ‘Building Better Homes, Towns and Cities’ is currently undertaking work that, in part, identifies and analyses the Waimakariri District Council’s (WMK/Council) organisational practices and process tools. The focus is on determining the processes that made the Residential Red Zone Recovery Plan, 2016 (RRZRP) collaboration process so effective and compares it to the processes used to inform the current Kaiapoi Town Centre Plan - 2028 and Beyond (KTC Plan). This research aims to explore ‘what travelled’ in terms of values, principles, methods, processes and personnel from the RRZRP to the KTC planning process. My research will add depth to this research by examining more closely the KTC Plan’s hearings process, reviewing submissions made, analysing background documents and by conducting five semi-structured interviews with a selection of people who made submissions on the KTC Plan. The link between community involvement and best recovery outcomes has been acknowledged in literature as well as by humanitarian agencies (Lawther, 2009; Sullivan, 2003). My research has documented WMK’s post-quake community engagement strategy by focusing on their initial response to the earthquake of 2010 and the two-formal plan (RRZRP and KTC Plan) making procedures that succeeded this response. My research has led me to conclude that WMK was committed to collaborating with their constituents right through the extended post-quake sequence. Iterative face to face or ‘think communications’ combined with the accessibility of all levels of Council staff – including senior management and elected members - gave interested community members the opportunity to discuss and deliberate the proposed plans with the people tasked with preparing them. WMK’s commitment to collaborate is illustrated by the methods they employed to inform their post-quake efforts and plans and by the logic behind the selected methods. Combined the Council’s logic and methods best describe the ‘Waimakariri Way’. My research suggests that collaborative planning is iterative in nature. It is therefore difficult to establish a specific starting point where collaboration begins as the relationships needed for the collaborative process constantly (re)emerge out of pre-existing relationships. Collaboration seems to be based on an attitude, which means there is no starting ‘point’ as such, rather an amplification for a time of a basic attitude towards the public.

Research papers, Lincoln University

A city’s planted trees, the great majority of which are in private gardens, play a fundamental role in shaping a city’s wild ecology, ecosystem functioning, and ecosystem services. However, studying tree diversity across a city’s many thousands of separate private gardens is logistically challenging. After the disastrous 2010–2011 earthquakes in Christchurch, New Zealand, over 7,000 homes were abandoned and a botanical survey of these gardens was contracted by the Government’s Canterbury Earthquake Recovery Authority (CERA) prior to buildings being demolished. This unprecedented access to private gardens across the 443.9 hectares ‘Residential Red Zone’ area of eastern Christchurch is a unique opportunity to explore the composition of trees in private gardens across a large area of a New Zealand city. We analysed these survey data to describe the effects of housing age, socio-economics, human population density, and general soil quality, on tree abundance, species richness, and the proportion of indigenous and exotic species. We found that while most of the tree species were exotic, about half of the individual trees were local native species. There is an increasing realisation of the native tree species values among Christchurch citizens and gardens in more recent areas of housing had a higher proportion of smaller/younger native trees. However, the same sites had proportionately more exotic trees, by species and individuals, amongst their larger planted trees than older areas of housing. The majority of the species, and individuals, of the larger (≥10 cm DBH) trees planted in gardens still tend to be exotic species. In newer suburbs, gardens in wealthy areas had more native trees than gardens from poorer areas, while in older suburbs, poorer areas had more native big trees than wealthy areas. In combination, these describe, in detail unparalleled for at least in New Zealand, how the tree infrastructure of the city varies in space and time. This lays the groundwork for better understanding of how wildlife distribution and abundance, wild plant regeneration, and ecosystem services, are affected by the city’s trees.

Research papers, Lincoln University

Millions of urban residents around the world in the coming century will experience severe landscape change – including increased frequencies of flooding due to intensifying storm events and impacts from sea level rise. For cities, collisions of environmental change with mismatched cultural systems present a major threat to infrastructure systems that support urban living. Landscape architects who address these issues express a need to realign infrastructure with underlying natural systems, criticizing the lack of social and environmental considerations in engineering works. Our ability to manage both society and the landscapes we live in to better adapt to unpredictable events and landscape changes is essential if we are to sustain the health and safety of our families, neighbourhoods, and wider community networks. When extreme events like earthquakes or flooding occur in developed areas, the feasibility of returning the land to pre-disturbance use can be questioned. In Christchurch for example, a large expanse of land (630 hectares) within the city was severely damaged by the earthquakes and judged too impractical to repair in the short term. The central government now owns the land and is currently in the process of demolishing the mostly residential houses that formed the predominant land use. Furthermore, cascading impacts from the earthquakes have resulted in a general land subsidence of .5m over much of eastern Christchurch, causing disruptive and damaging flooding. Yet, although disasters can cause severe social and environmental distress, they also hold great potential as a catalyst to increasing adaption. But how might landscape architecture be better positioned to respond to the potential for transformation after disaster? This research asks two core questions: what roles can the discipline of landscape architecture play in improving the resilience of communities so they become more able to adapt to change? And what imaginative concepts could be designed for alternative forms of residential development that better empower residents to understand and adapt the infrastructure that supports them? Through design-directed inquiry, the research found landscape architecture theory to be well positioned to contribute to goals of social-ecological systems resilience. The discipline of landscape architecture could become influential in resilience-oriented multi disciplinary collaborations, with our particular strengths lying in six key areas: the integration of ecological and social processes, improving social capital, engaging with temporality, design-led innovation potential, increasing diversity and our ability to work across multiple scales. Furthermore, several innovative ideas were developed, through a site-based design exploration located within the residential red zone, that attempt to challenge conventional modes of urban living – concepts such as time-based land use, understanding roads as urban waterways, and landscape design and management strategies that increase community participation and awareness of the temporality in landscapes.

Research papers, Lincoln University

4th September 2010 a 7.1 magnitude earthquake strikes near Christchurch, New Zealand’s second largest city of approximately 370,000 people. This is followed by a 6.3 magnitude quake on 22nd February 2011 and a 6.4 on 13th June. In February 181 people died and a state of national emergency was declared from 23 February to 30th April. Urban Search and Rescue teams with 150 personnel from New Zealand and 429 from overseas worked tirelessly in addition to Army, Police and Fire services. Within the central business district 1,000 buildings (of 4,000) are expected to be demolished. An estimated 10,000 houses require demolition and over 100,000 were damaged. Meanwhile the over 7,000 aftershocks have become part of the “new normal” for us all. During this time how have libraries supported their staff? What changes have been made to services? What are the resourcing opportunities? This presentation will provide a personal view from Lincoln University, Te Whare Wanaka o Aoraki, Library Teaching and Learning. Lincoln is New Zealand's third oldest university having been founded in 1878. Publicly owned and operated it is New Zealand's specialist land-based university. Lincoln is based on the Canterbury Plains, 22 kilometres south of Christchurch. On campus there was mostly minor damage to buildings while in the Library 200,000 volumes were thrown from the shelves. I will focus on the experiences of the Disaster Team and on our experiences with hosting temporarily displaced staff and students from the Christchurch Polytechnic Institute of Technology, Library, Learning & Information Services. Experiences from two other institutions will be highlighted: Christchurch City Libraries, Ngā Kete Wānanga-o-Ōtautahi. Focusing on the Māori Services Team and the Ngā Pounamu Māori and Ngāi Tahu collections. The Central library located within the red zone cordon has been closed since February, the Central library held the Ngā Pounamu Māori and Ngai Tahu collections, the largest Māori collections in the Christchurch public library network. The lack of access to these collections changed the way the Māori Services Team, part of the larger Programmes, Events and Learning Team at Christchurch City Libraries were able to provide services to their community resulting in new innovative outreach programmes and a focus on promotion of online resources. On 19th December the “temporary” new and smaller Central library Peterborough opened. The retrieved Ngā Pounamu Māori and Ngai Tahu collections "Ngā rakau teitei e iwa”, have since been re-housed and are once again available for use by the public. Te Rūnanga o Ngāi Tahu. This organisation, established by the Te Rūnanga o Ngāi Tahu Act 1996, services the statutory rights for the people of Ngāi Tahu descent and ensures that the benefits of their Treaty Claim Settlement are enjoyed by Ngāi Tahu now and in the future. Ngāi Tahu are the indigenous Māori people of the southern islands of New Zealand - Te Waipounamu. The iwi (people) hold the rangatiratanga or tribal authority to over 80 per cent of the South Island. With their headquarters based in the central business they have also had to be relocated to temporary facilities. This included their library/archive collection of print resources, art works and taonga (cultural treasures).