This report reviews the literature on regeneration requirements of main canopy
tree species in Westland. Forests managed for production purposes have to be
harvested in an ecologically sustainable way; to maintain their natural character, harvesting should facilitate regeneration of target species and ensure that their recruitment is in proportion to the extent of extraction. The reasons for species establishing at any point in time are unclear; however, they are probably related to the availability of suitable microsites for establishment, the size of the canopy openings formed by disturbance, and whether or not seeds are available at or around the time of the disturbance. Age structures from
throughout Westland show that extensive, similar-aged, post-earthquake cohorts of trees are a feature of the region. This suggests that infrequent, massive earthquakes are the dominant coarse-scale disturbance agent, triggering episodes of major erosion and sedimentation and leaving a strong imprint in the forest structure. In other forests, flooding and catastrophic
windthrow are major forms of disturbance. The findings suggest that, in general, large disturbances are required for conifer regeneration. This has implications for any sustained yield management of these forests if conifers are to remain an important component. Any harvesting should recognise the importance for tree establishment of: forest floor microsites, such as fallen logs
and tree tip-up mounds; and the variable way in which canopy gaps are formed. Harvesting should maintain the 'patchy' nature of the natural forest—large patches of dense conifers interspersed with more heterogeneous patches of mixed species.This is a client report commissioned by West Coast Conservancy and funded from the Unprogrammed Science Advice fund.
Six stands located on different land forms in mixed old-growth Nothofagus forests in the Matiri Valley (northwest of South Island, New Zealand) were sampled to examine the effects of two recent large earthquakes on tree establishment and tree-ring growth, and how these varied across land forms. 50 trees were cored in each stand to determine age structure and the cores were cross-dated to precisely date unusual periods of radial growth. The 1968 earthquake (M = 7.1, epicentre 35 km from the study area) had no discernible impact on the sampled stands. The impact of the 1929 earthquake (M = 7.7, epicentre 20 km from the study area) varied between stands, depending on whether or not they had been damaged by soil or rock movement. In all stands, the age structures showed a pulse of N. fusca establishment following the 1929 earthquake, with this species dominating establishment in large gaps created by landslides. Smaller gaps, created by branch or tree death, were closed by both N. fusca and N. menziesii. The long period of releases (1929-1945) indicates that direct earthquake damage was not the only cause of tree death, and that many trees died subsequently most likely of pathogen attack or a drought in the early 1930s. The impacts of the 1929 earthquake are compared to a storm in 1905 and a drought in 1974-1978 which also affected forests in the region. Our results confirm that earthquakes are an important factor driving forest dynamics in this tectonically active region, and that the diversity of earthquake impacts is a major source of heterogeneity in forest structure and regeneration.
On September the 4th 2010 and February 22nd 2011
the Canterbury region of New Zealand was shaken by
two massive earthquakes. This paper is set broadly
within the civil defence and emergency management
literature and informed by recent work on community
participation and social capital in the building of resilient
cities. Work in this area indicates a need to recognise
both the formal institutional response to the earthquakes
as well as the substantive role communities play in their
own recovery. The range of factors that facilitate or
hinder community involvement also needs to be better
understood. This paper interrogates the assumption
that recovery agencies and officials are both willing
and able to engage communities who are themselves
willing and able to be engaged in accordance with
recovery best practice. Case studies of three community
groups – CanCERN, Greening the Rubble and Gap
Filler – illustrate some of the difficulties associated
with becoming a community during the disaster
recovery phase. Based on my own observations and
experiences, combined with data from approximately
50 in-depth interviews with Christchurch residents
and representatives from community groups, the
Christchurch City Council, the Earthquake Commission
and so on, this paper outlines some practical strategies
emerging communities may use in the early disaster
recovery phase that then strengthens their ability to
‘participate’ in the recovery process.
Though there is a broad consensus that communities play a key role in disaster response and recovery, most of the existing work in this area focuses on the activities of donor agencies, formal civil defence authorities, and local/central government. Consequently, there is a paucity of research addressing the on-going actions and activities undertaken by communities and ‘emergent groups’ , particularly as they develop after the immediate civil defence or ‘response’ phase is over.
In an attempt to address this gap, this inventory of community-led recovery initiatives was undertaken approximately one year after the most devastating February 2011 earthquake. It is part of on-going project at Lincoln University documenting – and seeking a better understanding of -
various emergent communities’ roles in recovery, their challenges, and strategies for overcoming them. This larger project also seeks to better understand how collaborative work between informal and formal recovery efforts might be facilitated at different stages of the process.
This inventory was conducted over the December 2011 – February 2012 period and builds on Landcare Research’s Christchurch Earthquake Activity Inventory which was a similar snapshot taken in April 2011. The intention behind conducting this updated inventory is to gain a longitudinal perspective of how community-led recovery activities evolve over time.
Each entry is ordered alphabetically and contact details have been provided where possible. A series of keywords have also been assigned that describe the main attributes of each activity to assist searches within this document.This inventory was supported by the Lincoln University Research Fund and the Royal Society Marsden Fund.
There is strong consensus in the civil defence and emergency management literature that public participation is essential for a 'good' recovery. However, there is a paucity of research detailing how this community-led planning should be carried out in the real world. There are few processes or timelines for communities to follow when wanting to plan for themselves, nor is there a great deal of advice for communities who want to plan for their own recovery. In short, despite this consensus that community involvement is desireable, there is very little information available as to the nature of this involvement or how communities might facilitate this. It is simply assumed that communities are willing and able to participate in the recovery process and that recovery authorities will welcome, encourage, and enable this participation. This is not always the case, and the result is that community groups can be left feeling lost and ineffective when trying to plan for their own recovery.
In attempting to address this gap, my study contributes to a better understanding of community involvement in recovery planning, based on research with on particular a community group (SPRIG), who has undertaken their own form of community-led planning in a post-disaster environment. Through group observations and in-depth interviews with members of SPRIG, I was able to identify various roles for such groups in the post-disaster recovery process. My research also contributes to an enhanced understanding of the process a community group might follow to implement their own form of post-disaster recovery planning, with the main point being that any planning should be done side by side with local authorities. Finally, I discovered that a community group will face organisational, community and institutional challenges when trying to plan for their area; however, despite these challenges, opportunities exist, such as the chance to build a better future.
Mixed conifer, beech and hardwood forests are relatively common in Aotearoa/New
Zealand, but are not well studied. This thesis investigates the coexistence, regeneration
dynamics and disturbance history of a mixed species forest across an environmental
gradient of drainage and soil development in north Westland.
The aim was to investigate whether conifers, beech and non-beech hardwood species were
able to coexist on surfaces that differed in their underlying edaphic conditions, and if so to understand the mechanisms that influenced their regeneration on both poorly drained and
well drained soils. The site selected was an area of high tree species diversity on a lowland
0.8 km² post-glacial terrace at the base of Mount Harata in the Grey River Valley.
My approach was to use forest stand history reconstruction at two spatial scales: an
intensive within-plot study of stand dynamics (chapter 1) and a whole-landform approach
(chapter 2) that examined whether the dynamics identified at the smaller within-plot scale
reflected larger patterns across the terrace.
In chapter 1, three large permanent plots (0.3-0.7 ha) were placed at different points along
the drainage gradient, one plot situated in each of the mainly well-drained, poorly drained
and very poorly drained areas along the terrace. Information was gathered on species age
and size structures, spatial distributions of tree ages, species interactions, microsite
establishment preferences, patterns of stand mortality, and disturbance history in each plot.
There were differences in stand structure, composition and relative abundance of species
found between the well drained plot and the two poorer drained plots. On the well drained
site conifers were scarce, the beeches Nothofagus fusca and N. menziesii dominated the
canopy, and in the subcanopy the hardwood species Weinmannia racemosa and Quintinia
acutifolia were abundant. As drainage became progressively poorer, the conifers
Dacrydium cupressinum and Dacrycarpus dacrydioides became more abundant and
occupied the emergent tier over a beech canopy. The hardwoods W. racemosa and Q.
acutifolia became gradually less abundant in the subcanopy, whereas the hardwood
Elaeocarpus hookerianus became more so.
In the well drained plot, gap partitioning for light between beeches and hardwoods enabled
coexistence in response to a range of different sized openings resulting from disturbances
of different extent. In the two more poorly drained plots, species also coexisted by
partitioning microsite establishment sites according to drainage.
There were several distinct periods where synchronous establishment of different species
occurred in different plots, suggesting there were large disturbances: c. 100yrs, 190-200
yrs, 275-300 yrs and 375-425 yrs ago. Generally after the same disturbance, different
species regenerated in different plots reflecting the underlying drainage gradient. However,
at the same site after different disturbances, different sets of species regenerated,
suggesting the type and extent of disturbances and the conditions left behind influenced
species regeneration at some times but not others. The regeneration of some species (e.g.,
N. fusca in the well-drained plot, and Dacrydium in the poorer drained plots) was periodic
and appeared to be closely linked to these events. In the intervals between these
disturbances, less extensive disturbances resulted in the more frequent N. menziesii and
especially hardwood regeneration. The type of tree death caused by different disturbances
favoured different species, with dead standing tree death favouring the more shade-tolerant
N. menziesii and hardwoods, whereas uprooting created a mosaic of microsite conditions
and larger gap sizes that enabled Dacrycarpus, N. fusca and E. hookerianus to maintain
themselves in the poorly drained areas.
In chapter 2, 10 circular plots (c. 0.12 ha) were placed in well drained areas and 10
circular plots (c. 0.2 ha) in poorly drained plots to collect information on species
population structures and microsite preferences. The aims were to reconstruct species'
regeneration responses to a range of disturbances of different type and extent across the
whole terrace, and to examine whether there were important differences in the effects of
these disturbances.
At this landform scale, the composition and relative abundances of species across the
drainage gradient reflected those found in chapter 1. There were few scattered conifers in well drained areas, despite many potential regeneration opportunities created from a range
of different stand destroying and smaller scale disturbances.
Three of the four periods identified in chapter 1 reflected distinct terrace-wide periods of
regeneration 75-100 yrs, 200-275 yrs and 350-450 yrs ago, providing strong evidence of
periodic large, infrequent disturbances that occurred at intervals of 100-200 yrs. These
large, infrequent disturbances have had a substantial influence in determining forest
history, and have had long term effects on forest structure and successional processes.
Different large, infrequent disturbances had different effects across the terrace, with the
variability in conditions that resulted enabling different species to regenerate at different
times. For example, the regeneration of distinct even-aged Dacrydium cohorts in poorly
drained areas was linked to historical Alpine Fault earthquakes, but not to more recent
storms. The variation in the intensity of different large, infrequent disturbances at different
points along the environmental drainage gradient, was a key factor influencing the scale of
impacts. In effect, the underlying edaphic conditions influenced species composition along
the drainage gradient and disturbance history regulated the relative abundances of species.
The results presented here further emphasise the importance of large scale disturbances as a
mechanism that allows coexistence of different tree species in mixed forest, in particular
for the conifers Dacrydium, Dacrycarpus and the beech N. fusca, by creating much of the
environmental variation to which these species responded. This study adds to our
understanding of the effects of historical earthquakes in the relatively complex forests of
north Westland, and further illustrates their importance in the Westland forest landscape as
the major influential disturbance on forest pattern and history.
These results also further develop the 'two-component' model used to describe
conifer/angiosperm dynamics, by identifying qualitative differences in the impacts of
different large, infrequent disturbances across an environmental gradient that allowed for
coexistence of different species. In poorer drained areas, these forests may even be thought
of as 'three-component' systems with conifers, beeches and hardwoods exhibiting key
differences in their regeneration patterns after disturbances of different type and extent, and
in their microsite preferences.