Search

found 6 results

Research papers, Lincoln University

Artificial Neural Networks (ANN) as a tool offers opportunities for modeling the inherent complexity and uncertainty associated with socio-environmental systems. This study draws on New Zealand ski fields (multiple locations) as socio- environmental systems while considering their perceived resilience to low probability but potential high consequences catastrophic natural events (specifically earthquakes). We gathered data at several ski fields using a mixed methodology including: geomorphic assessment, qualitative interviews, and an adaptation of Ozesmi and Ozesmi’s (2003) multi-step fuzzy cognitive mapping (FCM) approach. The data gathered from FCM are qualitatively condensed, and aggregated to three different participant social groups. The social groups include ski fields users, ski industry workers, and ski field managers. Both quantitative and qualitative indices are used to analyze social cognitive maps to identify critical nodes for ANN simulations. The simulations experiment with auto-associative neural networks for developing adaptive preparation, response and recovery strategies. Moreover, simulations attempt to identify key priorities for preparation, response, and recovery for improving resilience to earthquakes in these complex and dynamic environments. The novel mixed methodology is presented as a means of linking physical and social sciences in high complexity, high uncertainty socio-environmental systems. Simulation results indicate that participants perceived that increases in Social Preparation Action, Social Preparation Resources, Social Response Action and Social Response Resources have a positive benefit in improving the resilience to earthquakes of ski fields’ stakeholders.

Research papers, Lincoln University

This paper identifies and analyses the networks of support for tangata whaiora (mental health clients) utilising a kaupapa Mäori health service following the Ötautahi/Christchurch earthquakes in Aotearoa New Zealand from 2010 to 2012. Semi- structured interviews were undertaken with 39 participants, comprising clients (Mäori and Päkehä), staff, managers and board members of a kaupapa Mäori provider in the city. Selected quotes are presented alongside a social network analysis of the support accessed by all participants. Results show the signifi cant isolation of both Mäori and Päkehä mental health clients post- disaster and the complexity of individuals and collectives dealing with temporally and spatially overlapping hazards and disasters at personal, whänau and community level.

Research papers, Lincoln University

At 00:02 on 14 November, 2016 a destructive 7.8 Mw earthquake struck the North Canterbury region of New Zealand’s South Island. Prior to and following the earthquake, natural and social scientists conducted a significant amount of research on the resilience processes and recovery efforts in North Canterbury. This thesis examines community resilience in Kaikōura, a small town and district greatly impacted by the earthquake. Community resilience has been widely used in disaster risk reduction research, policy, and practice to describe how a group of individuals within a boundary respond to events, hazards, and shifts in their everyday life. Using exploratory inquiry, this thesis adopts qualitative research methods including document analysis, 24 semi-structured interviews, and participant observation to explore the idea that the recent scholarly emphasis on resilience has come at the expense of critical engagement with the complexities of communities. I draw on the idea of ‘collectives’ (comprising community-based organisations or less formal social networks with a shared purpose) as a lens to consider how, when unexpected life events happen, collectives can be regarded as a resource for change or constancy. The examination of collectives following a disaster can lend insight into the many elements of community as they bring people together in collaboration or drive them apart in conflict. This thesis therefore contributes to an enhanced practical and theoretical understanding of both community and resilience.

Research papers, Lincoln University

The city of Christchurch, New Zealand, was until very recently a “Junior England”—a small city that still bore the strong imprint of nineteenth-century British colonization, alongside a growing interest in the underlying biophysical setting and the indigenous pre-European landscape. All of this has changed as the city has been subjected to a devastating series of earthquakes, beginning in September 2010, and still continuing, with over 12,000 aftershocks recorded. One of these aftershocks, on February 22, 2011, was very close to the city center and very shallow with disastrous consequences, including a death toll of 185. Many buildings collapsed, and many more need to be demolished for safety purposes, meaning that over 80 percent of the central city will have gone. Tied up with this is the city’s precious heritage—its buildings and parks, rivers, and trees. The threats to heritage throw debates over economics and emotion into sharp relief. A number of nostalgic positions emerge from the dust and rubble, and in one form is a reverse-amnesia—an insistence of the past in the present. Individuals can respond to nostalgia in very different ways, at one extreme become mired in it and unable to move on, and at the other, dismissive of nostalgia as a luxury in the face of more pressing crises. The range of positions on nostalgia represent the complexity of heritage debates, attachment, and identity—and the ways in which disasters amplify the ongoing discourse on approaches to conservation and the value of historic landscapes.

Research papers, Lincoln University

During the 21st century, New Zealand has experienced increasing public concern over the quality of the design and appearance of new developments, and their effects on the urban environment. In response to this, a number of local authorities developed a range of tools to address this issue, including urban design panels to review proposals and provide independent advice. Following the 2010 and 2011 Canterbury earthquake sequence, the commitment to achieve high quality urban design within Christchurch was given further importance, with the city facing the unprecedented challenge of rebuilding a ‘vibrant and successful city’. The rebuild and regeneration reinforced the need for independent design review, putting more focus and emphasis on the role and use of the urban design panel; first through collaboratively assisting applicants in achieving a better design outcome for their development by providing an independent set of eyes on their design; and secondly in assisting Council officers in forming their recommendations on resource consent decisions. However, there is a perception that urban design and the role of the urban design panel is not fully understood, with some stakeholders arguing that Council’s urban design requirements are adding cost and complexity to their developments. The purpose of this research was to develop a better understanding on the role of the Christchurch urban design panel post-earthquake in the central city; its direct and indirect influence on the built environment; and the deficiencies in the broader planning framework and institutional settings that it might be addressing. Ultimately, the perceived role of the Panel is understood, and there is agreement that urban design is having a positive influence on the built environment, albeit viewed differently amongst the varying groups involved. What has become clear throughout this research is that the perceived tension between the development community and urban design well and truly exists, with the urban design panel contributing towards this. This tension is exacerbated further through the cost of urban design to developers, and the drive for financial return from their investments. The panel, albeit promoting a positive experience, is simply a ‘tick box’ exercise for some, and as the research suggests, groups or professional are determining themselves what constitutes good urban design, based on their attitude, the context in which they sit and the financial constraints to incorporate good design elements. It is perhaps a bleak time for urban design, and more about building homes.

Research papers, Lincoln University

Globally, the maximum elevations at which treelines are observed to occur coincide with a 6.4 °C soil isotherm. However, when observed at finer scales, treelines display a considerable degree of spatial complexity in their patterns across the landscape and are often found occurring at lower elevations than expected relative to the global-scale pattern. There is still a lack of understanding of how the abiotic environment imposes constraints on treeline patterns, the scales at which different effects are acting, and how these effects vary over large spatial extents. In this thesis, I examined abrupt Nothofagus treelines across seven degrees of latitude in New Zealand in order to investigate two broad questions: (1) What is the nature and extent of spatial variability in Nothofagus treelines across the country? (2) How is this variation associated with abiotic variation at different spatial scales? A range of GIS, statistical, and atmospheric modelling methods were applied to address these two questions. First, I characterised Nothofagus treeline patterns at a 15x15km scale across New Zealand using a set of seven, GIS-derived, quantitative metrics that describe different aspects of treeline position, shape, spatial configuration, and relationships with adjacent vegetation. Multivariate clustering of these metrics revealed distinct treeline types that showed strong spatial aggregation across the country. This suggests a strong spatial structuring of the abiotic environment which, in turn, drives treeline patterns. About half of the multivariate treeline metric variation was explained by patterns of climate, substrate, topographic and disturbance variability; on the whole, climatic and disturbance factors were most influential. Second, I developed a conceptual model that describes how treeline elevation may vary at different scales according to three categories of effects: thermal modifying effects, physiological stressors, and disturbance effects. I tested the relevance of this model for Nothofagus treelines by investigating treeline elevation variation at five nested scales (regional to local) using a hierarchical design based on nested river catchments. Hierarchical linear modelling revealed that the majority of the variation in treeline elevation resided at the broadest, regional scale, which was best explained by the thermal modifying effects of solar radiation, mountain mass, and differences in the potential for cold air ponding. Nonetheless, at finer scales, physiological and disturbance effects were important and acted to modify the regional trend at these scales. These results suggest that variation in abrupt treeline elevations are due to both broad-scale temperature-based growth limitation processes and finer-scale stress- and disturbance-related effects on seedling establishment. Third, I explored the applicability of a meso-scale atmospheric model, The Air Pollution Model (TAPM), for generating 200 m resolution, hourly topoclimatic data for temperature, incoming and outgoing radiation, relative humidity, and wind speeds. Initial assessments of TAPM outputs against data from two climate station locations over seven years showed that the model could generate predictions with a consistent level of accuracy for both sites, and which agreed with other evaluations in the literature. TAPM was then used to generate data at 28, 7x7 km Nothofagus treeline zones across New Zealand for January (summer) and July (winter) 2002. Using mixed-effects linear models, I determined that both site-level factors (mean growing season temperature, mountain mass, precipitation, earthquake intensity) and local-level landform (slope and convexity) and topoclimatic factors (solar radiation, photoinhibition index, frost index, desiccation index) were influential in explaining variation in treeline elevation within and among these sites. Treelines were generally closer to their site-level maxima in regions with higher mean growing season temperatures, larger mountains, and lower levels of precipitation. Within sites, higher treelines were associated with higher solar radiation, and lower photoinhibition and desiccation index values, in January, and lower desiccation index values in July. Higher treelines were also significantly associated with steeper, more convex landforms. Overall, this thesis shows that investigating treelines across extensive areas at multiple study scales enables the development of a more comprehensive understanding of treeline variability and underlying environmental constraints. These results can be used to formulate new hypotheses regarding the mechanisms driving treeline formation and to guide the optimal choice of field sites at which to test these hypotheses.