Search

found 44 results

Research papers, University of Canterbury Library

Peri-urban environments are critical to the connections between urban and rural ecosystems and their respective communities. Lowland floodplains are important examples that are attractive for urbanisation and often associated with the loss of rural lands and resources. In Christchurch, New Zealand, damage from major earthquakes led to the large-scale abandonment of urban residential properties in former floodplain areas creating a rare opportunity to re-imagine the future of these lands. This has posed a unique governance challenge involving the reassessment of land-use options and a renewed focus on disaster risk and climate change adaptation. Urban-rural tensions have emerged through decisions on relocating residential development, alternative proposals for land uses, and an unprecedented opportunity for redress of degraded traditional values for indigenous (Māori) people. Immediately following the earthquakes, existing statutory arrangements applied to many recovery needs and identified institutional responsibilities. Bespoke legislation was also created to address the scale of impacts. Characteristics of the approach have included attention to information acquisition, iterative assessment of land - use options, and a wide variety of opportunities for community participation. Challenges have included a protracted decision-making process with accompanying transaction costs, and a high requirement for coordination. The case typifies the challenges of achieving ecosystem governance where both urban and rural stakeholders have strong desires and an opportunity to exert influence. It presents a unique context for applying the latest thinking on ecosystem management, adaptation, and resilience, and offers transferable learning for the governance of peri-urban floodplains worldwide.

Research papers, University of Canterbury Library

School travel is a major aspect of a young person’s everyday activity. The relationship between the built environment that youth experience on their way to and from school, influences a number of factors including their development, health and wellbeing. This is especially important in low income areas where the built environment is often poorer, but the need for it to be high quality and accessible is greater. This study focusses on the community of Aranui, a relatively low income suburb in Christchurch, New Zealand. It pays particular attention to Haeata Community Campus, a state school of just under 800 pupils from year one through to year thirteen (ages 5-18). The campus opened in 2017 following the closure of four local schools (three primary and one secondary), as part of the New Zealand Government’s Education Renewal scheme following the Christchurch earthquakes of 2010/11. Dedicated effort toward understanding the local built environment, and subsequent travel patterns has been argued to be insufficiently considered. The key focus of this research was to understand the importance of the local environment in encouraging active school travel. The present study combines geospatial analysis, quantitative survey software Maptionnaire, and statistical models to explore the features of the local environment that influence school travel behaviour. Key findings suggest that distance to school and parental control are the most significant predictors of active transport in the study sample. Almost 75% of students live within two kilometres of the school, yet less than 40% utilise active transport. Parental control may be the key contributing factor to the disproportionate private vehicle use. However, active school travel is acknowledged as a complex process that is the product of many individual, household, and local environment factors. To see increased active transport uptake, the local environment needs to be of greater quality. Meaning that the built environment should be improved to be youth friendly, with greater walkability and safe, accessible cycling infrastructure.

Research papers, University of Canterbury Library

In recent work on commons and commoning, scholars have argued that we might delink the practice of commoning from property ownership, while paying attention to modes of governance that enable long-term commons to emerge and be sustained. Yet commoning can also occur as a temporary practice, in between and around other forms of use. In this article we reflect on the transitional commoning practices and projects enabled by the Christchurch post-earthquake organisation Life in Vacant Spaces, which emerged to connect and mediate between landowners of vacant inner city demolition sites and temporary creative or entrepreneurial users. While these commons are often framed as transitional or temporary, we argue they have ongoing reverberations changing how people and local government in Christchurch approach common use. Using the cases of the physical space of the Victoria Street site “The Commons” and the virtual space of the Life in Vacant Spaces website, we show how temporary commoning projects can create and sustain the conditions of possibility required for nurturing commoner subjectivities. Thus despite their impermanence, temporary commoning projects provide a useful counter to more dominant forms of urban development and planning premised on property ownership and “permanent” timeframes, in that just as the physical space of the city being opened to commoning possibilities, so too are the expectations and dispositions of the city’s inhabitants, planners, and developers.

Research papers, University of Canterbury Library

Results from cyclic undrained direct simple shear tests on reconstituted specimens of two sands from Christchurch are compared against the liquefaction resistance inferred from CPT-based empirical liquefaction triggering methods. Limitations in existing empirical triggering relationships to capture important effects related to processes which originated test soils are highlighted and discussed.

Research papers, University of Canterbury Library

Background: There has been a psychopathology focus in disaster research examining adolescent mental health and wellbeing, but recently studies have begun to also examine wellbeing-related constructs. Although an increased risk of posttraumatic stress disorder has been established in disaster-exposed adolescents, comparatively little is known about how disasters impact adolescent wellbeing, nor how factors within the post-disaster environment interact to influence holistic adolescent mental health and wellbeing. Objective: The objective of this study was to describe the holistic mental health and wellbeing of adolescents living in an earthquake-struck city by considering a range of mental health and wellbeing indicators, as well as risk and protective factors hypothesised to influence mental health and wellbeing. The dual-factor model of mental health was used as a framework to guide this study. Method: A survey of Christchurch secondary school students was used to gather data about their subjective wellbeing, risk of low wellbeing, psychological distress, quality of life, exposure to Adverse Childhood Experiences, social support from friends and family, school connectedness, and expectations about future quality of life. Results: A slim majority of students reported good subjective wellbeing (52.3%) and high current quality of life (56.4%), whereas a larger majority reported low risk of psychological distress (79%). An equal proportion of students reported high and low risk of low wellbeing. There were no statistically significant differences in any of the variables measured between adolescents who did and did not live through the Christchurch earthquakes. Regression analyses identified that school connectedness, social support from friends and family, and future expectations of quality of life significantly predicted subjective wellbeing, risk of low wellbeing, risk of psychological distress, and current quality of life. The number of Adverse Childhood Experiences significantly predicted only risk of psychological distress when the effects of other variables were controlled for. Conclusion: The findings of this study indicate that there is a low mean level of wellbeing and quality of life in this sample of adolescents living in a severely earthquake- affected community. School connectedness, social support from family and friends, and expectations about future quality of life were shown to significantly predict variance in subjective wellbeing, quality of life, and psychological distress. This suggests that there are social and environmental factors that can be targeted to improve holistic mental health and wellbeing in disaster-affected adolescents who have experienced high levels of trauma. Conclusions in this study are limited by the representativeness of the sample, the cross- sectional nature of the study, and potential sampling bias.

Research papers, University of Canterbury Library

Background: There has been a psychopathology focus in disaster research examining adolescent mental health and wellbeing, but recently studies have begun to also examine wellbeing-related constructs. Although an increased risk of posttraumatic stress disorder has been established in disaster-exposed adolescents, comparatively little is known about how disasters impact adolescent wellbeing, nor how factors within the post-disaster environment interact to influence holistic adolescent mental health and wellbeing. Objective: The objective of this study was to describe the holistic mental health and wellbeing of adolescents living in an earthquake-struck city by considering a range of mental health and wellbeing indicators, as well as risk and protective factors hypothesised to influence mental health and wellbeing. The dual-factor model of mental health was used as a framework to guide this study. Method: A survey of Christchurch secondary school students was used to gather data about their subjective wellbeing, risk of low wellbeing, psychological distress, quality of life, exposure to Adverse Childhood Experiences, social support from friends and family, school connectedness, and expectations about future quality of life. Results: A slim majority of students reported good subjective wellbeing (52.3%) and high current quality of life (56.4%), whereas a larger majority reported low risk of psychological distress (79%). An equal proportion of students reported high and low risk of low wellbeing. There were no statistically significant differences in any of the variables measured between adolescents who did and did not live through the Christchurch earthquakes. Regression analyses identified that school connectedness, social support from friends and family, and future expectations of quality of life significantly predicted subjective wellbeing, risk of low wellbeing, risk of psychological distress, and current quality of life. The number of Adverse Childhood Experiences significantly predicted only risk of psychological distress when the effects of other variables were controlled for. Conclusion: The findings of this study indicate that there is a low mean level of wellbeing and quality of life in this sample of adolescents living in a severely earthquake-affected community. School connectedness, social support from family and friends, and expectations about future quality of life were shown to significantly predict variance in subjective wellbeing, quality of life, and psychological distress. This suggests that there are social and environmental factors that can be targeted to improve holistic mental health and wellbeing in disaster-affected adolescents who have experienced high levels of trauma. Conclusions in this study are limited by the representativeness of the sample, the cross-sectional nature of the study, and potential sampling bias.

Research papers, University of Canterbury Library

Background: There has been a psychopathology focus in disaster research examining adolescent mental health and wellbeing, but recently studies have begun to also examine wellbeing-related constructs. Although an increased risk of posttraumatic stress disorder has been established in disaster-exposed adolescents, comparatively little is known about how disasters impact adolescent wellbeing, nor how factors within the post-disaster environment interact to influence holistic adolescent mental health and wellbeing. Objective: The objective of this study was to describe the holistic mental health and wellbeing of adolescents living in an earthquake-struck city by considering a range of mental health and wellbeing indicators, as well as risk and protective factors hypothesised to influence mental health and wellbeing. The dual-factor model of mental health was used as a framework to guide this study. Method: A survey of Christchurch secondary school students was used to gather data about their subjective wellbeing, risk of low wellbeing, psychological distress, quality of life, exposure to Adverse Childhood Experiences, social support from friends and family, school connectedness, and expectations about future quality of life. Results: A slim majority of students reported good subjective wellbeing (52.3%) and high current quality of life (56.4%), whereas a larger majority reported low risk of psychological distress (79%). An equal proportion of students reported high and low risk of low wellbeing. There were no statistically significant differences in any of the variables measured between adolescents who did and did not live through the Christchurch earthquakes. Regression analyses identified that school connectedness, social support from friends and family, and future expectations of quality of life significantly predicted subjective wellbeing, risk of low wellbeing, risk of psychological distress, and current quality of life. The number of Adverse Childhood Experiences significantly predicted only risk of psychological distress when the effects of other variables were controlled for. Conclusion: The findings of this study indicate that there is a low mean level of wellbeing and quality of life in this sample of adolescents living in a severely earthquake- affected community. School connectedness, social support from family and friends, and expectations about future quality of life were shown to significantly predict variance in subjective wellbeing, quality of life, and psychological distress. This suggests that there are social and environmental factors that can be targeted to improve holistic mental health and wellbeing in disaster-affected adolescents who have experienced high levels of trauma. Conclusions in this study are limited by the representativeness of the sample, the cross- sectional nature of the study, and potential sampling bias.

Research papers, University of Canterbury Library

The development of Digital City technologies to manage and visualise spatial information has increasingly become a focus of the research community, and application by city authorities. Traditionally, the Geographic Information Systems (GIS) and Building Information Models (BIM) underlying Digital Cities have been used independently. However, integrating GIS and BIM into a single platform provides benefits for project and asset management, and is applicable to a range of issues. One of these benefits is the means to access and analyse large datasets describing the built environment, in order to characterise urban risk from and resilience to natural hazards. The aim of this thesis is to further explore methodologies of integration in two distinct areas. The first, integration through connectivity of heterogeneous datasets where GIS spatial infrastructure data is merged with 3D BIM building data to create a digital twin. Secondly, integration through analysis whereby data from the digital twin are extracted and integrated with computational models. To achieve this, a workflow was developed to identify the required datasets of a digital twin, and develop a process of integrating those datasets through a combination of; semi-autonomous conversion, translation and extension of data; and semantic web and services-based processes. Through use of a designed schema, the data were streamed in a homogenous format in a web-based platform. To demonstrate the value of this workflow with respect to urban risk and resilience, the process was applied to the Taiora: Queen Elizabeth II recreation and sports centre in eastern Christchurch, New Zealand. After integration of as-built GIS and BIM datasets, targeted data extraction was implemented, with outputs tailored for analysis in an infrastructure serviceability loss model, which assessed potable water network performance in the 22nd February 2011 Christchurch Earthquake. Using the same earthquake conditions as the serviceability loss model, performance of infrastructure assets in service at the time of the 22nd February 2011 Christchurch Earthquake was compared to new assets rebuilt at the site, post-earthquake. Due to improved potable water infrastructure resilience resulting from installation of ductile piles, a decrease of 35.5% in the probability of service loss was estimated in the serviceability loss model. To complete the workflow, the results from the external analysis were uploaded to the web-based platform. One of the more significant outcomes from the workflow was the identification of a lack of mandated metadata standards for fittings/valves connecting a building to private laterals. Whilst visually the GIS and BIM data show the building and pipes as connected, the semantic data does not include this connectivity relationship. This has no material impact on the current serviceability loss model as it is not one of the defined parameters. However, a proposed modification to the model would utilise the metadata to further assess the physical connection robustness, and increase the number of variables for estimating probability of service loss. This thesis has made a methodological contribution to urban resilience analysis by demonstrating how readily available up-to-date building and infrastructure data can be integrated, and with tailored extraction from a Digital City platform, be used for disaster impact analysis in an external computational engine, with results in turn imported and visualised in the Digital City platform. The workflow demonstrated that translation and integration of data would be more successful if a regional/national mandate was implemented for the submission of consent documentation in a specified standard BIM format. The results of this thesis have identified that the key to ensuring the success of an integrated tool lies in the initial workflow required to safeguard that all data can be either captured or translated in an interoperable format.

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.

Research papers, University of Canterbury Library

The Canterbury earthquake and aftershock sequence in New Zealand during 2010-2011 subjected the city’s structures to a significant accumulated cyclic demand and raised significant questions regarding the low-cycle fatigue demands imposed upon the structures. There is a significant challenge to quantify the level of cumulative demand imposed on structures and to assess the percentage of a structure's fatigue life that has been consumed as a result of this earthquake sequence. It is important to be able to quantify the cumulative demand to determine how a building will perform in a subsequent large earthquake and inform repair and re-occupancy decisions. This paper investigates the cumulative fatigue demand for a structure located within the Christchurch Central Business District (CBD). Time history analysis and equivalent cycle counting methods are applied across the Canterbury earthquake sequence, using key events from September 4th 2010 and February 22nd , 2011 main shocks. The estimate of the cumulative fatigue demand is then compared to the expected capacity of a case study reinforced concrete bridge pier, to undertake a structure-specific fatigue assessment. The analysis is undertaken to approximate the portion of the structural fatigue capacity that has been consumed, and how much residual capacity remains. Results are assessed for recordings at the four Christchurch central city strong motion recording sites installed by the GeoNet programme, to provide an estimate of variation in results. The computed cyclic demand results are compared to code-based design methods and as assessment of the inelastic displacement demand of the reinforcing steel. Results are also presented in a fragility context where a de minimis (inconsequential), irreparable damage and full fatigue fracture are defined to provide a probabilistic assessment of the fatigue damage incurred. This methodology can provide input into the overall assessment of fatigue demands and residual capacity.

Research papers, University of Canterbury Library

Validating dynamic responses of engineered systems subjected to simulated ground motions is essential in scrutinising the applicability of simulated ground motions for engineering demand analyses. This paper compares the responses of two 3D building models subjected to recorded and simulated ground motions scaled to the NZS1170.5 design response spectrum, in order to evaluate the applicability of simulated ground motions for use in conventional engineering practice in New Zealand. The buildings were designed according to the NZS1170.5 and physically constructed in Christchurch prior to the 2010-2011 Canterbury earthquakes. 40 recorded ground motions from the 22 February 2011 Christchurch earthquake, along with the simulated ground motions for this event from Razafindrakoto et al. (2018) are considered. The seismic responses of the structures are principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, the results indicate a general agreement in seismic demands obtained using the recorded and simulated ensembles of ground motions and provide further evidence that simulated ground motions using state-of-the-art methods can be used in code-based structural performance assessments inplace of, or in combination with, ensembles of recorded ground motions.

Research papers, University of Canterbury Library

This paper investigates the effects of variability in source rupture parameters on site-specific physics-based simulated ground motions, ascertained through the systematic analysis of ground motion intensity measures. As a preliminary study, we consider simulations of the 22 February 2011 Christchurch earthquake using the Graves and Pitarka (2015) methodology. The effects of source variability are considered via a sensitivity study in which parameters (hypocentre location, earthquake magnitude, average rupture velocity, fault geometry and the Brune stress parameter) are individually varied by one standard deviation. The sensitivity of simulated ground motion intensity measures are subsequently compared against observational data. The preliminary results from this study indicate that uncertainty in the stress parameter and the rupture velocity have the most significant effect on the high frequency amplitudes. Conversely, magnitude uncertainty was found to be most influential on the spectral acceleration amplitudes at low frequencies. Further work is required to extend this preliminary study to exhaustively consider more events and to include parameter covariance. The ultimate results of this research will assist in the validation of the overall simulation method’s accuracy in capturing various rupture parameters, which is essential for the use of simulated ground motion models in probabilistic seismic hazard analysis.

Research papers, University of Canterbury Library

During the 2010 - 2011 Canterbury earthquake sequence, extensive liquefaction was observed in many areas of Christchurch city and its surroundings, causing widespread damage to buildings and infrastructure. While existing simplified methods were found to work well in some areas of the city, there were also large areas where these methods did not perform satisfactorily. In some of these cases, researchers have proposed that layers of fine grained material within the soil profile may be responsible for preventing the manifestation of liquefaction. This paper presents preliminary findings on the mechanisms at play when pressure differentials exist across a clay layer. It is found that if the clay layer is unable to distort, then pore fluid is unable to break-through the layer even with relatively high pressures, resulting in dissipation of excess pore pressures by seepage. If the layers are however able to distort, then it is possible for the pore fluid to break through the clay layer, potentially resulting in adverse effects in terms of the severity of liquefaction.

Research papers, University of Canterbury Library

Christchurch Ōtautahi, New Zealand, is a city of myriad waterways and springs. Māori, the indigenous people of New Zealand, have water quality at the core of their cultural values. The city’s rivers include the Avon/Ōtākaro, central to the city centre’s aesthetic appeal since early settlement, and the Heathcote/Ōpāwaho. Both have been degraded with increasing urbanisation. The destructive earthquake sequence that occurred during 2010/11 presented an opportunity to rebuild significant areas of the city. Public consultation identified enthusiasm to rebuild a sustainable city. A sustainable water sensitive city is one where development is constructed with the water environment in mind. Water sensitive urban design applies at all scales and is a holistic concept. In Christchurch larger-scale multi-value stormwater management solutions were incorporated into rapidly developed greenfield sites on the city’s outskirts and in satellite towns, as they had been pre-earthquake. Individual properties on greenfield sites and within the city, however, continued to be constructed without water sensitive features such as rainwater tanks or living roofs. This research uses semi-structured interviews, policy analysis, and findings from local and international studies to investigate the benefits of building-scale WSUD and the barriers that have resulted in their absence. Although several inter-related barriers became apparent, cost, commonly cited as a barrier to sustainable development in general, was strongly represented. However, it is argued that the issue is one of mindset rather than cost. Solutions are proposed, based on international and national experience, that will demonstrate the benefits of adopting water sensitive urban design principles including at the building scale, and thereby build public and political support. The research is timely - there is still much development to occur, and increasing pressures from urban densification, population growth and climate change to mitigate.

Research papers, University of Canterbury Library

A series of undrained cyclic direct simple shear (DSS) tests on specimens of sandy silty soils are used to evaluate the effects of fines content, fabric and layered structure on the liquefaction response of sandy soils containing non-plastic fines. Test soils originate from shallow deposits in Christchurch, New Zealand, where severe and damaging manifestations of liquefaction occurred during the 2010-2011 Canterbury earthquakes. A procedure for reconstituting specimens by water sedimentation is employed. This specimen preparation technique involves first pluviation of soil through a water column, and then application of gentle vibrations to the mould (tapping) to prepare specimens with different initial densities. This procedure is applied to prepare uniform specimens, and layered specimens with a silt layer atop a sand layer. Cyclic DSS tests are performed on water-sedimented specimens of two sands, a silt, and sand-silt mixtures with different fines contents. Through this testing program, effects of density, time of vibration during preparation, fines content, and layered structure on cyclic behaviour and liquefaction resistance are investigated. Additional information necessary to characterise soil behaviour is provided by particle size distribution analyses, index void ratio testing, and Scanning Electronic Microscope imaging. The results of cyclic DSS tests show that, for all tested soils, specimens vibrated for longer period of time have lower void ratios, higher relative density, and greater liquefaction resistance. One of the tested sands undergoes significant increase in relative density and liquefaction resistance following prolonged vibration. The other sand exhibits lower increase in relative density and in liquefaction resistance when vibrated for the same period of time. Liquefaction resistance of sand-silt mixtures prepared using this latter sand shows a correlation with relative density irrespective of fines content. In general, however, magnitudes of changes in liquefaction resistance for given variations in vibration time, relative density, or void ratio vary depending on soils under consideration. Characterization based on maximum and minimum void ratios indicates that tested soils develop different structures as fines are added to their respective host sands. These structures influence initial specimen density, strains during consolidation, cyclic liquefaction resistance, and undrained cyclic response of each soil. The different structures are the outcome of differences in particle size distributions, average particle sizes, and particle shapes of the two host sands and of the different relationships between these properties and those of the silt. Fines content alone does not provide an effective characterization of the effects of these factors. Monotonic DSS tests are also performed on specimens prepared by water sedimentation, and on specimens prepared by moist tamping, to identify the critical state lines of tested soils. These critical state lines provide the basis for an alternative interpretation of cyclic DSS tests results within the critical state framework. It is shown that test results imply general consistency between observed cyclic and monotonic DSS soil response. The effects of specimen layering are scrutinised by comparing DSS test results for uniform and layered specimens of the same soils. In this case, only a limited number of tests is performed, and the range of densities considered for the layered specimens is also limited. Caution is therefore required in interpretation of their results. The liquefaction resistance of layered specimens appears to be influenced by the bottom sand layer, irrespective of the global fines content of the specimen. The presence of a layered structure does not result in significant differences in terms of liquefaction response with respect to uniform sand specimens. Cyclic triaxial data for Christchurch sandy silty soils available from previous studies are used to comparatively examine the behaviour observed in the tests of this study. The cyclic DSS liquefaction resistance of water-sedimented specimens is consistent with cyclic triaxial tests on undisturbed specimens performed by other investigators. The two data sets result in similar liquefaction triggering relationships for these soils. However, stress-strain response characteristics for the two types of specimens are different, and undisturbed triaxial specimen exhibit a slower rate of increase in shear strains compared to water-sedimented DSS specimens. This could be due to the greater influence of fabric of the undisturbed specimens.

Research papers, University of Canterbury Library

The development of Digital City technologies to manage and visualise spatial information has increasingly become a focus of the research community, and application by city authorities. Traditionally, the Geographic Information Systems (GIS) and Building Information Models (BIM) underlying Digital Cities have been used independently. However, integrating GIS and BIM into a single platform provides benefits for project and asset management, and is applicable to a range of issues. One of these benefits is the means to access and analyse large datasets describing the built environment, in order to characterise urban risk from and resilience to natural hazards. The aim of this thesis is to further explore methodologies of integration in two distinct areas. The first, integration through connectivity of heterogeneous datasets where GIS spatial infrastructure data is merged with 3D BIM building data to create a digital twin. Secondly, integration through analysis whereby data from the digital twin are extracted and integrated with computational models. To achieve this, a workflow was developed to identify the required datasets of a digital twin, and develop a process of integrating those datasets through a combination of; semi-autonomous conversion, translation and extension of data; and semantic web and services-based processes. Through use of a designed schema, the data were streamed in a homogenous format in a web-based platform. To demonstrate the value of this workflow with respect to urban risk and resilience, the process was applied to the Taiora: Queen Elizabeth II recreation and sports centre in eastern Christchurch, New Zealand. After integration of as-built GIS and BIM datasets, targeted data extraction was implemented, with outputs tailored for analysis in an infrastructure serviceability loss model, which assessed potable water network performance in the 22nd February 2011 Christchurch Earthquake. Using the same earthquake conditions as the serviceability loss model, performance of infrastructure assets in service at the time of the 22nd February 2011 Christchurch Earthquake was compared to new assets rebuilt at the site, post-earthquake. Due to improved potable water infrastructure resilience resulting from installation of ductile piles, a decrease of 35.5% in the probability of service loss was estimated in the serviceability loss model. To complete the workflow, the results from the external analysis were uploaded to the web-based platform. One of the more significant outcomes from the workflow was the identification of a lack of mandated metadata standards for fittings/valves connecting a building to private laterals. Whilst visually the GIS and BIM data show the building and pipes as connected, the semantic data does not include this connectivity relationship. This has no material impact on the current serviceability loss model as it is not one of the defined parameters. However, a proposed modification to the model would utilise the metadata to further assess the physical connection robustness, and increase the number of variables for estimating probability of service loss. This thesis has made a methodological contribution to urban resilience analysis by demonstrating how readily available up-to-date building and infrastructure data can be integrated, and with tailored extraction from a Digital City platform, be used for disaster impact analysis in an external computational engine, with results in turn imported and visualised in the Digital City platform. The workflow demonstrated that translation and integration of data would be more successful if a regional/national mandate was implemented for the submission of consent documentation in a specified standard BIM format. The results of this thesis have identified that the key to ensuring the success of an integrated tool lies in the initial workflow required to safeguard that all data can be either captured or translated in an interoperable format.

Research papers, University of Canterbury Library

The increase of the world's population located near areas prone to natural disasters has given rise to new ‘mega risks’; the rebuild after disasters will test the governments’ capabilities to provide appropriate responses to protect the people and businesses. During the aftermath of the Christchurch earthquakes (2010-2012) that destroyed much of the inner city, the government of New Zealand set up a new partnership between the public and private sector to rebuild the city’s infrastructure. The new alliance, called SCIRT, used traditional risk management methods in the many construction projects. And, in hindsight, this was seen as one of the causes for some of the unanticipated problems. This study investigated the risk management practices in the post-disaster recovery to produce a specific risk management model that can be used effectively during future post-disaster situations. The aim was to develop a risk management guideline for more integrated risk management and fill the gap that arises when the traditional risk management framework is used in post-disaster situations. The study used the SCIRT alliance as a case study. The findings of the study are based on time and financial data from 100 rebuild projects, and from surveying and interviewing risk management professionals connected to the infrastructure recovery programme. The study focussed on post-disaster risk management in construction as a whole. It took into consideration the changes that happened to the people, the work and the environment due to the disaster. System thinking, and system dynamics techniques have been used due to the complexity of the recovery and to minimise the effect of unforeseen consequences. Based on an extensive literature review, the following methods were used to produce the model. The analytical hierarchical process and the relative importance index have been used to identify the critical risks inside the recovery project. System theory methods and quantitative graph theory have been used to investigate the dynamics of risks between the different management levels. Qualitative comparative analysis has been used to explore the critical success factors. And finally, causal loop diagrams combined with the grounded theory approach has been used to develop the model itself. The study identified that inexperienced staff, low management competency, poor communication, scope uncertainty, and non-alignment of the timing of strategic decisions with schedule demands, were the key risk factors in recovery projects. Among the critical risk groups, it was found that at a strategic management level, financial risks attracted the highest level of interest, as the client needs to secure funding. At both alliance-management and alliance-execution levels, the safety and environmental risks were given top priority due to a combination of high levels of emotional, reputational and media stresses. Risks arising from a lack of resources combined with the high volume of work and the concern that the cost could go out of control, alongside the aforementioned funding issues encouraged the client to create the recovery alliance model with large reputable construction organisations to lock in the recovery cost, at a time when the scope was still uncertain. This study found that building trust between all parties, clearer communication and a constant interactive flow of information, established a more working environment. Competent and clear allocation of risk management responsibilities, cultural shift, risk prioritisation, and staff training were crucial factors. Finally, the post-disaster risk management (PDRM) model can be described as an integrated risk management model that considers how the changes which happened to the environment, the people and their work, caused them to think differently to ease the complexity of the recovery projects. The model should be used as a guideline for recovery systems, especially after an earthquake, looking in detail at all the attributes and the concepts, which influence the risk management for more effective PDRM. The PDRM model is represented in Causal Loops Diagrams (CLD) in Figure 8.31 and based on 10 principles (Figure 8.32) and 26 concepts (Table 8.1) with its attributes.

Research papers, University of Canterbury Library

This thesis examines the closing of Aranui High School in 2016, a low socio-economic secondary school in eastern Christchurch, New Zealand, and reflects on its history through the major themes of innovation and the impact of central government intervention. The history is explored through the leadership of the school principals, and the necessity for constant adaptation by staff to new ways of teaching and learning, driven by the need to accommodate a more varied student population – academically, behaviourally and culturally – than most other schools in wider Christchurch. Several extreme changes, following a neoliberal approach to education policies at a national government level, impacted severely on the school’s ability to thrive and even survive over the 57 years of its existence, with the final impact of the 2010 and 2011 Canterbury earthquakes leading indirectly to Aranui High’s closure. The earthquakes provided the National government with the impetus to advocate for change to education in Christchurch; changes which impacted negatively on many schools in Christchurch, including Aranui High School. The announcement of the closure of Aranui High shocked many staff and students, who were devastated that the school would no longer exist. Aranui High School, Aranui Primary School, Wainoni Primary School and Avondale Primary School were all closed to make way for Haeata Community Campus, a year 1 to 13 school, which was built on the Aranui High site. Aranui High School served the communities of eastern Christchurch for 57 years from 1960 and deserves acknowledgment and remembrance, and my hope is that this thesis will provide a fair representation of the school’s story, including its successes and challenges, while also explaining the reasons behind the eventual closure. This thesis contributes to New Zealand public history and uses mixed research methods to examine Aranui High School’s role as a secondary school in eastern Christchurch. I argue that the closure of Aranui High School in 2016 was an unjustified act by the Ministry of Education.

Research papers, University of Canterbury Library

This article presents a subset of findings from a larger mixed methods CEISMIC1 funded study of twenty teachers’ earthquake experiences and post-earthquake adjustment eighteen months after a fatal earthquake struck Christchurch New Zealand, in the middle of a school day (Geonet Science, 2011; O’Toole & Friesen, 2016). This earthquake was a significant national and personal disaster with teachers’ emotional self-management as first responders being crucial to the students’ immediate safety (O’Toole & Friesen, 2016). At the beginning of their semi-structured interviews conducted eighteen months later, the teachers shared their earthquake stories (O’Toole & Friesen, 2016). They recalled the moment it struck in vivid detail, describing their experiences in terms of what they saw (destruction), heard (sonic boom, screaming children) and felt (fright and fear) as though they were back in that moment similar to flashbulb memory (Brown & Kulik, 1977). Their memories of the early aftermath were similarly vivid (Rubin & Kozin, 1984). This article focuses on how the mood meter (Brackett & Kremenitzer, 2011) was then used (with permission) to further explore the teachers’ perceived affect to enlighten their lived experiences.

Research papers, University of Canterbury Library

Collective identity construction in organisations engaged in an inter-organisational collaboration (IOC), especially temporary IOCs set up in disaster situations, has received scant attention in the organisational studies literature yet collective identity is considered to be important in fostering effective IOC operations. This doctoral study was designed to add to our understanding about how collective identity is constituted throughout the entire lifespan of a particular temporary coopetitive (i.e., simultaneously collaborative and competitive) IOC formed in a post-disaster environment. To achieve this purpose, a qualitative case study of the Stronger Christchurch Infrastructure Rebuild Team (SCIRT), a time-bound coopetition formed to repair the horizontal infrastructure in Christchurch, New Zealand after the devastating 2011 Canterbury earthquakes, was undertaken. Using data from semi-structured interviews, field observations, and organisational documents and other artefacts, an inductive analytic method was employed to explore how internal stakeholders engaged with and co- constructed a collective SCIRT identity and reconciled this with their home organization identity. The analysis revealed that the SCIRT collective identity was an ongoing process, involving the interweaving of social, temporal, material and geospatial dimensions constructed through intersecting cycles of senior managers’ sensegiving and employees’ sensemaking across SCIRT’s five and a half years of existence. Senior management deliberately undertook identity work campaigns that used organisational rituals, artefacts, and spatial design to disseminate and encourage a sense of “we are all SCIRT”. However, there was no common sense of “we-ness”. Identification with SCIRT was experienced differently among different groups of employees and across time. Employees’ differing senses of collective identity were accounted for by their past, present, and anticipated future relationships with their home organisation, and also (re)shaped by the geosocial environments in which they worked. The study supports previous research claiming that collective identity is a process of recursive sensegiving and sensemaking between senior managers and employees. However, it extends the literature by revealing the imbricated nature of collective identity, how members’ sense of “who we are” can change across the entire lifetime of a temporary IOC, and how sociomateriality, temporality, and geosocial effects strongly intervene in employees’ emerging senses of collective identity. Moreover, the study demonstrates how the ongoing identity work can be embedded in a time-space frame that further accentuates the influence of temporality, especially the anticipated future, organisational rituals, artefacts, and the geosocial environment. The study’s primary contribution to theory is a processual model of collective identity that applies specifically to a temporary IOC involving coopetition. In doing so, it represents a more finely nuanced and situational model than existing models. At a practical level, this model suggests that managers need to appreciate that organisational artefacts, rituals, and the prevailing organisational geosocial environment are inextricably linked in processes that can be manipulated to enhance the construction of collective identity.

Research papers, University of Canterbury Library

In recent work on commons and commoning, scholars have argued that we might delink the practice of commoning from property ownership, while paying attention to modes of governance that enable long-term commons to emerge and be sustained. Yet commoning can also occur as a temporary practice, in between and around other forms of use. In this article we reflect on the transitional commoning practices and projects enabled by the Christchurch post-earthquake organisation Life in Vacant Spaces, which emerged to connect and mediate between landowners of vacant inner city demolition sites and temporary creative or entrepreneurial users. While these commons are often framed as transitional or temporary, we argue they have ongoing reverberations changing how people and local government in Christchurch approach common use. Using the cases of the physical space of the Victoria Street site “The Commons” and the virtual space of the Life in Vacant Spaces website, we show how temporary commoning projects can create and sustain the conditions of possibility required for nurturing commoner subjectivities. Thus despite their impermanence, temporary commoning projects provide a useful counter to more dominant forms of urban development and planning premised on property ownership and “permanent” timeframes, in that just as the physical space of the city being opened to commoning possibilities, so too are the expectations and dispositions of the city’s inhabitants, planners, and developers.

Research papers, University of Canterbury Library

Predicting building collapse due to seismic motion is critical in design and more so after a major event. Damaged structures can appear sound, but collapse under following major events. There can thus be significant risk in decision making after a major seismic event concerning the safe occupation of a building or surrounding areas, versus the unknown impact of unknown major aftershocks. Model-based pushover analyses are effective if the structural properties are well understood, which is not valid post-event when this risk information is most useful. This research combines Hysteresis Loop Analysis (HLA) structural health monitoring (SHM) and Incremental Dynamic Analysis (IDA) methods to determine collapse capacity and probability of collapse for a specific structure, at any time, a range of earthquake excitations to ensure robustness. The nonlinear dynamic analysis method presented enables constant updating of building performance predictions using post-event SHM results. The resulting combined methods provide near real-time updating of collapse fragility curves as events progress, quantifying the change of collapse probability or seismic induced losses for decision-making - a novel, higher resolution risk analysis than previously available. The methods are not computationally expensive and there is no requirement for a validated numerical model. Results show significant potential benefits and a clear evolution of risk. They also show clear need for extending SHM toward creating improved predictive models for analysis of subsequent events, where the Christchurch series of 2010-2011 had significant post-event aftershocks after each main event. Finally, the overall method is generalisable to any typical engineering demand parameter.

Research papers, University of Canterbury Library

Recent earthquakes in New Zealand proved that a shift is necessary in the current design practice of structures to achieve better seismic performance. Following such events, the number of new buildings using innovative technical solutions (e.g. base isolation, controlled rocking systems, damping devices, etc.), has increased, especially in Christchurch. However, the application of these innovative technologies is often restricted to medium-high rise buildings due to the maximum benefit to cost ratio. In this context, to address this issue, a multi-disciplinary geo-structural-environmental engineering project funded by the Ministry of Business Innovation and Employment (MBIE) is being carried out at the University of Canterbury. The project aims at developing a foundation system which will improve the seismic performance of medium-density low-rise buildings. Such foundation is characterized by two main elements: 1) granulated tyre rubber mixed with gravelly soils to be placed beneath the structure, with the goal of damping part of the seismic energy before it reaches the superstructure; and 2) a basement raft made of steel-fibre rubberised concrete to enhance the flexibility of the foundation under differential displacement demand. In the first part of this paper, the overarching objectives, scope and methodology of the project will be briefly described. Then, preliminary findings on the materials characterization, i.e., the gravel-rubber mixtures and steel-fibre rubberised concrete mixes, will be presented and discussed with focus on the mechanical behaviour.

Research papers, University of Canterbury Library

One of the failure modes that got the attention of researchers in the 2011 February New Zealand earthquake was the collapse of a key supporting structural wall of Grand Chancellor Hotel in Christchurch which failed in a brittle manner. However, until now this failure mode has been still a bit of a mystery for the researchers in the field of structural engineering. Moreover, there is no method to identify, assess and design the walls prone to such failure mode. Following the recent break through regarding the mechanism of this failure mode based on experimental observations (out-of-plane shear failure), a numerical model that can capture this failure was developed using the FE software DIANA. A comprehensive numerical parametric study was conducted to identify the key parameters contributing to the development of out-of-plane shear failure in reinforced concrete (RC) walls. Based on the earthquake observations, experimental and numerical studies conducted by the authors of this paper, an analytical method to identify walls prone to out-of-plane shear failure that can be used in practice by engineers is proposed. The method is developed based on the key parameters affecting the seismic performance of RC walls prone to out-of-plane shear failure and can be used for both design and assessment purposes

Research papers, University of Canterbury Library

© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Prediction of building collapse due to significant seismic motion is a principle objective of earthquake engineers, particularly after a major seismic event when the structure is damaged and decisions may need to be made rapidly concerning the safe occupation of a building or surrounding areas. Traditional model-based pushover analyses are effective, but only if the structural properties are well understood, which is not the case after an event when that information is most useful. This paper combines hysteresis loop analysis (HLA) structural health monitoring (SHM) and incremental dynamic analysis (IDA) methods to identify and then analyse collapse capacity and the probability of collapse for a specific structure, at any time, a range of earthquake excitations to ensure robustness. This nonlinear dynamic analysis enables constant updating of building performance predictions following a given and subsequent earthquake events, which can result in difficult to identify deterioration of structural components and their resulting capacity, all of which is far more difficult using static pushover analysis. The combined methods and analysis provide near real-time updating of the collapse fragility curves as events progress, thus quantifying the change of collapse probability or seismic induced losses very soon after an earthquake for decision-making. Thus, this combination of methods enables a novel, higher-resolution analysis of risk that was not previously available. The methods are not computationally expensive and there is no requirement for a validated numerical model, thus providing a relatively simpler means of assessing collapse probability immediately post-event when such speed can provide better information for critical decision-making. Finally, the results also show a clear need to extend the area of SHM toward creating improved predictive models for analysis of subsequent events, where the Christchurch series of 2010–2011 had significant post-event aftershocks.

Research papers, University of Canterbury Library

Meeting the Sustainable Development Goals by 2030 involves transformational change in the business of business, and social enterprises can lead the way in such change. We studied Cultivate, one such social enterprise in Christchurch, New Zealand, a city still recovering from the 2010/11 Canterbury earthquakes. Cultivate works with vulnerable youth to transform donated compost into garden vegetables for local restaurants and businesses. Cultivate’s objectives align with SDG concerns with poverty and hunger (1 & 2), social protection (3 & 4), and sustainable human settlements (6 & 11). Like many grant-supported organisations, Cultivate is required to track and measure its progress. Given the organisation’s holistic objectives, however, adequately accounting for its impact reporting is not straightforward. Our action research project engaged Cultivate staff and youth-workers to generate meaningful ways of measuring impact. Elaborating the Community Economy Return on Investment tool (CEROI), we explore how participatory audit processes can capture impacts on individuals, organisations, and the wider community in ways that extend capacities to act collectively. We conclude that Cultivate and social enterprises like it offer insights regarding how to align values and practices, commercial activity and wellbeing in ways that accrue to individuals, organisations and the broader civic-community.

Research papers, University of Canterbury Library

This article explores the scope of small-scale radio to create an auditory geography of place. It focuses on the short-term art radio project The Stadium Broadcast, which was staged in November 2014 in an earthquake-damaged sports stadium in Christchurch, New Zealand. Thousands of buildings and homes in Christchurch have been demolished since the February 22, 2011, earthquake, and by the time of the broadcast the stadium at Lancaster Park had been unused for three years and nine months, and its future was uncertain. The Stadium Broadcast constructed a radio memorial to the Park’s 130-year history through archival recordings, the memories of local people, observation of its current state, and a performed site-specificity. The Stadium Broadcast reflected on the spatiality of radio sounds and transmissions, memory, postdisaster transitionality, and the impermanence of place.

Research papers, University of Canterbury Library

Probabilistic Structural Fire Engineering (PSFE) has been introduced to overcome the limitations of current conventional approaches used for the design of fire-exposed structures. Current structural fire design investigates worst-case fire scenarios and include multiple thermal and structural analyses. PSFE permits buildings to be designed to a level of life safety or economic loss that may occur in future fire events with the help of a probabilistic approach. This thesis presents modifications to the adoption of a Performance-Based Earthquake Engineering (PBEE) framework in Probabilistic Structural Fire Engineering (PSFE). The probabilistic approach runs through a series of interrelationships between different variables, and successive convolution integrals of these interrelationships result in probabilities of different measures. The process starts with the definition of a fire severity measure (FSM), which best relates fire hazard intensity with structural response. It is identified by satisfying efficiency and sufficiency criteria as described by the PBEE framework. The relationship between a fire hazard and corresponding structural response is established by analysis methods. One method that has been used to quantify this relationship in PSFE is Incremental Fire Analysis (IFA). The existing IFA approach produces unrealistic fire scenarios, as fire profiles may be scaled to wide ranges of fire severity levels, which may not physically represent any real fires. Two new techniques are introduced in this thesis to limit extensive scaling. In order to obtain an annual rate of exceedance of fire hazard and structural response for an office building, an occurrence model and an attenuation model for office fires are generated for both Christchurch city and New Zealand. The results show that Christchurch city is 15% less likely to experience fires that have the potential to cause structural failures in comparison to all of New Zealand. In establishing better predictive relationships between fires and structural response, cumulative incident radiation (a fire hazard property) is found to be the most appropriate fire severity measure. This research brings together existing research on various sources of uncertainty in probabilistic structural fire engineering, such as elements affecting post-flashover fire development factors (fuel load, ventilation, surface lining and compartment geometry), fire models, analysis methods and structural reliability. Epistemic uncertainty and aleatory uncertainty are investigated in the thesis by examining the uncertainty associated with modelling and the factors that influence post-flashover development of fires. A survey of 12 buildings in Christchurch in combination with recent surveys in New Zealand produced new statistical data on post-flashover development factors in office buildings in New Zealand. The effects of these parameters on temperature-time profiles are evaluated. The effects of epistemic uncertainty due to fire models in the estimation of structural response is also calculated. Parametric fires are found to have large uncertainty in the prediction of post-flashover fires, while the BFD curves have large uncertainties in prediction of structural response. These uncertainties need to be incorporated into failure probability calculations. Uncertainty in structural modelling shows that the choices that are made during modelling have a large influence on realistic predictions of structural response.

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.