Search

found 9 results

Research papers, University of Canterbury Library

These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.

Research papers, University of Canterbury Library

These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.

Research papers, University of Canterbury Library

These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.

Research papers, University of Canterbury Library

Though rare and unpredictable, earthquakes can and do cause catastrophic destruction when they impact unprepared and vulnerable communities. Extensive damage and failure of vulnerable buildings is a key factor which contributes to seismic-related disasters, making the proactive management of these buildings a necessity to reduce the risk of future disasters arising. The devastating Canterbury earthquakes of 2010 and 2011 brought the urgency of this issue to national importance in New Zealand. The national earthquake-prone building framework came into effect in 2017, obligating authorities to identify existing buildings with the greatest risk of collapse in strong earthquakes and for building owners to strengthen or demolish these buildings within a designated period of time. Though this framework is unique to New Zealand, the challenge of managing the seismic risk of such buildings is common amongst all seismically-active countries. Therefore, looking outward to examine how other jurisdictions legally manage this challenge is useful for reflecting on the approaches taken in New Zealand and understand potential lessons which could be adopted. This research compares the legal framework used to reduce the seismic risk of existing buildings in New Zealand with that of the similarly earthquake-prone countries of Japan and Italy. These legal frameworks are examined with a particular focus on the proactive goal of reducing risk and improving resilience, as is the goal of the international Sendai Framework for Disaster Risk Reduction 2015-2030. The Sendai Framework, which each of the case study countries have committed to and thus have obligations under, forms the legal basis of the need for states to reduce disaster risk in their jurisdictions. In particular, the states’ legal frameworks for existing building risk reduction are examined in the context of the Sendai priorities of understanding disaster risk, strengthening disaster risk governance, and investing in resilience. While this research illustrates that the case study countries have each adopted more proactive risk reduction frameworks in recent years in anticipation of future earthquakes, the frameworks currently focus on a very narrow range of existing buildings and thus are not currently sufficient for promoting the long-term resilience of building stocks. In order to improve resilience, it is argued, legal frameworks need to include a broader range of buildings subject to seismic risk reduction obligations and also to broaden the focus on long-term monitoring of potential risk to buildings.

Research papers, University of Canterbury Library

Floor systems with precast concrete hollow-core units have been largely used in concrete buildings built in New Zealand during the 1980’s. Recent earthquakes, such as the Canterbury sequence in 2010-2011 and the Kaikoura earthquake in 2016, highlighted that this floor system can be highly vulnerable and potentially lead to the floor collapse. A series of research activities are in progress to better understand the seismic performance of floor diaphragms, and this research focuses on examining the performance of hollow core units running parallel to the walls of wall-resisting concrete structures. This study first focused on the development of fragility functions, which can be quickly used to assess likelihood of the hollow-core being able to survive given the buildings design drift, and secondly to determine the expected performance of hollow-core units that run parallel to walls, focusing on the alpha unit running by the wall. Fragility functions are created for a range of different parameters for both vertical dislocation and crack width that can be used as the basis of a quick analysis or loss estimation for the likely impact of hollow-core floors on building vulnerability and risk. This was done using past experimental tests, and the recorded damage. Using these results and the method developed by Baker fragility curves were able to be created for varying crack widths and vertical dislocations. Current guidelines for analysis of hollow-core unit incompatible displacements are based on experimental vertical displacement results from concrete moment resisting frame systems to determine the capacity of hollow-core elements. To investigate the demands on hollow-core units in a wall-based structure, a fibre-element model in the software Seismostruct is created and subject to quasi-static cyclic loading, using elements which are verified from previous experimental tests. It is shown that for hollow-core units running by walls that the 10 mm displacement capacity used for hollow-core units running by a beam is insufficient for members running by walls and that shear analysis should be used. The fibre-element model is used to simulate the seismic demand induced on the floor system and has shown that the shear demand is a function of drift, wall length, hollow-core span, linking slab length and, to a minor extent, wall elongation.

Research papers, The University of Auckland Library

While societal messages can encourage an unhealthy strive for perfection, the notion of embracing individual flaws and openly displaying vulnerabilities can appear foreign and outlandish. However, when fallibility is acknowledged and imperfection embraced, intimate relationships built on foundations of acceptance, trust and understanding can be established. In an architectural context, similar deep-rooted connections can be formed between a people and a place through the retention of layers of historical identity. When a building is allowed to age with blemishes laid bare for all to see, an architectural work can exhibit a sense of 'humanising vulnerability' where the bruises and scars it bears are able to visually communicate its contextual narrative. This thesis explores the notion of designing to capitalise on past decay through revitalisation of the former Wood Brothers Flour Mill in Addington, Christchurch (1891). Known as one of the city's last great industrial buildings, the 130-year-old structure remains hugely impressive due to its sheer size and scale despite being abandoned and subject to vandalism for a number of years. Its condition of obsolescence ensured the retention of visible signs of wear and tear in addition to the extensive damage caused by the 2010-12 Canterbury earthquakes. In offering a challenge to renovation and reconstruction as a means of conservation, this thesis asks if 'doing less' has the potential to 'do more'. How can an understanding of architecture as an ongoing process inform a design approach to celebrate ageing and patina? While the complex is undergoing redevelopment at the time of writing, the design project embraces the condition of the historic buildings in the immediate aftermath of the earthquakes and builds upon the patina of the mill and adjacent flour and grain store in developing a design for their adaptation as a micro-distillery. Research into the traditional Japanese ideology of wabi-sabi and its practical applications form the basis for a regenerative design approach which finds value in imperfection, impermanence and incompleteness. The thesis combines a literature review, precedent review and site analysis together with a design proposal. This thesis shows that adaptive reuse projects can benefit from an active collaboration with the processes of decay. Instead of a mindset where an architectural work is considered the finished article upon completion of construction, an empathetic and sensitive design philosophy is employed in which careful thought is given to the continued preservation and evolution of a structure with the recognition that evidence of past wear, tear, patina and weathering can all contribute positively to a building's future. In this fashion, rather than simply remaining as relics of the past, buildings can allow the landscape of their urban context to shape and mould them to ensure that their architectural experience can continue to be enjoyed by generations to come.

Research papers, University of Canterbury Library

Glazing systems are non-structural elements in a building that, more often than not, appear to be given little consideration in seismic design. Recent experimental work into glazing systems at the University of Canterbury, however, has shown that glazing systems can be very susceptible to serviceability damage, defined as loss of water-tightness. The focus of this paper is to highlight the difference in vulnerability of standard and seismic glazing systems and consider the implications of this for future repair costs and losses. The paper first describes the damage states chosen for glazing units according to the repair strategies required and expected repair costs. This includes three damage states: DS1: Water Leakage, DS2: Gasket Failure and DS3: Frame/Glass Failure. Implementing modern performance-based earthquake engineering, the paper proceeds to highlight a case study comparing costs and expected losses of a standard glazing unit and a seismic glazing unit installed on a case study building. It is shown that the use of seismic glazing units is generally beneficial over time, due to the early onset of serviceability damage in standard glazing units. Finally, the paper provides suggestions for designers aimed at reducing costs related to earthquake induced repairs of glazing.

Research papers, University of Canterbury Library

Climate change and population growth will increase vulnerability to natural and human-made disasters or pandemics. Longitudinal research studies may be adversely impacted by a lack of access to study resources, inability to travel around the urban environment, reluctance of sample members to attend appointments, sample members moving residence and potentially also the destruction of research facilities. One of the key advantages of longitudinal research is the ability to assess associations between exposures and outcomes by limiting the influence of sample selection bias. However, ensuring the validity and reliability of findings in longitudinal research requires the recruitment and retention of respondents who are willing and able to be repeatedly assessed over an extended period of time. This study examined recruitment and retention strategies of 11 longitudinal cohort studies operating during the Christchurch, New Zealand earthquake sequence which began in September 2010, including staff perceptions of the major impediments to study operations during/after the earthquakes and respondents’ barriers to participation. Successful strategies to assist recruitment and retention after a natural disaster are discussed. With the current COVID-19 pandemic, longitudinal studies are potentially encountering some of the issues highlighted in this paper including: closure of facilities, restricted movement of research staff and sample members, and reluctance of sample members to attend appointments. It is possible that suggestions in this paper may be implemented so that longitudinal studies can protect the operation of their research programmes.<br /><br />Key messages<br /><ul><li>Recruitment and retention of longitudinal study participants is challenging following a natural disaster.</li><br /><li>The long-lasting, global effects of the Covid 19 pandemic will increase this problem.</li><br /><li>Longitudinal study researchers should develop protocols to support retention before a disaster occurs.</li><br /><li>Researchers need to be pragmatic and flexible in the design and implementation of their studies.</li></ul>

Research papers, University of Canterbury Library

To reduce seismic vulnerability and the economic impact of seismic structural damage, it is important to protect structures using supplemental energy dissipation devices. Several types of supplemental damping systems can limit loads transferred to structures and absorb significant response energy without sacrificial structural damage. Lead extrusion dampers are one type of supplemental energy dissipation devices. A smaller volumetric size with high force capacities, called high force to volume (HF2V) devices, have been employed in a large series of scaled and full-scaled experiments, as well as in three new structures in Christchurch and San Francisco. HF2V devices have previously been designed using very simple models with limited precision. They are then manufactured, and tested to ensure force capacities match design goals, potentially necessitating reassembly or redesign if there is large error. In particular, devices with a force capacity well above or below a design range can require more testing and redesign, leading to increased economic and time cost. Thus, there is a major need for a modelling methodology to accurately estimate the range of possible device force capacity values in the design phase – upper and lower bounds. Upper and lower bound force capacity estimates are developed from equations in the metal extrusion literature. These equations consider both friction and extrusion forces between the lead and the bulged shaft in HF2V devices. The equations for the lower and upper bounds are strictly functions of device design parameters ensuring easy use in the design phase. Two different sets of estimates are created, leading to estimates for the lower and upper bounds denoted FLB,1, FUB,1, FUB,2, respectively. The models are validated by comparing the bounds with experimental force capacity data from 15 experimental HF2V device tests. All lower bound estimates are below or almost equal to the experimental device forces, and all upper bound estimates are above. Per the derivation, the (FLB,1, FUB,1) pair provide narrower bounds. The (FLB,1, FUB,1) pair also had a mean lower bound gap of -34%, meaning the lower bound was 74% of device force on average, while the mean upper bound gap for FUB,1 was +23%. These are relatively tight bounds, within ~±2 SE of device manufacture, and can be used as a guide to ensure device forces are in range for the actual design use when manufactured. Therefore, they provide a useful design tool.