On 14 November 2016, the Mw 7.8 Kaikōura earthquake caused widespread damage along the east coast of the South Island, New Zealand. Kaikōura town itself was isolated from the rest of the country by landslides blocking off major roads. While impacts from the Kaikōura earthquake on large, urban population centres have been generally well documented, this thesis aims to fill gaps in academic knowledge regarding small rural towns. This thesis investigates what, where and when critical infrastructure and lifeline service disruption occurred following the 2016 Kaikōura earthquake in a selection of small towns, and how the communities in these areas adapted to disruption. Following a robust review of literature and news media, four small rural towns were selected from North Canterbury (Culverden & Waiau) and Marlborough (Seddon & Ward) in the South Island, New Zealand. Semi-structured interview sessions with a special focus on these towns were held with infrastructure managers, emergency response and recovery officials, and organisation leaders with experience or expertise in the 2016 Kaikōura earthquake. Findings were supplemented with emergency management situation reports to produce hazard maps and infrastructure exposure maps. A more detailed analysis was conducted for Waiau involving interdependence analyses and a level of service timeline for select lifeline services. The earthquake impacted roads by blocking them with landslides, debris and surface rupture. Bridges where shaken off their abutments, breaking infrastructure links such as fibre landlines as they went. Water supplies and other forms of infrastructure relied heavily on the level of service of roads, as rough rural terrain left few alternatives. Adapting to an artificial loss of road service, some Waiau locals created their own detour around a road cordon in order to get home to family and farms. Performance of dwellings was tied to socioeconomic factors as much as proximity to the epicentre. Farmers who lost water access pulled out fences to allow stock to drink from rivers. Socioeconomic differences between farmland and township residents also contributed to resilience variations between the towns assessed in this study. Understanding how small rural towns respond and adapt to disaster allows emergency management officials and policy to be well informed and flexible with planning for multiple size classes of towns.
In the wake of the Canterbury earthquakes, one of the biggest threats to our heritage buildings is the risk of earthquakes and the associated drive to strengthen or demolish buildings. Can Small Town NZ balance the requirements of the EQPB legislation and economic realities of their places? The government’s priority is on safety of building occupants and citizens in the streets. However, maintaining and strengthening privately-owned heritage buildings is often cost prohibitive. Hence, heritage regulation has frequently been perceived as interfering with private property rights, especially when heritage buildings occupy a special place in the community becoming an important place for people (i.e. public benefits are larger than private). We investigate several case studies where building owners have been given green light to demolish heritage listed buildings to make way for modern developments. In two of the case studies developers provided evidence of unaffordable strengthening costs. A new trend that has emerged is a voluntary offer of contributing to an incentive fund to assist with heritage preservation of other buildings. This is a unique example where private owners offer incentives (via council controlled organisations) instead of it being purely the domain of the central or local governments.
Disaster recovery involves the restoration, repair and rejuvenation of both hard and soft infrastructure. In this report we present observationsfrom seven case studies of collaborative planning from post-earthquake Canterbury, each of which was selected as a means of better understanding ‘soft infrastructure for hard times’. Though our investigation is located within a disaster recovery context, we argue that the lessons learned are widely applicable. Our seven case studies highlighted that the nature of the planning process or journey is as important as the planning objective or destination. A focus on the journey can promote positive outcomes in and of itself through building enduring relationships, fostering diverse leaders, developing new skills and capabilities, and supporting translation and navigation. Collaborative planning depends as much upon emotional intelligence as it does technical competence, and we argue that having a collaborative attitude is more important than following prescriptive collaborative planning formulae. Being present and allowing plenty of time are also key. Although deliberation is often seen as an improvement on technocratic and expertdominated decision-making models, we suggest that the focus in the academic literature on communicative rationality and discursive democracy has led us to overlook other more active forms of planning that occur in various sites and settings. Instead, we offer an expanded understanding of what planning is, where it happens and who is involved. We also suggest more attention be given to values, particularly in terms of their role as a compass for navigating the terrain of decision-making in the collaborative planning process. We conclude with a revised model of a (collaborative) decision-making cycle that we suggest may be more appropriate when (re)building better homes, towns and cities.
Christchurch Ōtautahi, New Zealand, is a city of myriad waterways and springs. Māori, the indigenous people of New Zealand, have water quality at the core of their cultural values. The city’s rivers include the Avon/Ōtākaro, central to the city centre’s aesthetic appeal since early settlement, and the Heathcote/Ōpāwaho. Both have been degraded with increasing urbanisation. The destructive earthquake sequence that occurred during 2010/11 presented an opportunity to rebuild significant areas of the city. Public consultation identified enthusiasm to rebuild a sustainable city. A sustainable water sensitive city is one where development is constructed with the water environment in mind. Water sensitive urban design applies at all scales and is a holistic concept. In Christchurch larger-scale multi-value stormwater management solutions were incorporated into rapidly developed greenfield sites on the city’s outskirts and in satellite towns, as they had been pre-earthquake. Individual properties on greenfield sites and within the city, however, continued to be constructed without water sensitive features such as rainwater tanks or living roofs. This research uses semi-structured interviews, policy analysis, and findings from local and international studies to investigate the benefits of building-scale WSUD and the barriers that have resulted in their absence. Although several inter-related barriers became apparent, cost, commonly cited as a barrier to sustainable development in general, was strongly represented. However, it is argued that the issue is one of mindset rather than cost. Solutions are proposed, based on international and national experience, that will demonstrate the benefits of adopting water sensitive urban design principles including at the building scale, and thereby build public and political support. The research is timely - there is still much development to occur, and increasing pressures from urban densification, population growth and climate change to mitigate.