Search

found 2 results

Research papers, University of Canterbury Library

Our poster will present on-going QuakeCoRE-founded work on strong motion seismology for Dunedin-Mosgiel area, focusing on ground motion simulations for Dunedin Central Business District (CBD). Source modelling and ground motion simulations are being carried out using the SCEC (Southern California Earthquakes Center) Broad Band simulation Platform (BBP). The platform computes broadband (0-10 Hz) seismograms for earthquakes and was first implemented at the University of Otago in 2016. As large earthquakes has not been experienced in Dunedin in the time of period of instrumental recording, user-specified scenario simulations are of great value. The Akatore Fault, the most active fault in Otago and closest major fault to Dunedin, is the source focused on in the present study. Simulations for various Akatore Fault source scenarios are run and presented. Path and site effects are key components considered in the simulation process. A 1D shear wave velocity profile is required by SCEC BBP, and this is being generated to represent the Akatore-to-CBD path and site within the BBP. A 3D shear velocity model, with high resolution within Dunedin CBD, is being developed in parallel with this study (see Sangster et al. poster). This model will be the basis for developing a 3D shear wave velocity model for greater Dunedin-Mosgiel area for future ground motion simulations, using Canterbury software (currently under development).

Research papers, The University of Auckland Library

The Screw Driving Sounding (SDS) method developed in Japan is a relatively new insitu testing technique to characterise soft shallow sites, typically those required for residential house construction. An SDS machine drills a rod into the ground in several loading steps while the rod is continuously rotated. Several parameters, such as torque, load and speed of penetration, are recorded at every rotation of the rod. The SDS method has been introduced in New Zealand, and the results of its application for characterising local sites are discussed in this study. A total of 164 SDS tests were conducted in Christchurch, Wellington and Auckland to validate/adjust the methodologies originally developed based on the Japanese practice. Most of the tests were conducted at sites where cone penetration tests (CPT), standard penetration tests (SPT) and borehole logs were available; the comparison of SDS results with existing information showed that the SDS method has great potential as an in-situ testing method for classifying the soils. By compiling the SDS data from 3 different cities and comparing them with the borehole logs, a soil classification chart was generated for identifying the soil type based on SDS parameters. Also, a correlation between fines content and SDS parameters was developed and a procedure for estimating angle of internal friction of sand using SDS parameters was investigated. Furthermore, a correlation was made between the tip resistance of the CPT and the SDS data for different percentages of fines content. The relationship between the SPT N value and a SDS parameter was also proposed. This thesis also presents a methodology for identifying the liquefiable layers of soil using SDS data. SDS tests were performed in both liquefied and non-liquefied areas in Christchurch to find a representative parameter and relationship for predicting the liquefaction potential of soil. Plots were drawn of the cyclic shear stress ratios (CSR) induced by the earthquakes and the corresponding energy of penetration during SDS tests. By identifying liquefied or unliquefied layers using three different popular CPT-based methods, boundary lines corresponding to the various probabilities of liquefaction happening were developed for different ranges of fines contents using logistic regression analysis, these could then be used for estimating the liquefaction potential of soil directly from the SDS data. Finally, the drilling process involved in screw driving sounding was simulated using Abaqus software. Analysis results proved that the model successfully captured the drilling process of the SDS machine in sand. In addition, a chart to predict peak friction angles of sandy sites based on measured SDS parameters for various vertical effective stresses was formulated. As a simple, fast and economical test, the SDS method can be a reliable alternative insitu test for soil and site characterisation, especially for residential house construction.