Buildings subject to earthquake shaking will tend to move not only horizontally but also rotate in plan. In-plan rotation is known as “building torsion” and it may occur for a variety of reasons, including stiffness and strength eccentricity and/or torsional effects from ground motions. Methods to consider torsion in structural design standards generally involve analysis of the structure in its elastic state. This is despite the fact that the structural elements can yield, thereby significantly altering the building response and the structural element demands. If demands become too large, the structure may collapse. While a number of studies have been conducted into the behavior of structures considering inelastic building torsion, there appears to be no consensus that one method is better than another and as a result, provisions within current design standards have not adopted recent proposals in the literature. However, the Canterbury Earthquakes Royal Commission recently made the recommendation that provisions to account for inelastic torsional response of buildings be introduced within New Zealand building standards. Consequently, this study examines how and to what extent the torsional response due to system eccentricity may affect the seismic performance of a building and considers what a simple design method should account for. It is concluded that new methods should be simple, be applicable to both the elastic and inelastic range of response, consider bidirectional excitation and include guidance for multi-story systems.
Results from a series of 1D seismic effective stress analyses of natural soil deposits from Christchurch are summarized. The analysed soil columns include sites whose performance during the 2010-2011 Canterbury earthquakes varied significantly, from no liquefaction manifestation at the ground surface to very severe liquefaction, in which case a large area of the site was covered by thick soil ejecta. Key soil profile characteristics and response mechanisms affecting the severity of surface liquefaction manifestation and subsequent damage are explored. The influence of shaking intensity on the triggering and contribution of these mechanisms is also discussed. Careful examination of the results highlights the importance of considering the deposit as a whole, i.e. a system of layers, including interactions between layers in the dynamic response and through pore water pressure redistribution and water flow.
Hybrid broadband simulation methods typically compute high-frequency portion of ground-motions using a simplified-physics approach (commonly known as “stochastic method”) using the same 1D velocity profile, anelastic attenuation profile and site-attenuation (κ0) value for all sites. However, these parameters relating to Earth structure are known to vary spatially. In this study we modify this conventional approach for high-frequency ground-shaking by using site-specific input parameters (referred to as “site-specific”) and analyze improvements over using same parameters for all sites (referred to as “generic”). First, we theoretically understand how different 1D velocity profiles, anelastic attenuation profiles and site-attenuation (κ0) values affects the Fourier Acceleration Spectrum (FAS). Then, we apply site-specific method to simulate 10 events from the 2010-2011 Canterbury earthquake sequence to assess performance against the generic approach in predicting recorded ground-motions. Our initial results suggest that the site-specific method yields a lower simulation standard deviation than generic case.
The 2010-2011 Canterbury earthquake sequence, and the resulting extensive data sets on damaged buildings that have been collected, provide a unique opportunity to exercise and evaluate previously published seismic performance assessment procedures. This poster provides an overview of the authors’ methodology to perform evaluations with two such assessment procedures, namely the P-58 guidelines and the REDi Rating System. P-58, produced by the Federal Emergency Management Agency (FEMA) in the United States, aims to facilitate risk assessment and decision-making by quantifying earthquake ground shaking, structural demands, component damage and resulting consequences in a logical framework. The REDi framework, developed by the engineering firm ARUP, aids stakeholders in implementing resilience-based earthquake design. Preliminary results from the evaluations are presented. These have the potential to provide insights on the ability of the assessment procedures to predict impacts using “real-world” data. However, further work remains to critically analyse these results and to broaden the scope of buildings studied and of impacts predicted.
A review of the literature showed the lack of a truly effective damage avoidance solution for timber or hybrid timber moment resisting frames (MRFs). Full system damage avoidance selfcentring behaviour is difficult to achieve with existing systems due to damage to the floor slab caused by beam-elongation. A novel gravity rocking, self-centring beam-column joint with inherent and supplemental friction energy dissipation is proposed for low-medium rise buildings in all seismic zones where earthquake actions are greater than wind. Steel columns and timber beams are used in the hybrid MRF such that both the beam and column are continuous thus avoiding beam-elongation altogether. Corbels on the columns support the beams and generate resistance and self-centring through rocking under the influence of gravity. Supplemental friction sliders at the top of the beams resist sliding of the floor whilst dissipating energy as the floor lifts on the corbels and returns. 1:20 scale tests of 3-storey one-by-two bay building based on an earlier iteration of the proposed concept served as proof-of-concept and highlighted areas for improvement. A 1:5 scale 3-storey one-by-one bay building was subsequently designed. Sub-assembly tests of the beam-top asymmetric friction sliders demonstrated repeatable hysteresis. Quasi-static tests of the full building demonstrated a ‘flat bottomed’ flag-shaped hysteresis. Shake table tests to a suite of seven earthquakes scaled for Wellington with site soil type D to the serviceability limit state (SLS), ultimate limit state (ULS) and maximum credible event (MCE) intensity corresponding to an average return period of 25, 500 and 2500 years respectively were conducted. Additional earthquake records from the 22 February 2011 Christchurch earthquakes we included. A peak drift of 0.6%, 2.5% and 3.8% was reached for the worst SLS, ULS and MCE earthquake respectively whereas a peak drift of 4.5% was reached for the worst Christchurch record for tests in the plane of the MRF. Bi-directional tests were also conducted with the building oriented at 45 degrees on the shake table and the excitation factored by 1.41 to maintain the component in the direction of the MRF. Shear walls with friction slider hold-downs which reached similar drifts to the MRF were provided in the orthogonal direction. Similar peak drifts were reached by the MRF in the bi-directional tests, when the excitation was amplified as intended. The building self-centred with a maximum residual drift of 0.06% in the dynamic tests and demonstrated no significant damage. The member actions were magnified by up to 100% due to impact upon return of the floor after uplift when the peak drift reached 4.5%. Nonetheless, all of the members and connections remained essentially linearelastic. The shake table was able to produce a limited peak velocity of 0.275 m/s and this limited the severity of several of the ULS, MCE and Christchurch earthquakes, especially the near-field records with a large velocity pulse. The full earthquakes with uncapped velocity were simulated in a numerical model developed in SAP2000. The corbel supports were modelled with the friction isolator link element and the top sliders were modelled with a multi-linear plastic link element in parallel with a friction spring damper. The friction spring damper simulated the increase in resistance with increasing joint rotation and a near zero return stiffness, as exhibited by the 1:5 scale test building. A good match was achieved between the test quasi-static global force-displacement response and the numerical model, except a less flat unloading curve in the numerical model. The peak drift from the shake table tests also matched well. Simulations were also run for the full velocity earthquakes, including vertical ground acceleration and different floor imposed load scenarios. Excessive drift was predicted by the numerical model for the full velocity near-field earthquakes at the MCE intensity and a rubber stiffener for increasing the post joint-opening stiffness was found to limit the drift to 4.8%. Vertical ground acceleration had little effect on the global response. The system generates most of its lateral resistance from the floor weight, therefore increasing the floor imposed load increased the peak drift, but less than it would if the resistance of the system did not increase due to the additional floor load. A seismic design procedure was discussed under the framework of the existing direct displacement-based design method. An expression for calculating the area-based equivalent viscous damping (EVD) was derived and a conservative correction factor of 0.8 was suggested. A high EVD of up to about 15% can be achieved with the proposed system at high displacement ductility levels if the resistance of the top friction sliders is maximised without compromising reliable return of the floor after uplift. Uniform strength joints with an equal corbel length up the height of the building and similar inter-storey drifts result in minimal relative inter-floor uplift, except between the first floor and ground. Guidelines for detailing the joint for damage avoidance including bi-directional movement were also developed.
Nowadays the telecommunication systems’ performance has a substantial impact on our lifestyle. Their operationality becomes even more substantial in a post-disaster scenario when these services are used in civil protection and emergency plans, as well as for the restoration of all the other critical infrastructure. Despite the relevance of loss of functionality of telecommunication networks on seismic resilience, studies on their performance assessment are few in the literature. The telecommunication system is a distributed network made up of several components (i.e. ducts, utility holes, cabinets, major and local exchanges). Given that these networks cover a large geographical area, they can be easily subjected to the effects of a seismic event, either the ground shaking itself, or co-seismic events such as liquefaction and landslides. In this paper, an analysis of the data collected after the 2010-2011 Canterbury Earthquake Sequence (CES) and the 2016 Kaikoura Earthquake in New Zealand is conducted. Analysing these data, information gaps are critically identified regarding physical and functional failures of the telecommunication components, the timeline of repair/reconstruction activities and service recovery, geotechnical tests and land planning maps. Indeed, if these missing data were presented, they could aid the assessment of the seismic resilience. Thus, practical improvements in the post-disaster collection from both a network and organisational viewpoints are proposed through consultation of national and international researchers and highly experienced asset managers from Chorus. Finally, an outline of future studies which could guide towards a more resilient seismic performance of the telecommunication network is presented.