Search

found 12 results

Research papers, University of Canterbury Library

This paper concerns the explicit consideration of near-fault directivity in conventional ground motion prediction models, and its implication for probabilistic seismic hazard analysis (PSHA) in New Zealand. The proposed approach utilises recently developed models by Shahi & Baker (2011), which account for both the 'narrowband' nature of the directivity pulse on spectral ordinates, and the probability of pulse occurrence at the site of interest. Furthermore, in order to correctly consider directivity, distributed seismicity sources are considered as finite-faults, as opposed to their (incorrect) conventional treatment as point-sources. The significance of directivity on hazard analysis results is illustrated for various vibration periods at generic sites located in Christchurch and Otira, two locations whose seismic hazard is comprised of notably different seismic sources. When compared to the PSHA results considering directivity and distributed seismicity as finite faults, it is shown that the NZS1170.5:2004 directivity factor is notably unconservative for all vibration periods in Otira (i.e. high seismic hazard region); and unconservative for Christchurch at short-to-moderate vibration periods ( < 3s); but conservative at long periods ( > 4s).

Research papers, University of Canterbury Library

Since the early 1980s seismic hazard assessment in New Zealand has been based on Probabilistic Seismic Hazard Analysis (PSHA). The most recent version of the New Zealand National Seismic Hazard Model, a PSHA model, was published by Stirling et al, in 2012. This model follows standard PSHA principals and combines a nation-wide model of active faults with a gridded point-source model based on the earthquake catalogue since 1840. These models are coupled with the ground-motion prediction equation of McVerry et al (2006). Additionally, we have developed a time-dependent clustering-based PSHA model for the Canterbury region (Gerstenberger et al, 2014) in response to the Canterbury earthquake sequence. We are now in the process of revising that national model. In this process we are investigating several of the fundamental assumptions in traditional PSHA and in how we modelled hazard in the past. For this project, we have three main focuses: 1) how do we design an optimal combination of multiple sources of information to produce the best forecast of earthquake rates in the next 50 years: can we improve upon a simple hybrid of fault sources and background sources, and can we better handle the uncertainties in the data and models (e.g., fault segmentation, frequency-magnitude distributions, time-dependence & clustering, low strain-rate areas, and subduction zone modelling)? 2) developing revised and new ground-motion predictions models including better capturing of epistemic uncertainty – a key focus in this work is developing a new strong ground motion catalogue for model development; and 3) how can we best quantify if changes we have made in our modelling are truly improvements? Throughout this process we are working toward incorporating numerical modelling results from physics based synthetic seismicity and ground-motion models.

Research papers, University of Canterbury Library

Structural engineering is facing an extraordinarily challenging era. These challenges are driven by the increasing expectations of modern society to provide low-cost, architecturally appealing structures which can withstand large earthquakes. However, being able to avoid collapse in a large earthquake is no longer enough. A building must now be able to withstand a major seismic event with negligible damage so that it is immediately occupiable following such an event. As recent earthquakes have shown, the economic consequences of not achieving this level of performance are not acceptable. Technological solutions for low-damage structural systems are emerging. However, the goal of developing a low-damage building requires improving the performance of both the structural skeleton and the non-structural components. These non-structural components include items such as the claddings, partitions, ceilings and contents. Previous research has shown that damage to such items contributes a disproportionate amount to the overall economic losses in an earthquake. One such non-structural element that has a history of poor performance is the external cladding system, and this forms the focus of this research. Cladding systems are invariably complicated and provide a number of architectural functions. Therefore, it is important than when seeking to improve their seismic performance that these functions are not neglected. The seismic vulnerability of cladding systems are determined in this research through a desktop background study, literature review, and postearthquake reconnaissance survey of their performance in the 2010 – 2011 Canterbury earthquake sequence. This study identified that precast concrete claddings present a significant life-safety risk to pedestrians, and that the effect they have upon the primary structure is not well understood. The main objective of this research is consequently to better understand the performance of precast concrete cladding systems in earthquakes. This is achieved through an experimental campaign and numerical modelling of a range of precast concrete cladding systems. The experimental campaign consists of uni-directional, quasi static cyclic earthquake simulation on a test frame which represents a single-storey, single-bay portion of a reinforced concrete building. The test frame is clad with various precast concrete cladding panel configurations. A major focus is placed upon the influence the connection between the cladding panel and structural frame has upon seismic performance. A combination of experimental component testing, finite element modelling and analytical derivation is used to develop cladding models of the cladding systems investigated. The cyclic responses of the models are compared with the experimental data to evaluate their accuracy and validity. The comparison shows that the cladding models developed provide an excellent representation of real-world cladding behaviour. The cladding models are subsequently applied to a ten-storey case-study building. The expected seismic performance is examined with and without the cladding taken into consideration. The numerical analyses of the case-study building include modal analyses, nonlinear adaptive pushover analyses, and non-linear dynamic seismic response (time history) analyses to different levels of seismic hazard. The clad frame models are compared to the bare frame model to investigate the effect the cladding has upon the structural behaviour. Both the structural performance and cladding performance are also assessed using qualitative damage states. The results show a poor performance of precast concrete cladding systems is expected when traditional connection typologies are used. This result confirms the misalignment of structural and cladding damage observed in recent earthquake events. Consequently, this research explores the potential of an innovative cladding connection. The outcomes from this research shows that the innovative cladding connection proposed here is able to achieve low-damage performance whilst also being cost comparable to a traditional cladding connection. It is also theoretically possible that the connection can provide a positive value to the seismic performance of the structure by adding addition strength, stiffness and damping. Finally, the losses associated with both the traditional and innovative cladding systems are compared in terms of tangible outcomes, namely: repair costs, repair time and casualties. The results confirm that the use of innovative cladding technology can substantially reduce the overall losses that result from cladding damage.

Research papers, University of Canterbury Library

Generalized conditional intensity measure (GCIM) method is extended to ground motion selection for scenario ruptures. Using different rupture scenarios and site conditions, various aspects of the GCIM methodology are scrutinized, including: (i) implementation of different weight vectors and the composition of the IM vector; (ii) quantifying the importance of replicate selections for different number of desired ground motions; and (iii) the effect of considering bounds on the implicit causal parameters of the prospective ground motions. Using the extended methodology, representative ground motion ensembles for several major earthquake scenarios in New Zealand are developed. Cases considered include representative ground motions for the occurrence of Alpine, Hope, and Porters Pass earthquakes in Christchurch city, and the occurrence of Wellington, Wairarapa, and Ohariu fault ruptures in Wellington city. Challenges in the development of ground motion ensembles for subduction zone earthquakes are also highlighted. The selected scenario-based ground motion sets can be used to complement ground motions which are often selected in conjunction with probabilistic seismic hazard analysis, in order to understand the performance of structures for the question “what if this fault ruptures?”

Research papers, University of Canterbury Library

Generalized conditional intensity measure (GCIM) method is extended to ground motion selection for scenario ruptures. Using different rupture scenarios and site conditions, various aspects of the GCIM methodology are scrutinized, including: (i) implementation of different weight vectors and the composition of the IM vector; (ii) quantifying the importance of replicate selections for different number of desired ground motions; and (iii) the effect of considering bounds on the implicit causal parameters of the prospective ground motions. Using the extended methodology, representative ground motion ensembles for several major earthquake scenarios in New Zealand are developed. Cases considered include representative ground motions for the occurrence of Alpine, Hope, and Porters Pass earthquakes in Christchurch city, and the occurrence of Wellington, Wairarapa, and Ohariu fault ruptures in Wellington city. Challenges in the development of ground motion ensembles for subduction zone earthquakes are also highlighted. The selected scenario-based ground motion sets can be used to complement ground motions which are often selected in conjunction with probabilistic seismic hazard analysis, in order to understand the performance of structures for the question “what if this fault ruptures?”

Research papers, University of Canterbury Library

This presentation discusses recent empirical ground motion modelling efforts in New Zealand. Firstly, the active shallow crustal and subduction interface and slab ground motion prediction equations (GMPEs) which are employed in the 2010 update of the national seismic hazard model (NSHM) are discussed. Other NZ-specific GMPEs developed, but not incorporated in the 2010 update are then discussed, in particular, the active shallow crustal model of Bradley (2010). A brief comparison of the NZ-specific GMPEs with the near-source ground motions recorded in the Canterbury earthquakes is then presented, given that these recordings collectively provide a significant increase in observed strong motions in the NZ catalogue. The ground motion prediction expert elicitation process that was undertaken following the Canterbury earthquakes for active shallow crustal earthquakes is then discussed. Finally, ongoing GMPE-related activities are discussed including: ground motion and metadata database refinement, improved site characterization of strong motion station, and predictions for subduction zone earthquakes.

Research papers, University of Canterbury Library

Using case studies from the 2010-2011 Canterbury, New Zealand earthquake sequence, this study assesses the accuracies of paleoliquefaction back-analysis methods and explores the challenges, techniques, and uncertainties associated with their application. While liquefaction-based back-analyses have been widely used to estimate the magnitudes of paleoearthquakes, their uncertain efficacies continue to significantly affect the computed seismic hazard in regions where they are relied upon. Accordingly, their performance is evaluated herein using liquefaction data from modern earthquakes with known magnitudes. It is shown that when the earthquake source location and mechanism are known, back-analysis methods are capable of accurately deriving seismic parameters from liquefaction evidence. However, because the source location and mechanism are often unknown in paleoseismic studies, and because accurate interpretation is shown to be more difficult in such cases, new analysis techniques are proposed herein. An objective parameter is proposed to geospatially assess the likelihood of any provisional source location, enabling an analyst to more accurately estimate the magnitude of a liquefaction-inducing paleoearthquake. This study demonstrates the application of back-analysis methods, provides insight into their potential accuracies, and provides a framework for performing paleoliquefaction analyses worldwide.

Research papers, University of Canterbury Library

The Canterbury earthquakes of 2010 and 2011 have shone the spotlight on a number of tax issues. These issues, and in particular lessons learned from them, will be relevant for revenue authorities, policymakers and taxpayers alike in the broader context of natural disasters. Issues considered by this paper include the tax treatment of insurance monies. For example, building owners will receive pay-outs for destroyed assets and buildings which have been depreciated. Where the insurance payment is more than the adjusted tax value, there will be a taxable "gain on sale" (or depreciation recovery income). If the building owner uses those insurance proceeds to purchase a replacement asset, legislative amendments specifically enacted following the earthquakes provide that rollover relief of the depreciation recovery income is available. The tax treatment of expenditure to seismically strengthen a building is another significant issue faced by building owners. Case law has determined that this expenditure will usually be capital expenditure. In the past such costs could be capitalised to the building and depreciated accordingly. However, since the 2011-2012 income year owners have been prohibited from claiming depreciation on buildings and therefore currently no deduction is available for such strengthening expenditure (whether immediate or deferred). This has significant potential implications for landlords throughout New Zealand facing significant seismic retrofit costs. Incentives, or some form of financial support, whether delivered through the tax system or some other mechanism may be required. International Financial Reporting Standards (IFRS) require insurance proceeds, including reimbursement for expenditure of a capital nature, be reported as income while expenditure itself is not recorded as a current period expense. This has the effect of overstating current income and creating a larger variation between reported income for accounting and taxation purposes. Businesses have obligations to maintain certain business records for tax purposes. Reconstructing records destroyed by a natural disaster depends on how the information was originally stored. The earthquakes have demonstrated the benefits of ‘off-site’ (outside Canterbury) storage, in particular electronic storage. This paper considers these issues and the Inland Revenue Department (Inland Revenue) Standard Practice Statement which deals with inter alia retention of business records in electronic format and offshore record storage. Employer provided accommodation is treated as income to the benefitting employee. A recent amendment to the Income Tax Act 2007 retrospectively provides that certain employer provided accommodation is exempt from tax. The time aspect of these rules is extended where the employee is involved in the Canterbury rebuild and comes from outside the region.

Research papers, University of Canterbury Library

This paper develops representative ground motion ensembles for several major earthquake scenarios in New Zealand. Cases considered include representative ground motions for the occurrence of Alpine, Hope, and Porters Pass earthquakes in Christchurch, and the occurrence of Wellington, Wairarapa, and Ohariu, fault ruptures in Wellington. Challenges in the development of ground motion ensembles for subduction zone earthquakes are also highlighted. The ground motions are selected based on the generalized conditional intensity measure (GCIM) approach, ensuring that the ground motion ensembles represent both the mean, and distribution of ground motion intensity which such scenarios could impose. These scenario-based ground motion sets can be used to complement ground motions which are often selected in conjunction with probabilistic seismic hazard analysis, in order to understand the performance of structures for the question “what if this fault ruptures?”

Research papers, The University of Auckland Library

The progressive damage and subsequent demolition of unreinforced masonry (URM) buildings arising from the Canterbury earthquake sequence is reported. A dataset was compiled of all URM buildings located within the Christchurch CBD, including information on location, building characteristics, and damage levels after each major earthquake in this sequence. A general description of the overall damage and the hazard to both building occupants and to nearby pedestrians due to debris falling from URM buildings is presented with several case study buildings used to describe the accumulation of damage over the earthquake sequence. The benefit of seismic improvement techniques that had been installed to URM buildings is shown by the reduced damage ratios reported for increased levels of retrofit. Demolition statistics for URM buildings in the Christchurch CBD are also reported and discussed. VoR - Version of Record

Research papers, The University of Auckland Library

The Catholic Cathedral is classified as a category 1 listed heritage building constructed largely of unreinforced stone masonry, and was significantly damaged in the recent Canterbury earthquakes of 2010 and 2011. In the 2010 event the building presented slight to moderta damage, meanwhile in the 2011 one experienced ground shaking in excess of its capacity leading to block failures and partial collapse of parts of the building, which left the building standing but still posing a significant hazard. In this paper we discuss the approach to develop the earthquake analysis of the building by 3D numerical simulations, and the results are compared/calibrated with the observed damage of the 2010 earthquake. Very accurate records were obtained during both earthquakes due to a record station located least than 80 m of distance from the building and used in the simulations. Moreover it is included in the model the soil structure interaction because it was observed that the ground and foundation played an important role on the seismic behavior of the structure. A very good agreement was found between the real observed damage and the nonlinear dynamic simulations described trough inelastic deformation (cracking) and building´s performance.

Research papers, University of Canterbury Library

Case study analysis of the 2010-2011 Canterbury Earthquake Sequence (CES), which particularly impacted Christchurch City, New Zealand, has highlighted the value of practical, standardised and coordinated post-earthquake geotechnical response guidelines for earthquake-induced landslides in urban areas. The 22nd February 2011 earthquake, the second largest magnitude event in the CES, initiated a series of rockfall, cliff collapse and loess failures around the Port Hills which severely impacted the south-eastern part of Christchurch. The extensive slope failure induced by the 22nd February 200 earthquake was unprecedented; and ground motions experienced significantly exceeded the probabilistic seismic hazard model for Canterbury. Earthquake-induced landslides initiated by the 22nd February 2011 earthquake posed risk to life safety, and caused widespread damage to dwellings and critical infrastructure. In the immediate aftermath of the 22nd February 2011 earthquake, the geotechnical community responded by deploying into the Port Hills to conduct assessment of slope failure hazards and life safety risk. Coordination within the voluntary geotechnical response group evolved rapidly within the first week post-earthquake. The lack of pre-event planning to guide coordinated geotechnical response hindered the execution of timely and transparent management of life safety risk from coseismic landslides in the initial week after the earthquake. Semi-structured interviews were conducted with municipal, management and operational organisations involved in the geotechnical response during the CES. Analysis of interview dialogue highlighted the temporal evolution of priorities and tasks during emergency response to coseismic slope failure, which was further developed into a phased conceptual model to inform future geotechnical response. Review of geotechnical responses to selected historical earthquakes (Northridge, 1994; Chi-Chi, 1999; Wenchuan, 2008) has enabled comparison between international practice and local response strategies, and has emphasised the value of pre-earthquake preparation, indicating the importance of integration of geotechnical response within national emergency management plans. Furthermore, analysis of the CES and international earthquakes has informed pragmatic recommendations for future response to coseismic slope failure. Recommendations for future response to earthquake-induced landslides presented in this thesis include: the integration of post-earthquake geotechnical response with national Civil Defence and Emergency Management; pre-earthquake development of an adaptive management structure and standard slope assessment format for geotechnical response; and emergency management training for geotechnical professionals. Post-earthquake response recommendations include the development of geographic sectors within the area impacted by coseismic slope failure, and the development of a GIS database for analysis and management of data collected during ground reconnaissance. Recommendations provided in this thesis aim to inform development of national guidelines for geotechnical response to earthquake-induced landslides in New Zealand, and prompt debate concerning international best practice.