The greater Wellington region, New Zealand, is highly vulnerable to large earthquakes. While attention has been paid to the consequences of earthquake damage to road, electricity and water supply networks, the consequences of wastewater network damage for public health, environmental health and habitability of homes remain largely unknown for Wellington City. The Canterbury and Kaikōura earthquakes have highlighted the vulnerability of sewerage systems to disruption during a disaster. Management of human waste is one of the critical components of disaster planning to reduce faecal-oral transmission of disease and exposure to disease-bearing vectors. In Canterbury and Kaikōura, emergency sanitation involved a combination of Port-a-loos, chemical toilets and backyard long-drops. While many lessons may be learned from experiences in Canterbury earthquakes, it is important to note that isolation is likely to be a much greater factor for Wellington households, compared to Christchurch, due to the potential for widespread landslides in hill suburbs affecting road access. This in turn implies that human waste may have to be managed onsite, as options such as chemical toilets and Port-a-loos rely completely on road access for delivering chemicals and collecting waste. While some progress has been made on options such as emergency composting toilets, significant knowledge gaps remain on how to safely manage waste onsite. In order to bridge these gaps, laboratory tests will be conducted through the second half of 2019 to assess the pathogen die-off rates in the composting toilet system with variables being the type of carbon bulking material and the addition of a Bokashi composting activator.
The supply of water following disasters has always been of significant concern to communities. Failure of water systems not only causes difficulties for residents and critical users but may also affect other hard and soft infrastructure and services. The dependency of communities and other infrastructure on the availability of safe and reliable water places even more emphasis on the resilience of water supply systems. This thesis makes two major contributions. First, it proposes a framework for measuring the multifaceted resilience of water systems, focusing on the significance of the characteristics of different communities for the resilience of water supply systems. The proposed framework, known as the CARE framework, consists of eight principal activities: (1) developing a conceptual framework; (2) selecting appropriate indicators; (3) refining the indicators based on data availability; (4) correlation analysis; (5) scaling the indicators; (6) weighting the variables; (7) measuring the indicators; and (8) aggregating the indicators. This framework allows researchers to develop appropriate indicators in each dimension of resilience (i.e., technical, organisational, social, and economic), and enables decision makers to more easily participate in the process and follow the procedure for composite indicator development. Second, it identifies the significant technical, social, organisational and economic factors, and the relevant indicators for measuring these factors. The factors and indicators were gathered through a comprehensive literature review. They were then verified and ranked through a series of interviews with water supply and resilience specialists, social scientists and economists. Vulnerability, redundancy and criticality were identified as the most significant technical factors affecting water supply system robustness, and consequently resilience. These factors were tested for a scenario earthquake of Mw 7.6 in Pukerua Bay in New Zealand. Four social factors and seven indicators were identified in this study. The social factors are individual demands and capacities, individual involvement in the community, violence level in the community, and trust. The indicators are the Giving Index, homicide rate, assault rate, inverse trust in army, inverse trust in police, mean years of school, and perception of crime. These indicators were tested in Chile and New Zealand, which experienced earthquakes in 2010 and 2011 respectively. The social factors were also tested in Vanuatu following TC Pam, which hit the country in March 2015. Interestingly, the organisational dimension contributed the largest number of factors and indicators for measuring water supply resilience to disasters. The study identified six organisational factors and 17 indicators that can affect water supply resilience to disasters. The factors are: disaster precaution; predisaster planning; data availability, data accessibility and information sharing; staff, parts, and equipment availability; pre-disaster maintenance; and governance. The identified factors and their indicators were tested for the case of Christchurch, New Zealand, to understand how organisational capacity affected water supply resilience following the earthquake in February 2011. Governance and availability of critical staff following the earthquake were the strongest organisational factors for the Christchurch City Council, while the lack of early warning systems and emergency response planning were identified as areas that needed to be addressed. Economic capacity and quick access to finance were found to be the main economic factors influencing the resilience of water systems. Quick access to finance is most important in the early stages following a disaster for response and restoration, but its importance declines over time. In contrast, the economic capacity of the disaster struck area and the water sector play a vital role in the subsequent reconstruction phase rather than in the response and restoration period. Indicators for these factors were tested for the case of the February 2011 earthquake in Christchurch, New Zealand. Finally, a new approach to measuring water supply resilience is proposed. This approach measures the resilience of the water supply system based on actual water demand following an earthquake. The demand-based method calculates resilience based on the difference between water demand and system capacity by measuring actual water shortage (i.e., the difference between water availability and demand) following an earthquake.